Supplementary Material

Contraceptive efficacy and dose-response effects of the gonadotrophin-releasing hormone (GnRH) agonist deslorelin in Tasmanian devils (Sarcophilus harrisii)

ASchool of Life and Environmental Sciences, Faculty of Science, The University of Sydney, J.D. Stewart Building B01, Camperdown, NSW 2006, Australia.
BWildlife Management Branch, Department of Primary Industries, Parks, Water and Environment, Hobart, Tas. 7000, Australia.
CTaronga Institute of Science and Learning, Taronga Conservation Society, NSW 2088, Australia.
DSchool of Agriculture and Food Sciences, Faculty of Science, The University of Queensland, Gatton, Qld 4343, Australia.
EHobart, Tas. 7000, Australia.
FSydney School of Veterinary Science, Faculty of Science, The University of Sydney, R.M.C. Gunn Building B19, Camperdown, NSW 2006, Australia.
GZoo and Aquarium Association Australasia, Mosman, NSW 2088, Australia.
HCorresponding author. Email: catherine.herbert@sydney.edu.au

Inter-lab variation

Nine samples from a female control devil were originally analysed at TWPZ for faecal progesterone in 2014 and re-analysed (including faecal extraction from stored dry scats) at Sydney University in 2017 to evaluate the inter-lab variation. The average CV between labs for each sample was 29.12%, and there was a strong correlation between labs (R^2 = 0.93, Slope = 0.995; Supp. Fig. 1). The variation between labs may be accounted for by the slightly different protocol used for the EIA (single versus double antibody).
Fig. S1. Progesterone concentrations (ng/g) of samples from one female Tasmanian devil extracted and analysed at Taronga Western Plains Zoo in 2014, then again at the University of Sydney in 2017. Trendline equation: $y = 0.995x + 393.52$, $R^2 = 0.9307$.
General health analysis

Table S1. Mean general health results for female Tasmanian devils in treatment groups control, low dose and high dose, with standard error presented in the bottom row

<table>
<thead>
<tr>
<th>Semi-Annual CBC (2015–2016)</th>
<th>Annual blood chemistry (July 2015 and 2016)</th>
<th>PCV (%)</th>
<th>RCC ($\times 10^{12}$ L$^{-1}$)</th>
<th>HGB (g/L)</th>
<th>Na/K ratio*</th>
<th>Potassium (mmol/L)*</th>
<th>Albumin (g/L)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td>44.07A</td>
<td>6.39A</td>
<td>150.30A</td>
<td>13.25A</td>
<td>25.62B</td>
<td>10.60A</td>
</tr>
<tr>
<td>Low dose</td>
<td></td>
<td>45.82AB</td>
<td>6.64AB</td>
<td>155.40AB</td>
<td>17.71A</td>
<td>19.60A</td>
<td>8.08BD</td>
</tr>
<tr>
<td>High dose</td>
<td></td>
<td>47.39B</td>
<td>6.95B</td>
<td>160.70B</td>
<td>14.42A</td>
<td>16.20A</td>
<td>9.78AB</td>
</tr>
<tr>
<td>S.E.</td>
<td></td>
<td>1.18</td>
<td>0.15</td>
<td>3.81</td>
<td>2.16</td>
<td>2.16</td>
<td>0.86</td>
</tr>
</tbody>
</table>

*Significant differences within columns marked by an asterisk are denoted by superscripts.