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Abstract. A soil organic carbon (SOC) and SOC change model for New Zealand is developed for use in national SOC
inventory reporting. The foundation for the model is a generalised least-squares regression, based on explanatory variables
of land use, soil–climate class, and erosivity. The SOC change model is based on the assumption that changes in SOC over
a decadal timescale are usually restricted to transitions in land use. Improvements to the model are then considered that
are intended to reduce the uncertainty of SOC changes through reduction of the standard error of the land-use effects.
Stochastic gradient boosting is used to find data layers most strongly associated with SOC. The most influential of these
were then used in a general least-squares model after stepwise refinement. The stepwise-refined model significantly
reduced the standard error for SOC, but did not result in a consistent reduction in the standard error for land-use classes, nor
did it result in an improvement in the SOC change model. The method of calculating SOC change from a transition between
two land-use classes is described, along with the significance of the transition, by use of a multi-comparison significance
procedure.
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Introduction

New Zealand has been engaged with international climate
change accords for 20 years, starting with signing and
ratifying the United Nations Framework Convention on
Climate Change (UNFCCC), which took effect in March
1994. In 1997, the Kyoto Protocol established legally binding
obligations for countries to limit or reduce their greenhouse
gas emissions. New Zealand ratified the Protocol in December
2002 and committed to reducing its emissions to 1990 levels, on
average, over the 5-year commitment period (2008–12) or else
to take responsibility for any emissions over these levels. To
meet its obligations under the UNFCCC and Kyoto Protocol,
New Zealand submits an annual emissions inventory to the
UNFCCC, enabled by the Climate Change Response Act 2002.
As part of these annual inventories, the Ministry for the
Environment (MfE 2012) has created the Land Use and
Carbon Analysis System (LUCAS), which is used to report
on New Zealand’s land use, land-use change, and forestry sector
in the greenhouse gas inventory.

LUCAS comprises three primary applications: the
Geospatial System, the Gateway, and the Calculation and
Reporting Application (CRA). These are used, respectively,
for managing the land-use spatial databases, managing the
plot and reference data, and combining the two sets of data
to calculate the numbers required for reporting to the UNFCCC
under the Kyoto Protocol. The Soil Carbon Monitoring System

(the ‘Soil CMS’) has been developed for inventory of the soil
organic carbon (SOC) pool. This paper addresses the design,
development and calibration of the Soil CMS model that forms
a central component of the greenhouse gas inventory for New
Zealand.

In 1996, MfE initiated the development of the Soil CMS for
reporting soil CO2 emissions resulting from land-use change.
The system was designed to measure SOC stocks (Scott et al.
2002) by using country-specific land use, and it was stratified
by soil type, climate, and land use. It was later used to estimate
changes in SOC stock associated with present and future land-
use changes (Tate et al. 2003a, 2003b) by employing a modified
version of the model with an added erosivity index (slope�
precipitation) variable. A default (Tier 1) methodology for this
calculation is provided by the Intergovernmental Panel on
Climate Change (IPCC) for countries with limited SOC data
(Penman et al. 2003), but a country-specific (Tier 2) method is
expected to provide a more accurate calculation, because such
an approach is likely to reflect land-use change issues relevant
to that country and would also be based on local SOC data.

The use of the Soil CMS model to estimate SOC change was
based on the assumption that SOC values in the sample database
represented equilibrium SOC values for each stratified soil,
climate and land-use cell, and erosivity index, with samples
removed where they were identified as being from disturbed
sites (i.e. those where the land-use history was unreliable).
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Furthermore, it was assumed that changes in land use were the
key drivers of change in SOC at the decadal scale, with all other
changes due to soil, climate or erosivity assumed constant.

The Soil CMS model was refined through ongoing research
(Tate et al. 2005), including three validation studies. First, the
model was tested against detailed stratified soil sampling for
24 000 ha of South Island tussock land (unimproved pasture)
(Scott et al. 2002). Second, the Soil CMS model results were
compared with stratified SOC measurements (Tate et al. 2003a,
2003b) in an area of ~6000 ha in the South Island, suggesting
that the national model systematically overpredicted the mean
SOC for some soil–climate and land-cover categories in this
region. Finally, a regional-scale test using one combination
of soil–climate and land-use (temperate, volcanic soil in high-
producing grassland) compared SOC values in the CMS
database with values obtained from random field sampling,
for which the means derived from random sampling were
well within the 95% confidence limits of the model-predicted
values (Wilde et al. 2004). More recently, a second regional-
scale test (Hedley et al. 2012) used randomly sampled soils
from a single combination of soil–climate and land cover of
~710 000 ha (high-activity clay mineralogy promoting long-
term stabilisation of organic matter under low-producing
grassland in a dry temperate New Zealand climate). This
study showed no significant difference between the field-
estimated value (67� 30MgCha–1) and the mean value from
the Soil CMS model (101� 41MgCha–1).

The validation studies described above attempted to test for
departures of field data from that described by the Soil CMS
model. However, the limited number of samples employed
means that the statistical power of these studies is low. At
best, they suggest no compelling evidence that the model is
wrong, but the studies are unable to prove the reverse (i.e. that
the model is correct) because the uncertainty is high and only a
few factor levels are tested. In this paper, we describe a method
to provide high-power evidence of significance for a change
in soil C arising from a change in land use, rather than the
low-power equivalent (i.e. non-significance for a failure to
detect soil C change arising from land-use change).

Since the inception of the Soil CMS model, changes have
been made to the data used for fitting the model, to the source of
the land-use and soil–climate information, and to the statistical
methodology used for the model fitting. The original version of
the model (Scott et al. 2002; Tate et al. 2003a, 2003b, 2005)
used soil data from the National Soils Database alone, whereas
later versions expanded the constituent soil data to include soils
under indigenous forest and intensive cropland. Combining
these data sources significantly improved the number of
samples and their geographical distribution.

The early Soil CMS model (Scott et al. 2002; Tate et al.
2003a, 2003b, 2005) used as input a thematic classification that
was partially descriptive of land cover and partially of land use,
consisting of 13 land-use categories derived from a surrogate
of vegetative cover. The vegetation cover was derived from the
Vegetation Cover Map of New Zealand (Newsome 1987), with
refined exotic forest boundaries and categorisation of indigenous
forests. Later versions of the Soil CMS model used either a
simplified set of six land-use classes (Baisden et al. 2006)
derived from the Land Cover Data Base (LCDB-1; Landcare

Research 2014) satellite classification, or a processed version of
the LCDB in the form of the LUCAS Land Use Map (LUM)
(Koordinates 2013) from thematically rich satellite land-cover
classifications (McNeill et al. 2009).

Finally, there have been several developments to the
statistical methodology used in fitting the Soil CMS model.
Whereas the original CMS (Scott et al. 2002; Tate et al. 2003a,
2003b, 2005; Baisden et al. 2006) used the general linear
model (hereafter called the LM), a later modification changed
the fitting procedure to a generalised least-squares approach
(GLS), with a correction for spatial autocorrelation (McNeill
et al. 2009).

The combination of changes in the soil sample data available
for fitting the Soil CMS model, changes in the source data for
explanatory layers such as land use and soil–climate, and
refinements to the statistical methodology employed make it
difficult to separate and compare the effects of each of the
developments to the model over time. Consequently, this
paper sets out the considerations involved in refining the
model and its underpinning assumptions as it is currently
documented (McNeill 2013), rather than being a detailed
historical account and justification of all of the changes that
have been made.

This paper has three objectives. First, the Soil CMS model as
it is currently used in New Zealand (McNeill 2013) is explained,
along with the justification for key processing steps and the
associated uncertainty model. Second, key steps are described
that are important in determining whether or not the model can
be used as the basis of a Tier 2 reporting option (use of country-
specific data via the Soil CMS model) to report SOC stock
changes in soils. Third, we seek to determine whether adding
new covariate layers improves the degree of uncertainty in the
land-use-effect estimates from the model, given the structural
constraints in applying the model to give estimates of SOC
change.

After the data sources have been defined, comprising the
SOC data and the various model explanatory factors, the
statistical methodology behind the current SOC inventory and
inventory change model is developed, noting the shortcomings
of the model form imposed as a result of one of the primary
LUCAS applications (the CRA). In particular, we note that the
SOC model can be optimised in terms of model complexity and
the uncertainty of model estimates to minimise either the
uncertainty of the SOC stocks or the uncertainty of the SOC
stock change. The adopted model represents a pragmatic
compromise between these two different models (SOC stock
and SOC change). The uncertainty model of the Soil CMS is
then developed, including several key assumptions involved in
the fitting process and the assessment of the significance of the
SOC change resulting from land-use change and its subsequent
interpretation.

Potential alterations to the model are then considered,
especially augmentation of the explanatory data by new
national covariate data layers that might be associated with
SOC. We show that these changes do result in a reduction in
the standard error of the regression describing SOC, but that the
addition of new layers (and additional complexity) does not
result in a significant improvement in the model for SOC change
resulting from land use.
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In a regression to predict SOC, an implicit assumption is that
the explanatory variables are measured without error. When the
explanatory variables are subject to error during measurement,
conventional regression procedures produce biased coefficient
estimates, where the degree of bias depends on the degree of
corruption of the explanatory variables. Several common
environmental covariates have uncertainty or classification
error associated with them (e.g. elevation model slope error,
land-use misclassification), and we make the assumption that
the degree of uncertainty in the various explanatory layers is
not enough to warrant special regression procedures described
elsewhere (Cheng and Van Ness 2001).

Materials and methods

Model basis

An inventory model for SOC change is inherently problematic
compared with estimating the change associated with other C
pools in the environment, such as vegetation. In principle, the
parameters in a vegetation plot (e.g. species and diameter values
for the same trees) can be remeasured on two separate dates
some years apart, thus effectively eliminating the within-stratum
variance (Coomes et al. 2002). The C measurement process in
soil is destructive at a point, so the within-stratum variance
cannot be eliminated by repeated-measurement, and thus many
samples are required within a soil or climate stratum to reduce
the pooled variance to acceptably low levels.

The operation of the Soil CMS model to produce SOC pool
estimates involves applying a linear statistical model to key
factors of land use, climate, and soil class, which together
regulate net SOC storage. The model includes an additional
environmental factor consisting of the product of slope and
rainfall—a term used as a proxy for the potential for surface soil
erosion to occur (‘erosivity’) (Giltrap et al. 2001). The key
concept in the operation of the Soil CMS model is that land use
affects SOC, and so estimates must be reported grouped by
specified land-use classes. The model allows for an explanatory
effect by land-use class, and this approach has some benefit if
the variability between land-use classes is greater than the
variability within a class. The SOC estimate is unbiased
whether land-use class is included in the model or not, but
the overall residual standard error is reduced by including the
land-use class explanatory effect.

The uncertainty of the land-use effect in the Soil CMS model
depends on two factors. One component of uncertainty relates
to the inherent uncertainty of SOC knowledge, and a second
depends on the number of field samples available. The nature of
the field data is such that this latter component of uncertainty
tends to be dominant.

An important consideration in the design of the Soil CMS
model is that it includes several factors presumed to be
associated with the variability in SOC stocks, although they
may not be causally associated with those changes. Furthermore,
these factors are not necessarily the only factors known to be
associated with changes in SOC stocks. First, the total number
of factors associated with variability in SOC stock is not known.
Second, there are some physical and chemical properties of soil
that are known to be highly influential predictors of SOC, but
which are only available for a small number of samples and are

not mapped at a national scale. Examples of such properties
are soil specific surface area, cation exchange capacity, and the
content of dithionite-extractable iron, which in previous studies
have been shown to predict SOC content almost completely
(Kahle et al. 2002). Therefore, the Soil CMS model
development must represent a compromise between the
collection of information available for all locations in the
calibration dataset and the explanatory power of the variables
for which representative information is available at a national
scale.

The regression model underpinning the Soil CMS model is
fitted using a set of soil measurements from several different
sources gathered over decades. The soil sample locations,
although important and relevant to the researchers at the time,
are not the sites that might have been chosen if the study were
to be designed afresh. Most standard statistical tests depend
on random sampling or have some component of randomness
imposed to satisfy the rigour of the subsequent statistical
analysis (Lohr 1999), and soil samples that are in part
historically derived do not satisfy this requirement. However,
strict adherence to random sampling is not possible in the
case of the Soil CMS model (in this case, circumscribed by
the cost of acquiring a sufficient number of samples), but the
inclusion of historical datasets chosen without bias or a
particular intent (McCune and Grace 2002) allows researchers
to achieve the aims of inventory analysis, while accepting that
the derived model might require careful checking to detect
possible sampling artefacts. Because of this approach, some
soil–climate and land-use factors are under-represented while
others are over-represented. To some extent, soil samples are
correlated depending on the distance between them, which
means that application of the Soil CMS model to the Soil
CMS dataset results in predictions of SOC stocks that are
biased from their true values. This effect was noted in earlier
analyses (Kirschbaum et al. 2009), and the bias can be accounted
for in the analysis (McNeill et al. 2009).

Soil C linear parametric model

The original model to estimate SOC in New Zealand (Scott et al.
2002) was similar to the approach used by IPCC at the time
(IPCC 1996). This involves stratification of the New Zealand
landscape by the key factors that influence soil carbon over
time-scales of interest for national monitoring (soil group,
climate, and land use or land cover).

The regression model for SOC in the 0–30-cm layer as a
response variable uses explanatory variables of the soil–climate
factor, the land-use class, and the slope–rainfall product. This
model is represented as an equation for the SOC C0�30 cm

i;j in
land-use class i and soil–climate class j as:

C0�30 cm
i;j ¼ M þ Li þ Sj þ b:SRþ e ð1Þ

In Eqn 1, C0�30 cm
i;j is the mean SOC in the 0–30-cm layer,

and M is the mean SOC for the combination of the reference
level of land use (low-producing grassland), the reference level
for soil–climate (moist-temperate high-activity clay), and level
ground; Li is the effect of the ith land use, specifying the
difference in SOC relative to the reference land use (low-
producing grassland) (in t ha–1); Sj is the effect of the jth
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soil–climate class relative to the reference level; and b is the
additional SOC for each unit of erosivity (slope� rainfall), or SR
(millidegrees� 10–1). The model uncertainty is encapsulated in
e, which is defined later.

Equation 1 predicts a single value of SOC for one single site.
If we denote C0�30 cm

NZ as the total New Zealand SOC stock, with
ANZ, ALi

, and ASj the area of New Zealand, the area in land use i,
and the area in soil–climate class j, respectively, then the total
SOC for New Zealand is found by using:

C0�30cm
NZ ¼ ANZ :M þ

X
i

LiALi þ
X
j

SjASj

þ b:ANZ :SRþ e
ð2Þ

In Eqn 2, ANZ.M is the reference-soil SOC, characterising
SOC for the low-producing grassland land-use class, moist-
temperate high-activity clay soil–climate class, and flat land
(i.e. slope of zero). The remaining terms adjust the reference
value for other factors: Sj Li ALi

is the additive adjustment for the
SOC in each land-use class other than low-producing grassland;
Sj Sj ASj is the additive adjustment for the soil–climate relative
to moist-temperate high-activity clay; and b:ANZSR is the
additive adjustment for rainfall and slope. The uncertainty e
in Eqn 2 is different from the uncertainty in Eqn 1, which uses
the same symbol for convenience.

The quantities M, Li, and Sj, as well as the slope–rainfall
coefficient b, are obtained by fitting a statistical model to the Soil
CMS calibration dataset; all other quantities are obtained from
other datasets or from separate analyses. For example, the mean
value of the slope� rainfall must be obtained from national
statistics of rainfall and a terrain slope map, which has been
calculated from GIS layers as 39.1 millidegrees (Giltrap et al.
2001).

Although the choice of a reference level for land use (or
indeed for soil–climate class) is arbitrary from a statistical
viewpoint, there are good reasons why one might choose a
specific reference class. In Tate et al. (2003a), ‘improved
grassland’ was used as the reference because most land-cover
changes considered at the time included improved grazing land;
in addition, published reports suggested soil C for improved
grassland could be assumed to be at steady-state. The present
use of ‘low-producing grassland’ as a reference class is a
continuation of the reasoning from Tate et al. (2003a).

The precise form of the regression model is not directly
obvious from the form of Eqn 2. Although a linear model would
be the obvious choice, it would not be appropriate because
there is likely some spatial autocorrelation between points. In
regions of high plot density, the local spatial correlation means
that each additional sample of SOC tends to have a confirmatory
effect on the existing value of SOC in that region and does
not represent an independent estimate. Thus, the use of a linear
model with a varying density of plots with spatial correlation
may result in a bias of the estimated mean SOC (or the value after
accounting for other explanatory variables) for some land-use
classes and an underestimate of the uncertainty for the mean
SOC. These issues can be expressed in terms of the basic
assumptions of the linear regression model (e.g. see Bain and
Engelhardt 1992, from p. 500).

SOC change model

Modelling of SOC with a regression approach essentially
represents an intermediate step in the calculation of SOC
change. Given, for example, the SOC model from Eqn 2, the
SOC change DC1,2 between dates 1 and 2 is given by:

DC1;2 ¼
X
i

Li ALi;1 � ALi;2

� �þ e0 ð3Þ

All other terms involving the soil–climate and the erosivity
are assumed invariant over time and can be treated as constants.
Since all other terms from Eqn 2 cancel, it seems as if refinement
of SOC with additional explanatory factors is not worthwhile.
However, refinements in the Soil CMS model to better explain
SOC might be expected to alter the balance of the SOC variance
explained by all factors (including land use) and be especially
likely to alter the distribution of the SOC uncertainty in Eqn 2,
and thus the uncertainty component of SOC change in Eqn 3.

TheMfE CRA design is such that, currently, the SOC change
model must accept as inputs each land-use class and the change
in area associated with that land-use class, and these required
inputs are compatible with the SOC change model in Eqn 3.
Consider, however, a modification to Eqn 2 that transforms the
Soil CMS model from a linear function to a non-linear function
(f), which is invertible (inverse function f–1), such as log(C) orffiffiffiffi
C

p
, both of which might be reasonable to apply to Eqn 1 to

stabilise the variance of SOC and thus improve regression
residual behaviour. In this case, the SOC change DC1,2

between dates 1 and 2 is given by:

ANZ f C1ð Þ � f C2ð Þ
� �

¼
X
i

Li ALi;1 � ALi;2

� �þ e0 ð4Þ

which cannot be inverted to produce ANZðC1 � C2Þ, and thus
DC1,2, unless f is linear and ignoring issues concerning the
transformation of the uncertainty component e0. Thus, the
present design of the CRA precludes the use of a non-linear
transformation of the SOC response function in Eqn 1.

Soil data

Soil data for the Soil CMS model come from four sources. The
first is the Historic Soils dataset, derived primarily from the
National Soils Database, with a small number of samples from
various supplementary datasets. The National Soils Database
represents profile data collected for over 1500 soil pits scattered
throughout New Zealand. These comprise the soil description
following either the Soil survey method (Taylor and Pohlen
1979) or Soil description handbook (Milne et al. 1995), as well
as physical and chemical analyses from either the Landcare
Research Environmental Chemistry Laboratory or the
Department of Scientific and Industrial Research (DSIR) Soil
Bureau Laboratory. Soil properties were measured by horizon
and then converted to fixed depth values by using a weighted
average of fully and partially contained soil horizons (Baisden
et al. 2006).

The second source, the Natural Forest Soils dataset, was
gathered as part of MfE’s Natural Forest Survey, with soil
samples taken by subsampling a regular, 8-km grid across the
landscape, using fixed depths. The Natural Forest Soils were
important in the development of the Soil CMS model because
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they provide spatial balancing in areas of New Zealand not
adequately covered by other sources of soil data.

The third source of data is a set of intensively spatially
sampled, high-producing grassland, annual cropland, and
perennial cropland records, using fixed sampling depths and
referred to as the Cropland dataset (Lawrence et al. 2008;
Lawrence-Smith et al. 2010a, 2010b).

The fourth source of data comprises wetland soil data from
a recent research effort to combine field data with analysis of
the spatial distribution of current wetlands in New Zealand
(A.-G. Ausseil, pers. comm.), consisting of 131 mineral and
organic soils from wetlands. The soil cores in this dataset were
typically 7 cm deep after removing surface living vegetation
and litter; however, in most cases, the soils are homogeneous to
30 cm depth. These soils were recorded as soil C concentration
and were converted to SOC stocks using either the bulk density
for the sample or average bulk density of the wetland class for
the sites where sample bulk density was not available. The
soils were classed as organic by one of three rules. First, if
the measured C concentration was >18%. Second, if the C
concentration was not available, and thus estimated by
assignment from a wetland class mean, the soil was classed
as organic if the bulk density was <0.4. Finally, if the C
concentration and the bulk density were both considered
unreliable for classifying the soil sample, then expert
knowledge of the site was used. The estimated SOC stocks
were then extrapolated to the 0–30-cm layer and points with
invalid or unknown map coordinates were discarded. Since
organic soils classified in the above manner are treated
separately in the Soil CMS model, these samples were
discarded, resulting in 21 wetland mineral samples. Although
this is only a small pool of samples compared with other data
sources, it represents a large increase from the three wetland
samples previously available from the National Soils Database
alone.

Land-use information

Land-use information was derived from the MfE LUCAS
LUM, which consists of New Zealand-wide land-use classes
(12) nominally at 1 January 1990, 1 January 2008 and 31
December 2012 (Koordinates 2013); these date boundaries
were dictated by the First Commitment Period of the Kyoto
Protocol. The LUCAS classification from which the LUM was
generated was produced from satellite imagery (Landsat-4, -5, or
-7 or SPOT-5, depending on the LUM date), augmented by
mapping and validation datasets from aerial- and satellite-based
sources (Koordinates 2013). Two of the 12 LUM classes were
not used because of lack of SOC data: open water (assumed 0,
by definition) and settlements (assigned to low-producing
grassland by convention).

The IPCC default assumption is that the SOC pool can be
considered at steady-state 20 years after a land-use change
known to cause a significant change in SOC (Penman et al.
2003). Following this rule, the Soil CMS model was built on the
assumption that its constituent land-use classes have reached
steady-state, and thus, classes that are in transition to steady-
state should be removed from the model. Instead, these classes
in transition should be assigned some portion of the steady-
state pool of SOC. In particular, the pre-1990 and post-1989

forest classes should be separated because they are distinct
populations; post-1989 forests generally lose SOC
progressively over time (Beets et al. 2002), so pre-1990
forest would be expected to have lower SOC stocks than
post-1989 forest. In calculations of SOC change, the pre-
1990 forest class would be applied to the post-1989 forest
soils, using a transition rate. For this reason, post-1989 forest
samples were removed from the dataset.

Other explanatory layers

In order to investigate possible improvements to the model
describing the relationship between SOC stock change and
environmental variables, several other national-coverage layers
were gathered as potential explanatory factors associated with
SOC (Table 1).

The Land Environments of New Zealand (LENZ) provides
numerical data layers describing various aspects of New
Zealand’s climate, landforms, and soils, such as annual water
deficit, monthly water balance ratio, or a factor defining the soil
particle size (Leathwick et al. 2002). LENZ also provides a
series of four hierarchical classifications that identify similar
environments based on climate, landform, and soils, with 20,
100, 200, and 500 environments nationally for LENZ level 1, 2,

Table 1. Explanatory variables used in the analysis of soil organic
carbon

Variable Description of the explanatory variable

IPCCSoilClim Variable encompassing the IPCC soil and climate
classes interaction

SlopeRain Empirical erosivity estimate (slope� annual
rainfall), (millidegrees� 10�1)

Slope Site slope (degrees)
AnnRain Mean annual rainfall at a site (mm)
LucasSubCategory Land use in one of nine categories (factor)
Soilorder Soil order, consistent with the New Zealand Soil

Classification (factor)
MAT Mean annual temperature (8C)
MMTCM Mean minimum temperature of the coldest

month (8C)
OCTVPD October vapour pressure deficit (kPa)
LENZ 1 Land Environments of New Zealand level 1

environmental classification
AWD Annual water deficit (mm)
MASR Mean annual solar radiation (MJm–2 day–1)
ASP Acid-soluble phosphorus (factor)
SPS Soil particle size (factor)
IND Induration (factor)
ECA Exchangeable calcium class (factor)
MWBR Monthly water balance ratio (dimensionless)
DRAINAGE Drainage class (factor)
Pot.for.class Simplified potential forest class (factor)
CEC_CLASS Cation exchange capacity (factor)
CEC_MID Cation exchange capacity mid-value (cmol+ kg

–1)
PRET_CLASS Phosphorus retention class (factor)
PRET_MID Phosphorus retention mid-value (0–100%)
GRAV_CLASS Topsoil gravel content class (factor)
GRAV_MID Topsoil gravel content mid-value (0–100%)
DSLO_CLASS Depth to slowly permeable layer class (factor)
PRAW_CLASS Profile readily available water class (factor)
PRAW_MID Profile readily available water mid-value (mm)
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3, or 4. Only the LENZ level 1 classification is used (20 classes)
in this study because the available soil sample data do not
encompass the other classifications.

The Fundamental Soils Layer (FSL) is generated from a
relational join of features from the New Zealand Land Resource
Inventory (NZLRI) and the National Soils Database. The
NZLRI is a national polygon database of physical land
resource information. FSL provides GIS information of the
expert-assessed classification of Soil Order, and other soil or
landscape attributes over New Zealand, including, for example,
an estimate of the mid-range value of the cation exchange
capacity for a given polygon.

The S-map is a contemporary digital soil spatial information
system for New Zealand (Lilburne et al. 2012), which provides
information on the best available knowledge of classification
of the Soil Order consistent with the New Zealand Soil
Classification (NZSC; Hewitt 2010). Coverage by S-map is
not available for all the land area, but it is available for
regions of intensive agricultural use. The more-detailed S-
map version of the Soil Order was used when available, and
the version from the FSL when the S-map version was not
available. In cases where only the FSL version was available,
special FSL NZSC Orders corresponding to ‘town’, ‘estuary’,
and ‘river’ were detected and the corresponding sample
removed.

Topographic slope information was estimated from a digital
elevation model generated from Land Information New Zealand
topographic data layers at 1 : 50 000 scale (20-m contours, spot
heights, lake shorelines and coastline), using Landcare Research
in-house interpolation software, and using an interpolation
process that enforced drainage from a national network of rivers.

Finally, the potential vegetation GIS layer is predicted from
regressions relating the distributions of major canopy tree
species to environment (Leathwick 2005). The layer is
generated by a statistical modelling process that uses high-
resolution environmental data from LENZ to reconstruct New
Zealand’s potential vegetation pattern (Leathwick 2001), or the
vegetation that could be expected in the absence of human
activity. The layer provides two useful attributes: a code for
the vegetation class, and a simplified version of the vegetation
class. There are 26 unique classes in the vegetation and 16 in the
simplified vegetation class; the latter is used in this analysis. It
should be noted that this layer is subject to some uncertainty
because it is the result of a modelling effort with relatively sparse
prediction information. Nevertheless, it was considered a useful
potential explanatory variable for SOC because it embodies the
state of the vegetation in the environment before agricultural
development and other land clearance, and thus might be
considered a useful predictor when used in conjunction with
LUM.

Data transformations

Some covariate layers corresponding to LENZ and FSL values
were provided with convenient numerical types (e.g. mean
annual temperature coded as 16-bit integer values in units of
tenths of a degree Celsius) rather than floating-point values
corresponding to physical units. Where this was the case,
transformations were applied to transform the raw numbers
to floating-point values in standard physical units. These

transformations do not affect the analysis, but the use of
physical units for covariates makes the analysis easier to
understand.

Discrete explanatory variables (e.g. Soil Order, LENZ
environmental class) were arranged as factors and ordered
with respect to a common reference factor, as appropriate.
For example, the soil–climate factor was referenced to moist-
temperate high-activity clay, which happens to be the standard
arrangement that had been used in previous analyses of this
type (McNeill et al. 2009; McNeill 2010, 2012).

Non-parametric exploratory model

The SOC change model has evolved into a reliable method
of regression based on explanatory factors of soil–climate, land
use, and erosivity (slope� rainfall). To determine whether this
model could be improved, various national data layers (Table 1)
were sought as new explanatory factors. The intention was that
the addition of one or more layers might reduce the uncertainty
of the Soil CMS model, and therefore of SOC change. However,
the large number of potential explanatory variables available
for association with SOC means that the step-by-step processes
of regression model evaluation and model selection for
refinement is particularly difficult.

One possible approach is to use a non-parametric regression
method, which is useful where there are many variables. These
are sometimes referred to as data-mining methods or machine-
learning methods, and they include regression trees, random
forests, neural networks, bagging, and boosting (Hastie et al.
2009), of which the regression tree approach is perhaps the
most well-known example.

Regression trees are powerful methods and much work has
been done to improve the predictive ability of these tools through
a variety of different methods, most notably by combining
separate tree models into what is often called a committee-of-
experts or ensemble approach. Random forests and stochastic
gradient boosting are two of these newer techniques that use
regression trees as basic building blocks. Of these methods,
current practice favours stochastic gradient boosting as arguably
the best method to use in a general application (National
Research Council 2013), and this is the method used here
(termed simply ‘boosting’) to predict SOC.

Machine-learning methods of regression are particularly
suited for the regression-estimation of SOC for three reasons.
First, the methods readily adapt to datasets where explanatory
variables are available in some but not all records. Second,
a non-linearity in the relationship between an explanatory
variable and SOC is easily handled. Finally, interactions
between explanatory variables can easily be tested, especially
in cases where coverage of the variables in the dataset is sparse.

There are, however, several disadvantages of these methods
when compared with parametric models (e.g. linear models).
First, they are not so readily interpretable, although this may
not be an important issue in practice. Second, they almost
invariably assume that the fitting data are independent, which
is unlikely to be the case for SOC data, given their strong spatial
correlation. Thus, in this study, boosting is used as a way to rank
the most influential explanatory variables, as well as to provide
some understanding for the trend in the SOC response with
different values of each explanatory variable. The failure of the
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method to directly account for spatial correlation of samples
makes it likely that the uncertainty of the predictions is over-
optimistic and, perhaps, biased towards regions of high density.
Nevertheless, boosting is expected to shorten the time taken and
simplify the process required to identify a suitable parametric
model.

SOC change uncertainty calculation

The land-use effect for a transition in land use from low-
producing grassland to one of the other land-use classes can
be obtained by inspection of the coefficients of the appropriate
SOC model (Table 2), noting that the various soil–climate class
labels in Table 2 are defined in Scott et al. (2002). The land-use
effect for a transition in land use from any arbitrary land-use
class to a different land-use class can also be obtained by
calculating the difference of the land-use effects from the
origin and destination land use with respect to low-producing
grassland. The uncertainty of the land-use effect (the change in
SOC assuming the transition is stable) between two land-use
classes in isolation is conceptually straightforward: two
estimates of land-use effect are more likely to be significantly
separated if their point estimates are farther apart after taking
account of the covariance between the two land-use effects. The
standard error, si,j, of the land-use-effect change for a transition
between two land-use classes with effects Li and Lj is then
estimated from:

si;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Lið Þ þ Var Lj

� �� 2:Cov Li; Lj
� �q

ð5Þ

where Var(Li) is the variance of land-use effect i, and Cov(Li,Lj)
is the covariance (see Table 6) between land-use effects Li
and Lj.

Interpretation of comparison-wise significance

Although Eqn 5 provides a mathematically straightforward way
to estimate the significance of a single transition from one land-
use class to another (a comparison-wise significance), often there
is need to determine whether several land-use classes are likely
to be significantly different or essentially the same as an
ensemble. As more comparisons are made between many
different land-use types, it becomes more likely that at least
one of the land-use-effect changes will appear to be different as a
result of random chance alone, resulting in an increase in the
Type 1 error. Thus, the significance of all possible land-use
transitions must be calculated as a family of simultaneous
comparisons (multiple-comparison significance), rather than
calculated one at a time.

A variety of methods can be used to control the Type 1 error
rate in multiple comparison significance testing, but the choice
of which method is appropriate in a given situation is not
straightforward (Bretz et al. 2010). The choice of a procedure
depends partly on the type of problem. In addition, some
methods are appropriate when the number of samples in each
of the factor levels being compared is approximately equal; this

Table 2. Coefficients of the initial parametric generalised least-squares model with standard errors, t-values and
corresponding P-value significance estimates

Variable Factor level Value s.e. t-value P-value

(Intercept) 133.1 11.1 12.0 0.000
SoilClim AQU �22.6 10.7 �2.1 0.035

Bor_HAC �35.1 12.8 �2.7 0.006
Bor_POD �16.4 14.0 �1.2 0.241
Bor_SAN �52.8 12.2 �4.3 0.000
Bor_VOL �3.63 22.4 �0.16 0.871
DryTmp_AQU �27.7 21.1 �1.3 0.191
DryTmp_HAC �34.1 11.0 �3.1 0.002
HumBor_HAC �22.1 12.4 �1.8 0.077
HumTmp_HAC �15.3 11.0 �1.4 0.163
HumTmp_POD �6.94 11.4 �0.61 0.541
HumTmp_SAN �72.4 13.5 �5.3 0.000
HumTmp_VOL 6.26 11.4 0.55 0.585
LAC 2.21 16.5 0.13 0.893
MstTmp_HAC �28.9 10.6 �2.7 0.007
MstTmp_VOL 15.2 26.0 0.59 0.558
Tmp_POD �5.35 14.5 �0.37 0.711
Tmp_SAN �79.5 20.6 �3.9 0.000
Tmp_VOL �0.348 10.6 �0.033 0.974
VDryTmp_HAC �61.3 14.8 �4.1 0.000

SlopeRain �0.0187 0.00363 �5.1 0.000
LucasSubCategory Grassland, high producing �0.216 3.16 �0.068 0.946

Grassland, with woody biomass �7.72 3.74 �2.06 0.039
Cropland, perennial �19.5 6.31 �3.08 0.002
Cropland, annual �15.1 4.52 �3.3 0.001
Wetlands, vegetative non-forest 38.9 9.02 4.3 0.000
Pre-1990 planted forest �17.7 5.67 �3.1 0.002
Natural forest �13.9 3.74 �3.7 0.000
Other land �39.4 21.5 �1.8 0.067
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is not the case for the number of samples in each LUCAS
subcategory (Table 3).

For the SOC change model, what is required is the
simultaneous testing of all possible combinations of the land-
use classes for equality (a two-sided test), where the number of
cases in each category is markedly different. We use a closed
testing procedure test described by Marcus et al. (1976), which
is a general method for performing several hypothesis tests
simultaneously, implemented in the package multcomp in R
(Bretz et al. 2010).

Results

Data selection

From the raw soil sample data, in total 2570 records were read.
These were combined with the wetland data and then processed
for later analysis where three conditions were true. First, each
sample was assessed to pass quality-control checks from MfE,
or verify that the sample was from the wetland dataset. Second,
the soil sample was a mineral rather than an organic soil. Third,
attributes defining the IPCC soil and climate type were defined
for the sample. Finally, post-1989 planted forest samples were
removed, as noted above.

One point from the SOC dataset was removed because it was
located off the coastline of New Zealand; this point is likely
to represent correct data but has had its map location entered
incorrectly. One point from the wetland dataset was removed
because it was duplicated within the National Soils Database.
Finally, 15 points were removed from the dataset because they
occurred at locations where the covariate values extracted from
the combination of FSL and S-map were not valid. Subsequent
analysis showed that these points are very close to the coastline,
and because some of the layers extracted from the FSL are
raster-based, the extracted covariate value was not valid so close
to the coastline. After the data pruning, 2050 records remained
for analysis.

Together, the four combined datasets cover most of the land
mass of New Zealand (Fig. 1), including Stewart Island,
although coverage does not extend to the Chatham Islands
and other offshore islands. Coverage is dense in areas of
agricultural activity, and the density of points varies widely
between different regions (Fig. 1). The density of plots varies
from as low as 100 000 ha plot–1 to as high as 2 ha plot–1, or
roughly four orders of magnitude difference. The SOC stock
value is available for several different layer depths (Table 4), but
the largest number of samples was for the 0–30-cm layer.

There is a wide variation in the number of records associated
with the different land-use classes and Soil Orders (Table 3),
with the largest land-use group (high-producing grassland)
having 783 samples and the smallest (other land) only three
samples. Thus, it would be reasonable to expect also
considerable variability in the uncertainty of the estimated
land-use effect for each of the different land-use classes,
assuming all other things being equal. In addition, the large
number of zero-valued cells means that it would be impossible
to estimate the effect of an interaction between certain land-use
and Soil Order categories (e.g. high-producing grasslands in
semi-arid soils) (Table 3). Although certain combinations of
these factors are unlikely, or even impossible, this constraint of
zero cells effectively rules out an interaction between Soil
Order and land-use category.

Parametric model

Figure 2 shows plots of the spatial semivariance of the sample
data, along with a model estimate of the semivariance with a
nugget and an exponential functional form. The corresponding
spatial correlation model is also shown in Fig. 2, calculated
from the fitted semivariance model. The correlation at zero
distance must, of course, be one, but the correlation at an
arbitrarily small distance from zero is 0.66, diminishing
slowly to zero with increasing distance.

Table 3. Number of samples of the Soil Carbon Monitoring System in each land-use class from the LUCAS Land Use Map and Soil Order from the
New Zealand Soil Classification (Hewitt 2010), including samples with unknown classification

Grassland Cropland Wetlands Pre-1990 Natural Other Totals
Low-

producing
High-

producing
With woody
biomass

Perennial Annual (vegetative
non-forest)

planted
forest

forest land

Brown 111 132 69 3 43 2 23 188 1 572
Melanic 15 20 2 1 0 0 0 1 0 39
Gley 14 129 8 9 56 2 2 11 0 231
Allophanic 10 123 3 35 18 0 4 8 0 201
Pumice 9 29 4 11 0 0 12 32 0 97
Granular 2 23 0 3 23 0 0 8 0 59
Organic 3 7 0 0 1 2 0 0 0 13
Pallic 41 155 28 1 73 0 2 3 0 303
Recent 22 135 11 11 14 3 6 31 0 233
Semi-arid 7 0 2 2 0 0 0 0 0 11
Ultic 6 11 14 0 8 1 7 16 0 63
Raw 7 0 2 0 0 3 1 4 0 17
Oxidic 0 8 0 0 0 0 0 0 0 8
Podzol 25 8 24 0 0 7 4 105 2 175
(Unknown) 5 3 4 0 2 1 0 13 0 28

Totals 277 783 171 76 238 21 61 420 3 2050
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The residual standard error for the model is 42.1 t ha–1, and
the corrected Akaike information criterion value (AICc) is
20 519.7. The spatial autocorrelation scale distance is
19.3 km, with a nugget of 0.46; these are values consistent
with earlier analyses (McNeill et al. 2009; McNeill 2010,
2013). The use of the AICc as a model selection and
comparison mechanism is widely supported in the literature

in general, and soil modelling specifically (Burnham and
Anderson 2002; Ogle et al. 2007; Elsgaard et al. 2012). All
but one of the main land-use effect coefficients were significant
(Table 2).

Non-parametric model

The use of the boosting model was intended to determine which
of the explanatory variable layers would be strongly associated
with SOC, and thus would form the basis of an improved SOC
and (consequently) SOC change model. The package gbm
(Ridgeway 2013) was used to implement the boosting model,
with SOC as the response and the explanatory variables as
listed in Table 1. A Laplace (absolute loss) distribution was

170°E 175°E

170°E 175°E

35°S35°S

40°S40°S

45°S45°S

Fig. 1. Location map of all sample points in the analysis (Lambert
Conformal Conic map projection).

Table 4. Number of samples in each depth layer of the Soil Carbon
Monitoring System, by Soil Order from the New Zealand Soil
Classification (Hewitt 2010), including samples with unknown

classification

Soil Order Soil layer (cm)
0–10 0–15 10–30 15–30 0–30

Brown 482 88 473 88 572
Melanic 39 0 39 0 39
Gley 120 109 120 109 231
Allophanic 132 69 132 69 201
Pumice 97 0 97 0 97
Granular 19 40 19 40 59
Organic 10 1 10 1 13
Pallic 157 146 157 146 303
Recent 187 44 185 44 233
Semi-arid 11 0 11 0 11
Ultic 55 8 55 8 63
Raw 14 0 13 0 17
Oxidic 8 0 8 0 8
Podzol 168 0 163 0 175
(Unknown) 25 2 25 2 28

Totals 1524 507 1507 507 2050
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Fig. 2. Spatial semivariogram (left) and model spatial correlation function (right) for soil
organic carbon, based on the sample data.
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used for the loss distribution as this has some resilience to
outliers. Shrinkage (essentially the learning rate) was set at the
recommended standard value of 0.001. Interactions of the
explanatory variables were not permitted, because the dataset
is sparse when interactions between factor variables are
considered (Table 3). Five-fold cross-validation was specified
to give an estimate of generalisation error, and 80 000 trees were
fitted in total, a figure adopted after a trial to determine that the
optimum number of trees had been covered. The optimal number
of boosting iterations was chosen by cross-validation after
fitting.

The LENZ level 1 environmental classification, NZSC Soil
Order, IPCC soil–climate class, and the potential vegetation
have (in descending order) the strongest influence on the
prediction of SOC, whereas the profile readily available water
class has precisely zero influence (Fig. 3). The influence measure
needs to be interpreted with care, because the LENZ and IPCC
soil–climate classes are both aggregate classifications of climate,
and influence from the boosting regression (Fig. 3) describes
the association of each variable with SOC after accounting for
the effect of all other explanatory variables (Friedman 2001). No
interactions between explanatory variables were permitted;
therefore, the interpretation of explanatory-variable influence
is straightforward, suggesting some value in including at least
some of the variables with high influence, whereas others may
be dropped.

Refined parametric model

Based on the results from the non-parametric boosting model,
a refined parametric model using the GLS approach was then
trialled, using the nine most-influential variables (Fig. 3) as well
as the variables from the previous version of the parametric

model (i.e. IPCC soil–climate, the various land-use classes, and
erosivity). The result from this regression was inspected for non-
significant explanatory variables. Then, the variable exhibiting
non-significance was pruned from the model, which was then
fitted again with GLS. This process was repeated until either the
AICc no longer reduced or there were no longer any explanatory
variables to prune. This is a manual type of backwards stepwise
refinement procedure, and is preferred over automatic all-subset
selection because it takes several hours to fit a given GLS
regression model with a correction for spatial autocorrelation
on a desktop PC.

The optimal model, reached when the AICc no longer
decreased, dropped the annual rainfall and the mean annual
temperature from the nine additional variables added as a result
of the non-parametric regression. The AICc of the optimal
model was 20 098.00, which is significantly reduced from
the value of 20 519.7 of the original parametric model. The
residual standard error of the optimal model decreased to
36.1 t ha–1 compared with 42.1 t ha–1 from the original
parametric model.

Although the AICc and the residual standard error decreased
for the optimal model, the values of the coefficients for the
LUCAS subcategories (the various land-use classes) did not
change by more than a few per cent, and the standard errors
of the LUCAS subcategories increased in five of the eight
classes (Table 5). In the three classes where the standard
errors decreased in the optimal model (grassland with woody
biomass, perennial cropland, and pre-1990 planted forest),
the decrease was small (0.4%, 0.8% and 2.5%, respectively).
Against the modest gains offered by the optimal model, a large
increase in the complexity of the model is noted, involving
some 80 coefficients, compared with the original parametric
model with only 29 coefficients.

Profile readily available water
Exchangeable Calcium

Induration
Acid soluble phosphorus class

Soil particle size class
Drainage class

Depth to slowly permeable layer class
Topographic slope

Phosphorus retention
Topsoil gravel content class

Cation exchange class
Erosivity (Slope x rainfall)
Mean annual temperature

Annual rainfall
Annual water deficit

Mean annual solar radiation
Monthly water balance ratio

LUCAS sub-category
Potential forest class

IPCC Soil-Climate class
Soil order

LENZ level 1 class

Relative influence (squared-error loss)

0 5 10 15 20

Fig. 3. Reduction in the sum-of-squared error that can be attributed to each explanatory variable in the boosted
regression. This describes the relative influence that each explanatory variable has in reducing the loss function.
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The relatively modest gains for the optimal model compared
with the original parametric model (Eqn 1) shown in
Table 5 suggest that the more parsimonious model from Eqn
1 would be preferred as the basis for an SOC change model. In
the following sections, we abandon the use of the more
complicated optimal model in favour of the original SOC
model described in Eqns 1–3.

SOC change model uncertainty and significance

As noted in an earlier section, the marginal significance (the
significance of a pre-planned land-use transition) can be
determined from the covariance matrix Cov(Li, Lj) between
any two land-use classes for the model, such as that fitted for
Eqn 1. For the parametric GLS model of Eqn 1, the covariance
matrix is given in Table 6, and the 95% confidence intervals for
the land-use effects are provided in Table 7.

However, for the SOC change, the simultaneous testing of
all possible combinations of the land-use classes is required for
equality. The closed-testing procedure described by Marcus
et al. (1976) is used, yielding point estimates and confidence
intervals of a test statistic for each distinct combination of land-
use transitions, and the critical test is whether the confidence
intervals brace zero. All transitions involving ‘Other land’ are
non-significant, and two other transitions are also non-
significant: ‘Wetland, vegetative non-forest’ to ‘Cropland,
annual’, and ‘Grassland, high producing’ to ‘Grassland, low
producing’ (Fig. 4). Note that in Fig. 4, the test statistic does

not depend on the order of the initial land-use change. Thus, the
statistic from ‘Other land’ to ‘Cropland, annual’ is the same as
the statistic for the reverse land-use change. These land-use-
transition pairs contribute relatively little to land-use-induced
SOC change calculations.

The transitions involving ‘Grassland, high producing’ to/
from ‘Grassland, low producing’ comprise ~0.5% of all land-
use change detected between 1990 and 2012. All land-use
transitions involving ‘Other land’ make up ~0.8% of all land-
use change detected between 1990 and 2012, and it can be noted
that this category is used both to classify marginal land and to
allow mapped areas to reconcile with national area, and C pools
would not need to be assessed for the category except
where overall consistency is to be checked (Penman et al.
2003). The transition between ‘Wetland, vegetative non-
forest’ and ‘Cropland, annual’ has not been detected as a
land-use change between 1990 and 2012 by LUCAS land-use
mapping efforts. This would be expected from an ecological
and land-management perspective as well as statistically,
given the quite different SOC stocks of these two categories,
and it is likely the lack of significance is an artefact of the
distribution of the dataset.

Discussion

Adoption of a model for SOC change

The result from the non-parametric boosted model suggests
several variables as strong predictors for SOC. The nine most
influential variables were then used in stepwise-refinement of a
parametric GLS model to predict SOC. For the stepwise-refined
model, the size of the land-use effects is changed somewhat
because of the new explanatory variables; a few (three of eight)
decreased, but the changes are very small and none of the
changes is significant. The size of the standard error
decreased from 42.1 t ha–1 for the model fitted to Eqn 1 to the
value for the stepwise-refined model of 36.1 t ha–1. Against this
modest improvement of ~10% in the residual standard error
for soil C and the lack of a consistent improvement in the
standard error for the land-use effects in the stepwise-refined
model, the complexity of this model is far higher (80
coefficients) than the simple model fitted from Eqn 1 (29
coefficients).

Although complexity of a model is in itself not bad, it is
usually worth tolerating an increase in model complexity only

Table 5. Land use effect (LUE, the change in soil C with respect to the
grassland, low-producing class) and standard error (s.e.) (t C ha–1) for
the initial parametric model and the optimal parametric model obtained

by stepwise refinement

LUCAS land use class Initial model Optimal model
LUE s.e. LUE s.e.

Grassland, high-producing �0.216 3.16 1.87 3.20
Grassland, with woody biomass �7.72 3.74 �6.77 3.73
Cropland, perennial �19.5 6.31 �13.4 6.27
Cropland, annual �15.1 4.52 �14.1 4.55
Wetlands, vegetative non-forest 38.9 9.02 45.3 9.32
Pre-1990 planted forest �17.7 5.67 �15.4 5.32
Natural forest �13.9 3.74 �10.4 3.90
Other land �39.4 21.5 �48.0 21.7

Table 6. Covariance matrix between the land use classes for the fitted parametric model in Eqn 1

Natural Planted Grassland Cropland Wetlands Other land
forest forest With woody

biomass
High-

producing
Low-

producing
Perennial Annual (vegetative

non-forest)

Natural forest 14.01 7.66 6.87 5.3 �6.75 5.58 5.34 7.57 8.76
Planted forest 7.66 32.16 6.33 6.11 �9.39 7.35 6.2 6.19 6.77
Grassland, with woody biomass 6.87 6.33 13.97 4.98 �5.92 5.39 5.01 5.93 4.98
Grassland, high-producing 5.3 6.11 4.98 10.02 �6.75 8.76 9.15 6.07 3.82
Grassland, low-producing �6.75 �9.39 �5.92 �6.75 123.2 �22.12 �7.1 �4.38 �5.43
Cropland, perennial 5.58 7.35 5.39 8.76 �22.12 39.77 10.44 5.26 3.95
Cropland, annual 5.34 6.2 5.01 9.15 �7.1 10.44 20.47 6.52 3.83
Wetlands, vegetative non-forest 7.57 6.19 5.93 6.07 �4.38 5.26 6.52 81.4 5.75
Other land 8.76 6.77 4.98 3.82 �5.43 3.95 3.83 5.75 463.9
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if there is a worthwhile gain in model performance. The choice
between the models fitted to Eqn 1 and the stepwise-refined
model depends critically on how the model is to be used. If the
intention is to use the model to predict SOC stocks, then the
more complex model is the better choice, because it has a lower
standard error and AICc. However, if the intention is to estimate
SOC change, then the model adopted is the one that gave the
estimate of the change with the smallest error. In both cases,

however, model parsimony has some bearing, and simpler
models are favoured over more complicated models if all
other considerations are equivalent.

With respect to the selection of a suitable SOC change
model, although the stepwise-refined model has a better
residual standard error and AICc, the real interest is in
reducing the size of the LUCAS subcategory standard errors
so that the significance of the land-use-effect transitions can
be improved, given the underlying premise that SOC change
occurs due to land use. For this reason, the model fitted to Eqn 1
is favoured over the stepwise-refined model, despite the better
overall performance of the latter in predicting SOC.

One of the reasons that the model fitted to Eqn 1 happens
to be favoured here is that interactions between explanatory
variables (particularly with land use) are ruled out, for reasons
of ease of calculation of the SOC stock change in the MfE
CRA. Similarly, using a transformed version of the SOC stock,
in conjunction with interactions, would very likely reduce the
standard error of the land-use coefficients, but at the expense
of the complexity of the model and also violating the design
requirements of the MfE CRA. Allowing interactions with land-
use class and allowing a transformation of the SOC response
variable would require the SOC stock to be separately mapped

Table 7. Ninety-five per cent confidence intervals for the land-use
effect coefficients (t C ha–1) for the fitted parametric model from Eqn 1

LUCAS subcategory 95% CI
2.5% 97.5%

Grassland, low producing 111 155
Grassland, high producing �6.42 5.99
Grassland, with woody biomass �15.0 �0.390
Cropland, perennial �31.8 �7.09
Cropland, annual �24.0 �6.25
Wetlands, vegetative non-forest 21.3 56.6
Pre-1990 planted forest �28.8 �6.54
Natural forest �21.2 �6.56
Other land �81.6 2.81

–100 –80 –60 –40 –20 0 20

Multicomparison hypothesis function (Marcus)

Grassland - high producing
Grassland - with woody biomass
Grassland - with woody biomass

Cropland - perennial
Cropland - perennial
Cropland - perennial

Cropland - annual
Cropland - annual
Cropland - annual
Cropland - annual

Wetlands - vegetative non forest
Wetlands - vegetative non forest
Wetlands - vegetative non forest
Wetlands - vegetative non forest
Wetlands - vegetative non forest

Pre-1990 planted forest
Pre-1990 planted forest
Pre-1990 planted forest
Pre-1990 planted forest
Pre-1990 planted forest
Pre-1990 planted forest

Natural forest
Natural forest
Natural forest
Natural forest
Natural forest
Natural forest
Natural forest

Other Land
Other Land
Other Land
Other Land
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Cropland - perennial
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Fig. 4. Result of applying the Marcus et al. (1976) multi-comparison test to the adopted model. The marker is the estimated
value for the transition between two land-use classes to indicate significance, and the error bars represent the 95% confidence
interval of the test statistic. Land-use transitions resulting in point estimates and confidence intervals of the test statistic that
cross the zero line are considered highly significant differences within the set of all possible land-use transitions.
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for each date, aggregating the map of SOC stock change to give a
national estimate, and then calculating the difference to estimate
the SOC change. By contrast, the current model can be directly
formulated as a national inventory model and can be readily
used within the CRA.

Interpretation of influential variables

The potential vegetation variable in the non-parametric boosted
model encodes each location in a class describing the vegetation
that might have been expected in the absence of human activity.
All but one of the levels of the potential vegetation are significant
compared with the reference class, but the uncertainty of the
coefficient effect is such that the difference between pairs of
classes is not likely to be significant except between those
with the most extreme effect difference (Fig. 5), such as the
difference between ‘Dunelands’ and ‘Scrub, tussock-grassland
and herbfield above the treeline’, and to a lesser extent
‘Wetlands’.

The high influence of potential vegetation in the regression
of SOC (Fig. 3) can be understood in several different ways.
One interpretation is that this variable encodes the level, or
signature, of SOC that would have resulted from the long-term
vegetation history in a location, which has subsequently been
modified by land-use change, such as clearance for agricultural
development. Another (equivalent) interpretation of the result
is that the potential vegetation defines a legacy effect in SOC
resulting from historical land cover after the effect of land use
has been accommodated in the model. This latter explanation
suggests that the land-use factor might be confounded by
potential vegetation within one or more land-use classes. For
example, the large effect of wetlands in the potential vegetation
class (Fig. 5) could suggest that former wetlands (i.e. those
wetlands that existed before agricultural development) now

encoded in the high-producing grassland class have a
different SOC than the remainder of the high-producing
grassland class. This suggests that for an SOC model,
potential vegetation is required in order to avoid the
confounding effect or, alternatively, that one or more of the
present land-use classes should be subdivided (cf. Gimmi and
Bugmann 2013). However, as noted earlier, for an SOC change
model, the inclusion of potential vegetation itself does not
appear to change the land-use-effect coefficients or their
significance.

Interpretation of the land-use-effects table

As noted earlier, the correct operation of the SOC change model
involves fitting the model to the SOC dataset and then using
the coefficients for the different land-use classes for a transition
between two distinct land-use classes. The interpretation of the
different land-use effects is subject to the consideration of multi-
comparison significance. The GLS model is a minimum
variance unbiased estimator (Draper and Smith 1998), so the
SOC values, and the SOC changes as a result of a land-use
transition, are unbiased if the coefficients are used in this
manner. This approach is consistent with the physically
based SOC model outlined in the literature (Scott et al.
2002; Tate et al. 2003a, 2003b, 2005; Baisden et al. 2006;
Kirschbaum et al. 2009).

Having carried out the above calculation, it may turn out
that some of the land-use transitions are not statistically
significant in the multi-comparison sense, as noted earlier.
However, this interpretation of significance does not alter the
method of calculation of the SOC change resulting from land-
use transition. In particular, it would not be correct to substitute
a value of zero for the effect of a land-use transition where
the transition itself is not significant in the multi-comparison

0 20 40 60 80 100

Potential vegetation effect (Mg C ha–1)

Beeches

Dunelands

Highland Softwoods-Beeches

Kauri

Lowland Wetland and Steepland and Highland Softwood-Hardwoods

Rimu-General Hardwoods

Rimu-General Hardwoods-Beeches

Rimu-Matai-Hardwoods

Rimu-Tawa

Rimu-Tawa-Beeches

Scrub, shrubland and tussock-grassland below treeline

Scrub, tussock-grassland and herbfield above treeline

Softwoods

Unclassified

Wetlands

Fig. 5. Coefficient estimates for the potential vegetation class in the augmented soil organic carbon model. The markers are
the point estimates, and the lines are �1 standard error.
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sense, because if such a substitution were to be carried out, the
calculation of the SOC would no longer be unbiased. Avoiding
the bias in this manner also reduces the residual uncertainty of
the SOC estimates. For this reason, the effect of all land-use
transitions ought to be included in calculations of SOC change.

Interpretation of the land-use-change model

As noted in the previous section, the statistical model requires
retention of all of the land-use classes in calculations of the SOC
for a given land use, soil-climate, and erosivity (slope� rainfall),
in order for the estimated SOC to be unbiased. When the SOC
change model is used, the analyst is interested in the value of the
SOC change for a given land-use-change combination, and the
significance of the estimated change, assuming that the land-use
classes have reached long-term stability. This calculation assumes
there is no SOC change associated with soil–climate and erosivity
(Eqn 3), because these factors are assumed constant.

The estimated level of SOC change for specified origin and
destination land-use classes is given by Eqn 3, where the value
of the coefficients is obtained using Table 2. The significance
of the land-use transition in the multi-comparison sense (i.e.
considering the ensemble of all possible land-use classes) is
given by referring to Fig. 4, where all transitions involving
‘Other land’ are non-significant, as well as two other land-use
transitions.

Significance of the result

The key contribution of this paper is the presentation of a
statistical method that attempts to provide evidence for SOC
change resulting from land-use change, where the evidence
is considered among the ensemble of all possible land-use
transitions. Prior work within the New Zealand context (Scott
et al. 2002; Beets et al. 2002; Tate et al. 2003a, 2003b; Wilde
et al. 2004; Hedley et al. 2012) has considered the evidence
for SOC change for a restricted range of land-use transitions,
or within a specific soil–climate class; these essentially
provide evidence for marginal class transitions. The practical
complications of the multi-comparison significance tests arise
because the soil data from which the model is fitted are
unbalanced, and hence the more common multi-comparison
procedures are not appropriate.Marginal significance procedures
provide low-power assessments of significance that are useful
for testing the possible departure of the model (e.g. from Eqn 3)
from the field data, but the procedures have limited utility for
proving the correctness of the model.

The SOC and SOC change models developed in (Scott et al.
2002) and presented here in Eqns 1–3 represent a compromise
arising from the limited amount of data available from previous
soil surveys and some contemporary fieldwork to fill in certain
soil–climate and land-use classes for which limited data exist.
The models are straightforward, developed from a well-
established methodology at the time of development (IPCC
1996), and use a simple set of explanatory variables that
were accurately mapped.

Comparison with other work

Several studies in the literature have considered the SOC
change as a result of land-use transition, within the context of

a national or a regional sampling scheme (Callesen et al. 2003),
as a meta-analysis (Poeplau et al. 2011, Bárcena et al. 2014), or
as a national assessment within a single land use transition
(Davis and Condron 2002). The assessment of the significance
of the SOC change resulting from of all possible land-use
transitions is methodologically difficult, because individual
studies frequently do not provide the information required to
carry out the required calculations (Bretz et al. 2010).
Nevertheless, such calculations are important, because they
establish the basic framework for high-power statistical
evidence of SOC change, which is important for validation
and verification.

There are various ways in the literature that SOC change
can be estimated within a country as a whole, but two general
approaches are dominant. In the first, experimental field data
are used as the basis for SOC change inference (Houghton et al.
1999), but the precise methodology used varies from one
study to another. A second approach is to use field data in
conjunction with a theoretical model such as Century (Parton
et al. 1987), DNDC (Li et al. 1994), or Roth C (Coleman and
Jenkinson 1996) to build a process-based model for SOC, and
thus SOC change.

There are advantages and disadvantages to the adoption of
each approach to SOC change. Field-estimation of SOC change
requires careful statistical sampling design in order to obtain
results of adequate power, and in general, this approach
requires more sampling effort than the approach where a
theoretical model is used. By contrast, model-based SOC
change estimation may require fewer field samples for fitting,
but the assumptions inherent in the theoretical model must be
justified, by laboratory studies or by validation efforts, and the
models are more difficult to implement when conducting a
national inventory (Ogle and Paustian 2005). In the end, the
choice between these approaches depends on the national
circumstances that apply in each case.

The New Zealand SOC change model might be considered
an example of where SOC change is defined in an adopted
theoretical (non-mechanistic) model, but the coefficients for
estimating the change are calculated using extensive field
data (largely gathered from historical sources). The simplicity
of the theoretical model in the New Zealand case, compared with
the more sophisticated models such as Century, DNDC, or Roth
C, is a result of the fact that all land-use-class transitions must be
modelled, rather than a subset. The complication in this model is
that the significance of the SOC change must be determined for
the ensemble of all classes for national inventory purposes;
marginal class significance (Scott et al. 2002; Tate et al. 2003a,
2003b; Wilde et al. 2004; Hedley et al. 2012) can be useful for
detecting gross departures from the model but do not address
validation at a national level. This paper provides a method for
validation of the model using a multi-comparison approach,
providing direct evidence for the significance (or otherwise) of
all transitions.

Combining the results of smaller, low-power studies for
particular land-use transitions in a meta-analysis (Laganière
et al. 2010) can provide useful high-power information at an
international level. For the case of simultaneous land-use
transitions, as addressed in this paper, it is not obvious how
such studies would be combined.
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Conclusions

An empirical model based on the GLS fitting of a linear model
for SOC and SOC change has been described, based on
explanatory variables of land use, soil–climate class, and
erosivity, along with the associated uncertainty models.
Possible improvements to the model for SOC have been
considered as a way of reducing the uncertainty of SOC
change estimates through a reduction in the standard error of
the land-use effects. The improvements include the use of a
stochastic gradient boosting non-parametric model to select data
layers most strongly associated with SOC, and the fitting of a
refined parametric SOC model using GLS with nine of the most
influential explanatory variables from the boosting model
and stepwise refinement. The stepwise-refined model has a
significantly reduced standard error for SOC (36.1 t ha–1

compared with the original 42.1 t ha–1), but the standard
errors for the different land-use classes are not consistently
reduced, and the stepwise-refined model is considerably more
complicated. The method of calculating SOC change resulting
from the transition between two land-use classes is described
by using the original GLS model, along with the significance of
land-use effects by using a multi-comparison significance
procedure.
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