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ABSTRACT

Context. Many regions in the world have undergone rapid land use change and intensification of
agricultural land, such as through irrigation expansion, upgrading irrigation systems, and changing
grassland, stock, and nutrient management practices. With more intensive land use, changes to
soil properties can occur, such as soil compaction and changes in soil water storage. The effects
of modern sprinkler-irrigated pastoral farming on soil physical properties are not well quantified
internationally, particularly for temperate climates. Aims. This regional study evaluates the effect
of irrigation on soil physical properties in topsoil and subsoil, under modern pastoral grazing and
sprinkler irrigation, across Canterbury, New Zealand. Methods. Paired sites were sampled,
consisting of a spray-irrigated paddock (field) and an adjoined part of the same paddock that was
dryland (unirrigated), with other management the same for each pair. Key results. Under
irrigation there was a shift towards a greater abundance of smaller pores. This was reflected in
macroporosity and readily available water capacity being significantly lower under irrigation,
while semi-available water capacity and unavailable water held below permanent wilting point
both increased. Conclusions. These differences reflect increased compaction under irrigated
grazed pasture, particularly under dairy grazing, consistent with findings in similar studies. This
study quantified changes in both the topsoil and subsoil but showed that most differences were
confined to the topsoil (30 cm depth). Implications. For irrigation management, our study
indicates the lower readily available water capacity on irrigated pasture is significant, with
farmers potentially having to irrigate more frequently. Adopting deficit irrigation could minimise
impacts of compaction.

Keywords: available water capacity, compaction, crop lower limit, land use change, macroporosity,
readily available water capacity, soil health, soil quality.

Introduction

Global population growth is increasing the demand for food and agricultural products. Land 
use change is occurring to support this demand on agricultural food production, with 
expansion and intensification of dairy, sugarcane, cropping, and other agriculture in 
many countries, for example, in Brazil (Cherubin et al. 2016; Koppe et al. 2021), China 
(Bai et al. 2018; Zuo et al. 2018), and Argentina (Viglizzo et al. 2011). 

In New Zealand, agriculture has also undergone land use change and intensification, as 
reflected in a 53.6% decrease in sheep numbers nationally, from 57.9 million in 1990 to 
26.8 million in 2019, with a corresponding rise in national dairy cow numbers from 3.4 
million to 6.3 million (Stats NZ 2021). A significant proportion of the dairy cattle 
increase occurred in the Canterbury region, with an increase from 113 000 in 1990 to 
1.2 million in 2019 (Stats NZ 2021). The area of irrigated agricultural land in New 
Zealand almost doubled between 2002 and 2019, from 384 000 to 735 000 ha (Ministry 
for the Environment, Stats NZ 2021; Stats NZ 2021). The majority of irrigated land is in 
the Canterbury region. There was a 203% increase in irrigated land area for Canterbury 
farms (that were dominantly dairy), from 89 000 to 269 000 ha, from 2002 to 2019 
(Stats NZ 2021). 
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Suitable soils and water availability are key resources 
needed for agriculture but are under increasing pressure 
from the intensification of agricultural land and changing 
land use (Godde et al. 2018; Kopittke et al. 2019; Koppe 
et al. 2021). Intensification of agricultural land includes the 
irrigation of previously dryland areas to increase yields 
and, associated with this, often an increase in nutrient 
inputs, stock numbers, and changing grassland management 
practices or stock type (Cherubin et al. 2016; Drewry et al. 
2021b; Koppe et al. 2021). Improved technologies and 
practices are being developed to use water more efficiently 
(Evett et al. 2020), and reduce the impacts of intensification 
on water quality (Chapman et al. 2021). With more intensive 
land use, changes to soil properties can occur, such as soil 
compaction and reduced soil pore space (Cherubin et al. 
2016; Drewry et al. 2021c; Hu et al. 2021), greater 
available water capacity (Drewry et al. 2021a), and changes 
to soil biochemistry and biology (Lobry De Bruyn and 
Kingston 1997; Mayel et al. 2021). Knowledge of changes 
in soil physical properties is important as these changes 
affect crop and pasture yield (Drewry et al. 2008) and the 
ecosystem services that soil provides, such as production, 
regulation of water and gas flows, and filtering nutrients 
(Dominati et al. 2019; Hu et al. 2021). 

Accurate measurements of soil water storage and other soil 
physical properties are important for optimising production 
and the use of soil resources by allowing an informed 
approach to irrigation water use, carbon and nutrient 
cycling, and the optimisation of plant yield (Minasny and 
McBratney 2018; Drewry et al. 2019; Gonçalves et al. 
2020). Available water capacity (AWC) is important for 
accurately simulating crop yield in dry conditions (Gladish 
et al. 2021) and under irrigation (Brown et al. 2021). 
Underestimation of AWC was found to be more detrimental 
when modelling plant yield estimates than the same 
amount of its overestimation (Wu et al. 2019). Knowledge 
or representation of these is also important for modelling 
water and diffuse nutrient losses from agriculture (e.g. 
Kreiselmeier et al. 2019; Vogeler et al. 2019). Soil water 
storage attributes are also key information for irrigation 
management, both for water allocation and system design, 
as well as on-farm scheduling practice (Irrigation New 
Zealand 2013; El-Naggar et al. 2020). 

Research on the effect of irrigation on soil physical 
properties has been focused on arid, semi-arid, or tropical 
environments and non-pastoral land use, often with furrow-
or flood-irrigated systems (Singh et al. 2013; Drewry et al. 
2021b). The effect of flood irrigation on soil physical 
properties was studied in New Zealand for a wide range of 
pastoral soils (Rickard and Cossens 1966, 1968; Cossens 
and Rickard 1969; Rickard and Cossens 1973). These 
irrigated soils generally showed an increase in bulk density, 
field capacity, and AWC, compared with soils without 
irrigation, but results reviewed in the wider literature vary 
(Drewry et al. 2021b). With the exception of a few studies 

(e.g. Houlbrooke et al. 2008; da Costa et al. 2014), 
the effects of modern sprinkler-irrigated pastoral farming 
on soil physical properties are not well quantified 
internationally, particularly for temperate climates (Drewry 
et al. 2021b). 

There has been a trend in soil science studies to measure 
soil at shallow depths, rather than the deeper depths 
measured several decades ago (Yost and Hartemink 2020). 
Many of these previous irrigation effect studies have mainly 
researched topsoil depths, e.g. to 10 or 15 cm depth only, 
with deeper and subsoil depths being a knowledge gap. It is 
particularly important to better determine the effects of 
irrigation on drainage and water storage properties over a 
soil profile, including both topsoil and subsoil, to 
understand the potential effect on drainage and nutrient 
movement. Previous studies under pasture have also either 
compared dryland with irrigation between different 
paddocks and farms (Fu et al. 2021), which makes it 
difficult to separate the irrigation effect from other land 
management practices associated with intensification 
(Rickard and Cossens 1966; Drewry et al. 2021b), or have 
focused on the single paddock (Drewry et al. 2021a) or plot 
scale (Houlbrooke and Laurenson 2013). 

The main objective of this study was to use paired sites 
within the same paddock to evaluate at the regional scale 
the effect of irrigation and dryland on soil physical 
properties in both the topsoil and subsoil, under modern 
pastoral grazing and sprinkler irrigation. A second objective 
was to determine if land use, or irrigation duration, 
influenced the irrigation effect on soil physical properties. 

Materials and methods

Sites, experimental, and sampling design

For this regional study, 24 paired sites were sampled across 
the Canterbury region of New Zealand, from Tekapo to 
Waiau (Fig. 1), to be representative of a range of pastoral 
farms (23 farms in total), soil types, management practices, 
and climates in the region. The climate of the Canterbury 
region is temperate. Examples of locations and mean 
annual rainfalls across the region, for the period 1981– 
2010, are Lake Tekapo 591 mm (south-Canterbury), 
Ashburton 681 mm (mid), and Culverden (576 mm) in 
north-Canterbury (Macara 2016). 

Each site consisted of a paddock (grazed field) that was 
irrigated under modern spray irrigation, and another 
adjacent part of the same paddock that was dry, i.e. where 
the spray irrigator could not reach, such as the corner of a 
paddock left dry, as would typically occur beyond the 
reach of a centre-pivot-irrigator. The irrigated and non-
irrigated sites  otherwise had  the same soil type,  climate,  
land use, and paddock management. These were termed 
paired sites (i.e. a paired site containing both irrigated and 
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Fig. 1. Locations for sites sampled in Canterbury, South Island of
New Zealand. Map outline from Land Information New Zealand.

dryland areas). Each paired site consisted of two sampled 
pits (one in the irrigated area and one in the dryland 
area); any measured difference between them was 
assumed to be the result of irrigation (Mudge et al. 
2017, 2021). 

At each sampling pit, soil samples were taken at six 10 cm 
depth increments (0–10, 10–20, 20–30 cm, etc.), resulting 
in six soil sampling increments per pit (i.e. 12 soil 
sampling increments per paddock). The 0–60 cm depth 
increments were chosen because 0–60 cm is used for 
irrigation scheduling in New Zealand, and is the depth 
modelled by the OVERSEER nutrient budget model (PCE 
2018), which is widely used in New Zealand (PCE 
2018; Monaghan et al. 2021). The 0–30 cm depth 
increments typically represented the A and AB topsoil 
horizons for soils sampled in this region (Manaaki 
Whenua-Landcare Research 2020). 

Soils and land management

Possible sites were initially identified using aerial 
photography to identify irrigated farms across the region 
that had paddocks with possible irrigated and dry areas. 
Sites were selected to be on deep soils (>60 cm depth of 
stone-free soil) to enable sampling of soil cores for the 
complete suite of soil porosity measurements. The soils 
were checked prior to sampling using a test pit or auger to 
ensure the dryland and irrigated soils matched with similar 
morphological properties. When sampled, the soil profile 
was described (Milne et al. 1995) and classified to the 
subgroup level of the New Zealand soil classification 
(Hewitt 2010). The distribution of soil orders sampled 
(Table 1) was representative of the proportions of irrigated 
deep soils mapped by S-map (Lilburne et al. 2012; Manaaki 
Whenua-Landcare Research 2020) across the Canterbury 
region. 

Site selection was also based on land management 
information obtained from the farmers, such as time in 
pasture and since cultivation, if there had been any 
previous irrigation on dryland, and whether dryland and 
irrigated land areas were managed in the same way. Land 
use was 13 dairy cattle paddocks (‘milking-platform’), and 
11 ‘non-lactating-dairy’ or not-dairy (comprising five sheep 
and beef, four ‘dairy support’, and two beef sites). Dairy 
cows were grazed off the primary farm (or ‘milking 
platform’) during winter for 11 of the 13 dairy farms. This 
is common practice on New Zealand dairy farms, where 
cows are grazed on ‘run-off blocks’ (for winter grazing of 
cows or grazing young stock). In New Zealand, ‘run-off 
blocks’ are often owned or leased by the dairy farmer to 
have complete control over grazing. Alternatively, ‘dairy 
support’ has similar use but is often owned by another 
farmer to graze dairy cows on pasture or crops over winter 
only, with different land uses at other times of the year. See 
Dalley et al. (2014) for more information. 

All sites had been under pasture for a minimum of 
18 months to avoid the disturbance of cultivation. The 
pasture was typically perennial ryegrass (Lolium perenne) 
and white clover (Trifolium repens) mix, with pasture age 
since sowing ranging from 1.5 to 15 years (median 
4.5 years). Irrigation duration at the sites were 2–9 years 
(nine sites), 10–19 years (13 sites), and 20+ years (two 
sites). The type of sprinkler irrigation was predominantly 
centre-pivot, with one site under linear-move irrigation. In 

Table 1. Soil order (Hewitt 2010), site numbers, and USDA and FAO soil classification equivalents.

Soil order Number of sites. USDA equivalents FAO equivalents
(Soil Survey Staff 2014) (IUSS Working Group WRB 2015)

Gley 1 Aquents, Aquepts Gleyic Fluvisols/Gleysols

Pallic 17 Aqualfs, Aquepts, Haplusteps, Fragiudalfs Fragic Planosols/Luvic Planisols

Recent 6 Fluvents Fluvisols
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Canterbury, the irrigation season typically occurs from 
September to April. On the farms in this study, the 
irrigation return period for a complete revolution of the 
centre-pivot ranged from 1 to 10 days (median 3 days). 
Additional factors used in site selection included a 
minimum area of 50 m × 50 m for the dry part of the 
paddock; no previous irrigation applied (even prior to the 
current irrigation system installation); uniform grazing and 
fertiliser management; and sampling points located at least 
10–20 m from shelterbelts, gateways, and water troughs. 

Sample collection and soil analyses

At each site, a pit was dug underneath the irrigated area and the 
dry area within the same paddock. Sites were sampled from 
late November 2017 to early February 2019, with most sites 
sampled during November–February. Pits and sites were 
sampled once only during the study. The 24 paired sites 
were the replicates (i.e. 24 replicates). Soils were sampled 
in six 10 cm increments down to 60 cm depth, i.e. 0–10, 
10–20, : : :  50–60 cm. The inside wall of each core liner was 
smeared with a thin layer of Vaseline petroleum jelly to seal 
between the soil and liner. At each depth, a level surface 
was prepared. Undisturbed soil pedestals, slightly larger than 
the liner, were then hand carved down the depth increment, 
over which the soil core liners were then vertically inserted 
with care, and removed for later analysis. 

Cores were sampled adjacent to each other to span the 
approximate mid-point of each depth increment, using 
large cores (10 cm diameter, 7.5 cm depth) for large pore 
size distribution (>30 μm diameter) and smaller soil cores 
(5 cm diameter, 3 cm depth) for smaller pore sizes (<30 μm 
diameter). Bulk density was measured on each core. Cores 
(wrapped in cling film) were stored at 4°C before laboratory 
analysis. 

Soil physical analyses were measured at the Manaaki 
Whenua – Landcare Research soil physics laboratory. Full 
methods for the preparation of soil cores, bulk density, 
particle density, pore size distribution, and water retention 
are described elsewhere (Gradwell 1972; Gradwell and 
Birrell 1979). Particle density was measured for each core to 
calculate total porosity. Water retention of soil cores was 
measured under tensions of −10, −100, and −1500 kPa. The 
large cores (10 cm diameter) were equilibrated to −10 kPa 
on ceramic plates using a hanging column of water to 
measure the volumetric percentage of pores >30 μm. The 
smaller soil cores were equilibrated to −100 and −1500 kPa 
using pressure chambers (Gradwell and Birrell 1979). 

Although terms vary in the literature (Drewry et al. 2021b), 
we report macroporosity as pores >30 μm drained at −10 kPa 
matric potential, volumetric water content at field capacity 
(−10 kPa), ‘readily’ available water capacity, RAWC (−10 
to −100 kPa), stress point (−100 kPa), ‘semi-available’ water 
capacity, SAWC (−100 to −1500 kPa), AWC (−10 to 
−1500 kPa), and volumetric water content at permanent 

wilting point, PWP (−1500 kPa). The water content below 
PWP is considered unavailable to plants. Water release values 
are expressed as a percentage volume of pores per unit volume 
of soil (% v/v). Note that SAWC + RAWC = AWC. While 
RAWC and AWC are widely used in the literature (e.g. 
Román Dobarco et al. 2019), the water-holding pore space 
between stress point and wilting point does not appear to 
have a commonly used term, so we have used SAWC. 
RAWC is the water storage porosity that plants can access 
under minimal stress, whereas soil water stress increasingly 
restricts plant growth as the soil dries below stress point. 
We use the term SAWC to represent these pores. 

Statistical analysis

Statistical analyses of soil properties (at six 10-cm-depth 
increments, and averaged over 0–30, 30–60 and 0–60 cm) 
were undertaken to compare soils under irrigation and 
dryland. Each set of irrigated and dryland soils was treated 
as a pair, and a paired samples t-test was used to determine 
the significance of the difference between irrigated and 
dryland. 

A one-way analysis of variance was used to determine 
whether land use (dairy vs non-dairy sites) significantly 
affected response to irrigation. Regression analysis was 
used to determine the significance of the correlation between 
irrigation duration (number of years under irrigation) and 
response to irrigation. For each analysis, the model 
residuals were examined to ensure they conformed with the 
model assumptions. For one of the soil sites, the 
macroporosity, AWC, and RAWC values for the 40–50 cm 
depth increment for the irrigated pit were very unusual; this 
was ascribed to an unusually sandy lens, so the analyses 
involving these three variables were rerun omitting the 
depth increment from this site. 

Results

Comparisons of irrigated and dryland sites

AWC, RAWC, SAWC, and PWP
Comparisons of the water retention characteristics at 

irrigated and dryland sites at each depth increment are 
presented in Table 2. SAWC and PWP values were 
significantly greater in the irrigated sites than the dryland 
sites at the 0–10 and 10–20 cm depths (Table 2). 
In contrast, over the same depth increments, RAWC was 
significantly smaller under irrigation and at 40–50 cm depth 
(Table 2), and illustrated in Fig. 2. AWC values integrated the 
opposite trends in RAWC and SAW, resulting in AWC only 
being significantly greater under irrigation at the 10–20 cm 
depth (Table 2). For the remaining depths, there were few 
significant differences between the treatments, with no 
obvious trend except for SAWC (20–30 cm) which was 
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Table 2. Readily available water capacity (RAWC, % v/v), available water capacity (AWC, % v/v), semi-available water capacity (SAWC, % v/v), and
water content at permanent wilting point (PWP, % v/v), for irrigated and dryland sites for six depth increments.

Indicator Depth (cm) Irrigated Dryland l.s.d. (5%) Sig. of diff.

RAWC (%) 0–10 7.95 9.07 0.68 **

10–20 7.41 8.69 0.86 **

20–30 7.68 8.60 1.15 n.s.

30–40 7.11 7.85 0.95 n.s.

40–50 5.74 6.86 0.81 **

50–60 5.38 6.07 0.81 n.s.

AWC (%) 0–10 23.71 22.92 1.90 n.s.

10–20 20.57 18.87 1.25 **

20–30 18.08 17.10 1.78 n.s.

30–40 15.67 15.48 1.60 n.s.

40–50 12.65 12.86 1.18 n.s.

50–60 11.11 11.80 1.39 n.s.

SAWC (%) 0–10 15.75 13.85 1.74 *

10–20 13.16 10.18 1.00 ***

20–30 10.40 8.50 1.54 *

30–40 8.56 7.64 1.42 n.s.

40–50 6.70 6.08 1.20 n.s.

50–60 5.73 5.73 1.16 n.s.

PWP (%) 0–10 18.26 16.47 1.65 *

10–20 18.01 16.38 1.16 **

20–30 16.66 16.13 1.50 n.s.

30–40 18.26 17.10 1.71 n.s.

40–50 19.02 18.23 1.58 n.s.

50–60 19.54 17.81 1.67 *

*P < 0.05; **P < 0.01; ***P < 0.001.
l.s.d., least significant difference; n.s., not significant; Sig. of diff., significance of difference.

consistent with differences over the 0–20 cm depth. The site 
distributions for AWC, SAWC, and PWP are shown in the 
Supplementary material (Figs S1, S2). 

AWC, RAWC, SAWC, and PWP for the irrigated and dryland 
sites, averaged over 0–30 cm (topsoil), 30–60 cm (subsoil), and 
0–60 cm (soil profile), are presented in Tables 3 and 4. Both  
SAWC and PWP values were significantly greater in the 
irrigated sites than in the dryland sites when averaged over 
0–30 cm; and also 0–60 cm for SAWC (Tables 3 and 4). In 
contrast, RAWC was significantly greater in the dryland sites 
when averaged over 0–30, 30–60, and 0–60 cm. 

Management decision support tools often utilise soil water 
storage expressed as ‘mm storage’ for a specific profile depth, 
with water storage equivalent summarised in Table 3. For  
the water storage measurements with observed significant 
differences, summed over the 0–30 cm depth, and over the 
30–60 cm depth, irrigated sites had an average of 3.3 and 
2.5 mm less RAWC than dryland sites, respectively. Summed 
over the 0–60 cm depth, irrigated sites had 6.2 mm less 

RAWC than dryland sites (Table 3). Summed over the 
0–30 cm depth, irrigated sites averaged 6.8 mm more SAWC 
than dryland sites, and over the 0–60 cm depth, irrigated 
sites had 8.2 mm more SAWC than dryland sites. 

Soil bulk density, total porosity, and
macroporosity

Soil bulk density, total porosity, and macroporosity for 
the irrigated and dryland sites are presented in Table 5. 
Macroporosity was significantly greater in the dryland sites 
at the 10–20 cm depth, but there were no significant 
differences for bulk density and total porosity (Table 5). 
When averaged over 0–30 cm, macroporosity was significantly 
greater in the dryland sites, but there were no significant 
differences for bulk density and total porosity when averaged 
over the depths (Table 4). 

For individual sites in this study, 12 of the 24 irrigated sites 
had macroporosity (0–10 cm) <10%, with four sites <6%, 
indicating compaction (Drewry et al. 2008; Hu et al. 2021). 
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Fig. 2. Probability distributions for readily available water capacity (RAWC, % v/v) for irrigated and dryland sites for six
depth increments.

Table 3. Mean readily available water capacity (RAWC, % v/v), available water capacity (AWC, % v/v), semi-available water capacity (SAWC,
% v/v), and their water storage equivalent (mm), for irrigated and dryland sites, over 0–30 cm (topsoil), 30–60 cm (subsoil) and 0–60 cm (profile).

Indicator Depth (cm) Volumetric capacity Water storage equivalent

Irrigated (% v/v) Dryland (% v/v) l.s.d. (5%) Sig. of diff. Irrigated (mm) Dryland (mm) l.s.d. (5%) Sig. of diff.

RAWC 0–30 7.68 8.79 0.76 ** 23.04 26.36 2.27 **

30–60 6.01 6.86 0.70 * 18.04 20.57 2.09 *

0–60 6.87 7.82 0.67 ** 40.65 46.89 4.00 **

AWC 0–30 20.79 19.63 1.23 n.s. 62.36 58.90 3.69 n.s.

30–60 13.12 13.23 1.28 n.s. 39.35 39.70 3.84 n.s.

0–60 16.87 16.40 1.18 n.s. 101.25 98.38 7.07 n.s.

SAWC 0–30 13.13 10.85 0.97 *** 39.32 32.54 2.90 ***

30–60 7.04 6.60 1.22 n.s. 21.11 19.80 3.65 n.s.

0–60 10.11 8.75 0.97 ** 60.68 52.53 5.81 **

0–30 cm typically represents topsoil, 30–60 cm subsoil, and 0–60 cm combined profile for the studied soils. Water storage equivalent (mm) is over the specified depth.
*P < 0.05; **P < 0.01; ***P < 0.001.
l.s.d., least significant difference; n.s., not significant; Sig. of diff., significance of difference.

Of the 24 sites, 10 and seven sites also had macroporosity 
<10% for the 10–20 and 20–30 cm depths, respectively. 
The site distributions for macroporosity are shown in Fig. 3. 
The distributions for bulk density are shown in the 
Supplementary material (Fig. S3). 

Effect of land use and irrigation duration

The analyses of variance showed no significant differences in 
each of the soil physical property responses to irrigation 

between dairy and non-dairy pastoral land use. The 
regression analyses also showed no significant relationships 
between the soil physical property responses to irrigation 
and the duration (years) of the soil under irrigation. 

Discussion

This study showed that while the total volume of pores 
(total porosity) did not change between irrigated and 
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Table 4. Mean water content at permanent wilting point (PWP, % v/v), bulk density (Mg/m3), total porosity (% v/v), and macroporosity (% v/v) for
irrigated and dryland sites, over 0–30 cm (topsoil), 30–60 cm (subsoil), and 0–60 cm (profile).

Indicator Depth (cm) Irrigated Dryland l.s.d. (5%) Sig. of diff.

PWP (%) 0–30 17.64 16.33 1.26 *

30–60 18.76 17.56 1.67 n.s.

0–60 18.00 16.88 1.40 n.s.

Bulk density (Mg/m3) 0–30 1.329 1.334 0.026 n.s.

30–60 1.538 1.557 0.023 n.s.

0–60 1.440 1.452 0.018 n.s.

Total porosity (%) 0–30 49.45 49.10 0.89 n.s.

30–60 42.91 42.23 0.84 n.s.

0–60 45.96 45.43 0.60 n.s.

Macroporosity (%) 0–30 11.02 13.14 1.34 **

30–60 10.10 10.55 1.28 n.s.

0–60 10.52 11.68 1.20 n.s.

0–30 cm typically represents topsoil, 30–60 cm subsoil, and 0–60 cm combined profile for the studied soils.
*P < 0.05; **P < 0.01.
l.s.d., least significant difference; n.s., not significant; Sig. of diff., significance of difference.

Table 5. Bulk density (Mg/m3), total porosity (% v/v), and macroporosity (% v/v) for irrigated and dryland sites for six depth increments.

Indicator Depth (cm) Irrigated Dryland l.s.d. (5%) Sig. of diff.

Bulk density (Mg/m3) 0–10 1.233 1.252 0.044 n.s.

10–20 1.354 1.359 0.032 n.s.

20–30 1.399 1.401 0.039 n.s.

30–40 1.477 1.495 0.041 n.s.

40–50 1.556 1.561 0.028 n.s.

50–60 1.577 1.606 0.036 n.s.

Total porosity (%) 0–10 52.47 51.56 1.60 n.s.

10–20 48.44 48.59 1.09 n.s.

20–30 47.45 47.15 1.43 n.s.

30–40 44.92 44.38 1.41 n.s.

40–50 42.39 42.14 1.04 n.s.

50–60 41.53 40.46 1.37 n.s.

Macroporosity (%) 0–10 10.51 12.17 2.35 n.s.

10–20 9.85 13.34 1.79 ***

20–30 12.70 13.92 1.63 n.s.

30–40 10.99 11.80 1.87 n.s.

40–50 9.80 10.26 1.18 n.s.

50–60 10.88 10.86 1.94 n.s.

***P < 0.001.
l.s.d., least significant difference; n.s., not significant; Sig. of diff., significance of difference.

dryland use, the pore size distribution was significantly 
affected, particularly in the topsoil (0–30 cm depth). 
Overall, our results showed a redistribution towards 
smaller pore sizes under irrigation, with the number of 

macropores (>30 μm) and readily available storage pores 
(30–3 μm) decreasing, while there was an increase in 
the abundance of smaller pores below stress point 
(pores <3 μm). 
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Fig. 3. Probability distributions for macroporosity (% v/v) for irrigated and dryland sites for six depth increments.

Effect of irrigation on soil water storage

In general, while AWC of the topsoil appeared to be slightly 
larger under irrigation, the difference was only significant 
at 10–20 cm depth. The plot study of Houlbrooke and 
Laurenson (2013) showed no significant difference when 
comparing AWC under the same cattle or sheep grazed land 
use, but for irrigated cattle grazing was significantly lower 
than both irrigated and dryland sheep-grazed pasture. The 
regional study of Fu et al. (2021) also found dryland sheep 
and beef to have significantly greater AWC than irrigated 
dairy at the 7.5–15 cm depth, but when individual depths 
were averaged over 0–30 cm there was no significant 
difference. In contrast, in the single paddock land use 
comparison of Drewry et al. (2021a), the AWC response 
varied between depth increments but was greater at the 
dairy site for 0–30 cm than at the dryland sheep site. 
Swanepoel et al. (2013) also reported water holding 
capacity was increased in a sandy soil under dairy-grazed 
irrigated pasture compared with natural vegetation, which 
was considered to be due to increased soil carbon content. 
Overall, this indicates that changes in AWC are not likely to 
show a consistent trend under irrigation when comparing 
between land uses, reflecting multiple differences in 
management such as stocking type, rate, and grazing 
regime (Drewry et al. 2021b). Although there are fewer 
comparisons where land use and management are the same, 
this study and that of Houlbrooke and Laurenson (2013) 
indicate AWC is not likely to significantly change under 
irrigation application in temperate pastoral grazing. 

The results showed a significant change in the distribution 
of pore sizes within the AWC. PWP can represent 

‘microporosity’, being the small soil pores in which water is 
most tightly held, and unavailable to plants. SAWC 
represents the portion of plant-available soil water that is 
held below the stress point, where plants are required to 
expend increasing energy as the water content lowers 
towards PWP (Drewry et al. 2021b), or lead to failure 
of water conducting tissues (Rowland et al. 2015). Previous 
research has shown that irrigated pastoral soils can have 
greater microporosity compared with non-irrigated areas 
(da Costa et al. 2014). Similarly, Houlbrooke and 
Laurenson (2013) showed that soil water content at −100 
and −1500 kPa matric potentials was higher under 
irrigated land than dryland for cattle-grazed pasture, while 
Fu et al. (2021) also found higher PWP and SAWC under 
dryland sheep and beef compared to irrigated dairy 
paddocks. This effect could be due to several factors, 
including the in-filling of pores with time from soil 
compaction (Houlbrooke and Laurenson 2013; Drewry et al. 
2021a) as indicated from reduced pore and water storage 
indicators, and wetting and drying cycles (da Costa et al. 
2014; Pires et al. 2017). Wetting and drying cycles also 
affect soil aggregate stability, cracking, and strength, and 
are closely associated with pore characteristics (Ma 
et al. 2015). 

However, in contrast to the other water storage attributes, 
RAWC was significantly greater in the dryland sites than in the 
irrigated sites. This result is consistent with previous studies 
under temperate pastoral land use (Drewry et al. 2021a), 
which also showed that RAWC was significantly lower 
under irrigated cattle-grazed pasture to 30 cm depth. These 
studies attributed the reduction in RAWC to compaction 
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arising from grazing of cattle at the high moisture contents 
that occur under regular irrigation return intervals. 
Houlbrooke and Laurenson (2013) noted that the water 
content of soil pores at −100 kPa was most affected by 
treading-induced compaction, which affects RAWC, while 
Drewry et al. (2021a) reported compaction of pores was 
associated with changes in volumes of pores across a wide 
range of sizes, consistent with that observed for water 
storage indicators in this study, e.g. RAWC, SAWC. 

Soil compaction under irrigation

Regular soil quality monitoring in New Zealand shows soil 
macroporosity and bulk density at 0–10 cm depth are 
affected under dairy grazing land use, with many 
monitored sites having macroporosity values well below 
recommended targets (Drewry et al. 2021c; Hu et al. 2021; 
Ministry for the Environment, Stats NZ 2021). Results from 
this study showed at 10–20 cm depth, and averaged over 
the 0–30 cm depth, that macroporosity was significantly 
lower under irrigated grazed pasture. A similar trend was 
observed in the Otago (Houlbrooke and Laurenson 2013) 
and Canterbury regions (Drewry et al. 2021a; Fu et al. 
2021), showing that soil physical quality is degrading 
under different land use beyond the commonly measured 
0–10 cm depth that is typically used in soil quality 
monitoring. Compared to a national scale paired site study 
of carbon (Mudge et al. 2021), our paired site regional 
study was not designed to specifically examine differences 
from soil order. 

Critical and optimum values of macroporosity for crops 
and pasture can vary with species, soils, and circumstances 
(Drewry et al. 2008; Pöhlitz et al. 2020; Hu et al. 2021). A 
commonly accepted critical value of 10% (Drewry et al. 
2008) is used in New Zealand for environmental reporting 
(Ministry for the Environment, Stats NZ 2021). The results 
in our study showed half of the irrigated sites (which were 
dairy or dairy support land use) had low macroporosities 
(<10%), indicating compaction (Drewry et al. 2008; Hu 
et al. 2021). The results also indicated soil compaction is 
occurring at deeper depths. Low soil macroporosity values 
can indicate there is likely to be a potential limitation to 
pasture production, but there are few studies of critical 
values of soil physical properties under pastoral farming, as 
many studies are based on crop responses (Drewry et al. 
2008; Hu et al. 2021). Pasture yield in New Zealand 
has been shown to decrease as macroporosity decreases 
(0–10 cm depth) (Drewry et al. 2004). Critical thresholds of 
5% air capacity have been used to determine subsoil 
compaction (Horn and Fleige 2009; Mordhorst et al. 2021), 
but subsoil thresholds are not well defined in New Zealand. 
Although farm system modelling and grazing studies have 
been undertaken to assess the farm-system feasibility of 
restricting grazing during high compaction risk periods 
(Beukes et al. 2013; Laurenson et al. 2016; Laurenson et al. 

2017; Christensen et al. 2019), the benefits vary with 
grazing management and farm system, so further whole-
farm-system research under a wider range of soils, climates, 
and management practices is needed. 

Implications for irrigation management

In New Zealand, soil water attributes are widely used to 
inform both on-farm management decisions, as well as 
water allocation and environmental compliance. The 
observation that RAWC was reduced in irrigated sites is 
significant for land management as it is within this range of 
soil water content that irrigation scheduling aims to 
operate, i.e. where pasture can access soil water under the 
least stress (Vogeler et al. 2019). Houlbrooke and 
Laurenson (2013) highlighted that this could mean shorter 
irrigation return periods will be needed to prevent plant 
water stress, but the plot-scale nature of that study may 
have limited the direct applicability to on-farm systems. 
Our study showed that this early finding appears to be the 
case across a wide range of farms in the Canterbury region. 
Summed over the 0–60 cm depth, irrigated soils had on 
average 6.2 mm less RAWC capacity than under dryland 
management (or 3.3 mm less RAWC over the 0–30 cm 
depth). This is significant for irrigation scheduling, 
meaning on average the need to irrigate 1 day earlier that 
if RAWC was similar to that under dryland, given the 
average Canterbury irrigation application of 4–5 mm/day 
(KC et al. 2018), and internationally ~5–7 mm/day applied 
(Denef et al. 2008; da Costa et al. 2014). 

The lower RAWC on irrigated sites also potentially has a 
substantial effect at the farm and regional water planning 
level. On average, our data indicate that this potential 
RAWC storage capacity scales to 62 cubic metres per 
irrigated hectare, or 23 million cubic metres across the 
377 000 ha of spray-irrigated dairy and sheep/beef land 
use in the Canterbury region in 2019 (Ministry for the 
Environment, Stats NZ 2021). Irrigation is the biggest user 
of freshwater resources within New Zealand (Ministry for 
the Environment, Stats NZ 2021). If the reduction in RAWC 
on irrigated pastoral farms could be addressed then there is 
potential to reduce the demand of irrigation on freshwater 
resources and increase freshwater availability for other 
ecosystem services. A limitation of the study is that it is 
confined to the Canterbury region, so evaluation in other 
areas would be worthwhile. 

The soil moisture level is a critical factor in the compaction 
response of soil to grazing (or machinery), with the risk of soil 
structural damage increasing as water content increases with 
irrigation to field capacity or near a critical moisture content 
(Laurenson and Houlbrooke 2016). Given the average spray 
irrigation return interval, it is likely that grazing may often 
occur when the soil water content is near field capacity, at 
least for near-surface soil depths. The resulting compaction 
effects on the soil pore network that this study showed, 
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further support the need to adopt deficit irrigation 
highlighted in several studies (Houlbrooke and Laurenson 
2013; KC et al. 2018; Drewry et al. 2021a). The benefit of  
using deficit irrigation would be to avoid grazing when the 
soil moisture is above a critical limit for compaction risk 
(Betteridge et al. 1999; Drewry et al. 2008; Laurenson et al. 
2016). This has been estimated in several New Zealand 
soils to be c. 10  mm deficit below field capacity, over the 
0–300 mm depth (Laurenson and Houlbrooke 2016; Drewry 
et al. 2021a). In this study, irrigated soils had an average 
RAWC over this depth of 23 mm, which only allows for 
13 mm application depth if adopting deficit irrigation. This 
is marginal for practical on-farm adoption, given the 
typically scheduled requirement in the region of 4–5 mm/day 
being applied on the average 3-day return interval will mean 
there is the risk of soils drying to near stress-point within the 
irrigation cycle. However, based on the dryland sites, there is 
potential RAWC that could be recovered if the deficit 
irrigation could minimise the impact of compaction, which 
is sufficient to provide a buffer in RAWC above the risk of 
drying to stress point. However, further research is required 
to quantify the practicality and benefits of this proposed 
strategy. 

Conclusions

Land use change and intensification of agricultural land 
occurs through irrigation expansion and changing farm 
management practices, such as increased stocking rates and 
nutrient use. With more intensive land use, changes to soil 
physical (and biological and chemical) properties can 
occur, but the effects of modern irrigation and pastoral 
farming systems on soil physical properties have not been 
well quantified. A number of studies have also compared 
changes between land use, but this can make it difficult to 
separate land management effects such as irrigation, 
cultivation, stock type, and the grazing regime. 

In this study, the approach meant consistency in land 
management, with just irrigation varying between paired 
sites. Although sampling occurred over the two years, the 
experimental design of paired sites accounted for any 
variation. The pore-size distribution significantly differed 
between dryland and irrigated management, particularly in 
the water storage pores. Under irrigation there was a shift 
towards a greater abundance of smaller pores. This is 
reflected in the macroporosity and RAWC being 
significantly lower under irrigation, while the SAWC and 
unavailable water held below the PWP both increased. 
Total porosity and bulk density can be less sensitive than 
pore size indicators. We conclude that these differences 
reflect increased compaction under irrigated grazed 
pasture, particularly under dairy grazed pasture, consistent 
with findings in similar studies. This study quantified 

changes in both the topsoil and subsoil but showed that 
most differences were confined to the topsoil. 

In terms of irrigation management, our study indicates that 
the lower RAWC for the irrigated pasture is significant, both in 
terms of having to irrigate more frequently, and also 
potentially increasing allocation requirements when scaled 
across the region. There is potential to reduce these 
irrigation requirements if the compaction-induced 
reduction in RAWC on irrigated pastoral farms could be 
addressed. Our study also suggests that adopting deficit 
irrigation could minimise the impact of compaction, but 
further research is required to quantify the practicality and 
benefits of this strategy. 

Supplementary material

Supplementary material is available online. 
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