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Abstract

The probability for the Bose–Einstein condensation of anyons is discussed. It is found that the
ideal anyon gas near Bose statistics can display BEC behaviour. In addition, the transition
point and the specific heat are determined.

The recent successful experimental observations on Bose–Einstein condensation
(BEC) in ultracold trapped atomic gases (Anderson et al. 1995; Bradly et al. 1995;
Davis et al. 1995) have created great interest. Many papers on the formation,
evolution, interference of the BEC and related topics have been published (see
e.g. Grossmann and Holthaus 1995; Castin and Dunn 1996; Kagan et al. 1997;
Hostin and You 1996).

Although the condensation of an ideal Bose gases has been written about in
textbooks for many years and imperfect Bose gases with a hard-sphere interaction
were investigated over forty years ago (Huang et al. 1957a, 1957b; Lee and Yang
1958), only an ideal gas within a box or confined by a trap has been studied for
the low-dimensional case (de Groot et al. 1950; Ketterle and Van Druten 1996;
Bagnato and Kleppner 1991). In the two-dimensional case, Hohenberg (1967) has
shown that a BEC cannot occur in an ideal system, but Bagnato and Kleppner
(1991) argued that, if the system is confined by a spatially varying potential,
i.e. the ‘trapping’ potential, a BEC can in principle occur. It is natural to ask
whether a BEC can occur in an interacting two-dimensional gas.

However, particles obeying fractional statistics (Leinaas and Myrheim 1977;
Wilczek 1982; Wilczek and Zee 1983; Wu 1984, 1994; Wu and Zee 1984; Goldhaber
and Mackenzie 1984; Haldane 1991; Sen and Bhaduri 1995) can be considered as
an interacting system (Sen 1991), and for the two-dimensional anyon gas near
Bose statistics, we can expect that a BEC may occur in such a system. In what
follows, we will show that this is indeed the case.

To make this paper self-contained, let us repeat the derivation of the equations
of state of an anyon gas. All the calculations follow Chaichian et al. (1993).

The Hamiltonian of N identical anyons is given by

H =
N∑
i=1

1
2m

(~Pi − ~Ai)2 , (1)

where
~Ai = α

∑
i6=j

~k × ~rij

~rij
2 ( ~rij ≡ ~ri − ~rj) (2)
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is the statistical gauge field. Here ~k is a unit vector perpendicular to the plane
and α = eφ/π is the statistical parameter, while e and φ are the charge and the
flux carried by each anyon.

We define the N -body wave function Ψp(~r1, ..., ~rN ) as

Ψp(~r1, ..., ~rN ) =
∏
i<j

rγijΨ̃p(~r1, ..., ~rN ) . (3)

Then for the new function Ψ̃p, the Hamiltonian reads

H̃ =
N∑
i=1

 ~Pi
2

2m
+
iα

m

∑
j 6=i

~k × ~rij

~rij
2 ∂i −

|α|
m

∑
j 6=i

~rij

~rij
2 ∂i

 . (4)

Now the singular α2 interaction terms such as (1/ ~rij
2) in (1) are cancelled in

the present form equation (4). Notice that due to the symmetry of the free
spectrum under the change ~Px ↔ ~Py, the second term in (4) can be shown to
vanish. Finally, the |α| interacting term in (4) can be replaced (in a perturbative
sense) by a sum of two-body δ potentials (Sen 1991):

V =
2π|α|
m

∑
i<j

δ2(~ri − ~rj) . (5)

The temperature Green function in momentum space can be derived from the
Dyson equation as

G(~k, ωn) = G0(~k, ωn) +G0(~k, ωn)Σ(~k, ωn)G(~k, ωn) , (6)

where Σ is the proper self-energy and G0 the free propagator,

G0 =
1

iωn − (ε0k − µ)
, (7)

with ωn = 2nπ/β, ε0k = ~k2/2m and µ is the chemical potential.
The first order self-energy is given by (Fetter and Walecka 1971)

Σ(1)(~k, ωn) ≡ Σ(1)(~k) = V (0)
∫

d2~k

(2π)2 n
0
~k

+
∫

d2~k′

(2π)2 V (~k − ~k′)n0
~k′
, (8)

where
n0
~k

=
1

eβ(ε0~k−µ) − 1
(9)

is the usual Bose distribution and

V (~k) =
2π
m
|α| (10)

is the two-particle interacting potential in momentum space.
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Now, it is easy to see that

Σ(1) =
4π
m

∫
d2~k

(2π)2

1

z−1eβ(ε0~k−µ) − 1

=
2|α|
β

∫ ∞
0

dx
z

ex − z

= − 2|α|
β

ln(1− z) . (11)

Since Σ(1) is independent of ωn, replacing the free energy ε0~k by ε0~k + Σ(1)

we have the particle distribution up to the first order of α. Then the particle
density is

n =
∫

d2~k

(2π)2 n~k

= − 1
λ2 ln(1− z)

{
1− 2|α|z

1− z

}
, (12)

while the pressure p reads

pβ =
∫

dz
n

z

=
1
λ2 {g2(z)− |α| ln2(1− z)} , (13)

where λ =
√
h2/2πmkT and

gx(z) =
∞∑
l=1

zl

lx
. (14)

The same results (12) and (13) were evaluated by Comtet et al. (1991).
Although these results are the first-order approximation of α, we will take them
as the exact ones in the following. In fact, n should be replaced by ne (≡ n−n0)
in equation (12). Here n0 represents the particle density staying in the ground
state (~k = 0, ε~k = 0). The reason is stated in standard textbooks (Huang 1963;
Pathria 1972).

Now, we can show that (n− n0) given by (12) has a maximum at a certain
temperature. We define

f(z) = − ln(1− z)
{

1− 2|α|z
1− z

}
, (15)

and then
n− n0 =

1
λ2 f(z) . (16)

To ensure (n− n0) ≥ 0, we find that z must satisfy

0 ≤ z ≤ 1
1 + 2|α| . (17)
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It is easy to show that f(z) has a maximum in this domain. The point at
which f(z) arrives at maximum is determined by

2|α| ln(1− z0)− (1 + 2|α|)z0 + 1 = 0 . (18)

Evidently, z0 is a function of |α|.
The physical meaning of the maximum point is that the number of particles

that can stay in the excited states is limited. Once the excited states are fully
occupied, all leftover particles will be pushed into the ground state, and then a
BEC occurs.

If we let z = z0 for a certain number of particles, the transition point Tc can
be determined by

Tc =
h2

2πmk
n

f(z0)
. (19)

Finally, let us investigate the behaviour of the specific heat. According to the
well-known formula of thermodynamics, the energy of the system is given by

U ≡ −
(
∂

∂β
lnZ

)
z,V

= kT 2

{
∂

∂T

(
PV

kT

)}
z,V

, (20)

and the specific heat by

Cv

Nk
=

1
Nk

(
∂U

∂T

)
N,V

. (21)

When T ≤ Tc, replacing z by z0, we have

pβ =
2πmkT
h2 {g2(z0)− |α| ln2(1− z0)} , (22)

U

V
=

2πmk2T 2

h2 {g2(z0)− |α| ln2(1− z0)} , (23)

Cv

Nk
= 2

T

Tc

1
f(z0)

{g2(z0)− |α| ln2(1− z0)} . (24)

When T ≥ Tc, the evaluation is a little more complicated. From

pβ =
2πmkT
h2 {g2(z)− |α| ln2(1− z)} (25)

we obtain

U

V
=

2πmk2T 2

h2 {g2(z)− |α| ln2(1− z)} , (26)
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Cv

Nk
= 2

T

Tc

1
f(z0)

{g2(z)− |α| ln2(1− z)}

+
T 2

Tc

1
f(z0)

{
∂

∂z
[g2(z)− |α| ln2(1− z)]

}(
∂

∂T
z

)
n

, (27)

where ((∂/∂T )z)n can be deduced from (12),

(
∂

∂T
z

)
n

= ln(1− z){1− (1 + 2|α|)z}
/
T

{
1− 2|α|z

1− z +
2|α|
1− z ln(1− z)

}
. (28)

Substituting this result into equation (27), we get

Cv

Nk
= 2

T

Tc

1
f(z0)

{
g2(z)− |α| ln2(1− z)

− ln2(1− z)
2z

[1− (1 + 2|α|)z]2
1− (1 + 2|α|)z + 2|α| ln(1− z)

}
. (29)

Here z is given by equation (12), i.e.

n = −2πmkT
h2 ln(1− z)

{
1− 2|α|z

1− z

}
. (30)

From (30), it is easy to find that for each T there are two values of z in the
domains (0, z0) and (z0, 1/(1+2|α|)) corresponding to certain n. If z takes values
in the domain (z0, 1/(1 + 2|α|)), then nothing will happen. However, the specific
heat Cv may become negative for certain z in [0, z0], which can be seen from
(29). When T → Tc, z may approach z0 from two directions in which case z > z0

and z < z0. When z → z0 from the direction of z > z0, then Cv → +∞. But if
z → z0 from the direction of z < z0, then Cv → −∞. So, we find that the domain
(0, z0) has no physical meaning and should be excluded. The discontinuity of
the specific heat at T = Tc is evident. But the presence of the singularity of the
specific heat when T → T+

c is difficult to understand. Perhaps the reason is that
the approximation taken here is not precise enough. This needs to be studied
further.

In conclusion, we have investigated the related properties of a two-dimensional
ideal anyon gas. We find that, when we approximate to first order in the
statistical parameter α, the ideal anyon gas near Bose statistics can display BEC
behaviour. In addition, the transition point and the specific heat are determined.

Because the effect of the statistical gauge potential is equivalent to a two-body
δ interaction potential when we approximate to first order, we can expect that
a δ interacting system may display BEC behaviour in the sense of perturbation.
Further work on this will be reported elsewhere.
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