Supplementary material for

Soil type, bulk density and drainage effects on relative gas diffusivity and N₂O emissions

Camille Rousset⁴, Tim J. Clough⁴, Peter R. Grace⁵, David W. Rowlings⁴, and Clemens Scheer⁵,⁶

⁴Department of Soil and Physical Sciences, Lincoln University, PO Box 85084, Lincoln, 7647, New Zealand.

⁵Queensland University of Technology, Institute for Future Environments, 2 George Street, Brisbane, Qld, 4000, Australia.

⁶Institut für Meteorologie und Klimaforschung, Department Atmosphärische Umweltforschung (IMK-IFU), KIT-Campus Alpin, Garmisch-Partenkirchen, Germany.

⁷Corresponding author. Email: Camille.Rousset@lincolnuni.ac.nz

Figure S1. Relationship between measured N₂O-N fluxes and measured matric potential (-kPa) for each soil separately and at varying soil ρb (Mg m⁻³). Numerals in the legend indicate soil ρb treatments applied (Mg m⁻³). Error bars = s.e.m., n = 4.
Figure S2. Relationship between measured $\text{N}_2\text{O}-\text{N}$ fluxes and volumetric water content ($m^3 m^{-3}$) for each soil separately and at varying soil ρ_b (Mg m$^{-3}$). Numerals in the legend indicate soil ρ_b treatments applied (Mg m$^{-3}$). Error bars = s.e.m., $n = 4$.