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ABSTRACT

Context. Digital soil maps (DSM) across large areas have an inability to capture soil variation at
within-fields despite being at fine spatial resolutions. In addition, creating field-extent soil maps is
relatively rare, largely due to cost. Aims. To overcome these limitations by creating soil maps
across multiple fields/farms and assessing the value of different remote sensing (RS) and on-the-
go proximal (PS) datasets to do this. Methods. The value of different RS and on-the-go PS data
was tested individually, and in combination for mapping three different topsoil and subsoil properties
(organic carbon, clay, and pH) for three cropping farms across Australia using DSM techniques.
Key results. Using both PS and RS data layers created the best predictions. Using RS data only
generally led to better predictions than PS data only, likely because soil variation is driven by a
number of factors, and there is a larger suite of RS variables that represent these. Despite this, PS
gamma radiometrics potassium was the most widely used variable in the PS and RS scenario. The RS
variables based on satellite imagery (NDVI and bare earth) were important predictors for many
models, demonstrating that imagery of crops and bare soil represent variation in soil well.
Conclusions. The results demonstrate the value of combining both PS and RS data layers together
to map agronomically important topsoil and subsoil properties at fine spatial resolutions across
diverse cropping farms. Implications. Growers that invest in implementing this could then use
these products to inform important decisions regarding management of soil and crops.

Keywords: broadacre cropping, digital soil mapping, precision agriculture, proximal sensing,
remote sensing, soil constraints, soil spatial variability.

Introduction

Digital soil mapping (DSM) has been gaining in popularity over the past few decades, and 
this has been driven by the abundance of spatial datasets and increased computing power 
and data analytical techniques now available. There have been a large number of reviews 
written on DSM in recent years (e.g. McBratney et al. 2019; Searle et al. 2021), but it is an 
area of research that still has many challenges to overcome for the products to provide 
genuine value to a range of stakeholders. The majority of DSM studies are conducted across 
large areas, with many researchers often trying to map as large an area as possible 
(Grunwald et al. 2011; Arrouays et al. 2017). While these studies often predict at fine spatial 
resolutions (e.g. 30 m) over large extents, a problem is that the maps do not represent fine-
scale variability well, such as the variation within an agricultural field. While many DSM 
studies promote the importance of the products for farmers, many farmers do not know they 
exist; or if they do, they may not trust the quality of the predictions. A study by Han et al. (2022) 
demonstrated how poor global, national, and state DSM products were at representing within-
farm variability across a collection of diverse cropping fields and farms in Australia. 

Creating bespoke DSM products for farmers at the field extent is less common, primarily 
due to the large expense of collecting samples (this varies by region/country), and the lack 
of skilled practitioners. Mapping soil within-fields is usually a step towards implementing 
management practices using precision agriculture principles. One common approach is to 
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implement a grid sampling approach and use a simple 
interpolation technique such as inverse distance weighting 
(IDW) to create spatial maps. 

However, to capture the true scale of variation in soil 
across space data often needs to be collected on dense grids, 
which can be a prohibitively expensive task (Kerry et al. 
2010). Another common approach is to collect proximally-
sensed data (e.g. from an electromagnetic induction sensor) 
and then strategically sample soil based on this information. 
This can be a more cost-effective approach as fewer soil 
samples are often required to cover the extent of variability 
compared to standard grid sampling (Kerry et al. 2010). 
When this latter approach is adopted, operators generally 
use simple approaches, such as using a single spatial variable 
to create models and maps. Nonetheless, cost can still be a 
limitation in these scenarios. A typical farmer in Australia 
can often have more than 10 fields, and having enough soil 
observations per field to create a simple linear model is 
generally a challenge. Many commercial operators in Australia 
work off a sampling density of one sample per 50–100 ha as 
this is something that can be realistically implemented 
(SPAA 2022). 

In Australia, over half of the continent is used for 
agriculture. So creating useful and affordable soil maps is an 
important step to help farmers in improving the management 
of our soils. Given the issues raised above, a promising 
approach is to create bespoke soil maps for whole farms, as 
opposed to individual fields. While traditional precision 
agriculture focused on single fields in isolation, there has 
recently been a shift to combining data from multiple fields 
for analysis (Filippi et al. 2019a). This is due to a few reasons, 
such as the high cost of sampling and analysing soil, and the 
fact that more data can be utilised as it is from multiple fields. 
However this presents some challenges, for example, 
differences in management practices between fields (e.g. 
crop rotations) can result in differences in the state of soil 
properties (e.g. moisture), which can then impact on the 
data collected by proximal sensors. This has the potential to 
impact the value and usefulness of proximal sensing when 
modelling and mapping across multiple fields. 

Proximal sensing is described as using a sensor in contact, 
or within 2 m of the soil, whereas remote sensing is described 
as using a sensor at least 2 m from the soil (Tilse et al. 2023). 
There are different components of proximal sensing, but for 
the purpose of this paper, we refer to sensors that are best 
described as on-the-go proximal sensors. This includes sensors 
such as electromagnetic induction (EM), or gamma radiometric 
sensors which are typically mounted to a ground-based vehicle 
and measurements are taken and recorded as the vehicle passes 
over fields. This is opposed to handheld, point-based proximal 
sensors such as visible near-infrared sensors. A more detailed 
description of these different types of technologies can be 
found in Tilse et al. (2023). 

Using on-the-go proximal sensing data has been seen as the 
gold standard for DSM at the smaller scale. However, there is 

now an abundance of data collected by various remote sensors 
that can represent the within-field variability of soil. For 
example, in Australia there is now public access to airborne 
gamma radiometrics data (Minty et al. 2009), elevation and 
terrain attributes (CSIRO 2023), bare earth (BE) imagery 
(Roberts et al. 2019), and imagery from a range of satellites 
such as Landsat and Sentinel (Gorelick et al. 2017). While 
combining proximal data with remotely-sensed data is not a 
new concept, there is often a view by the industry (e.g. 
commercial service providers) that if proximal sensing data 
is present, there is limited value in the addition of remote 
sensing data. However, variation in soil properties is driven 
by a number of different factors and their interactions, and 
these proximal and remote sensing variables can provide 
surrogates that represent these. 

This study aims to assess the value of different proximal 
and remote sensing data individually, as well as the combina-
tion of the two for mapping three different important soil 
properties (organic carbon, clay, and pH). This is done across 
multiple fields for three farms in different biogeographical 
locations across Australia, and in the topsoil (0–10 cm) and 
subsoil (30–60 cm). This could guide decisions about whether 
or not growers should invest in collecting proximally-sensed 
data. This study aims to demonstrate a robust, realistic, and 
cost-effective approach to mapping soil properties at the 
whole-farm scale for farmers and land managers which 
could be valuable in informing management decisions. 

Materials and methods

Study sites and soil datasets

Three different farm sites were used in this study: (1) a farm in 
the wheatbelt of Western Australia, ‘West Farm’ (7200 ha); (2) 
a farm in northern NSW, ‘North Farm’ (4900 ha); and (3) a 
farm in southern NSW, ‘South Farm’ (2000 ha) (Fig. 1). West 
Farm has a mix of soil types, typically of sandier texture and 
gravel layers; North Farm is characterised by uniformly 
textured clay soils; and South Farm has a mix of duplex and 
gradational textured soil types. Soil cores were extracted 
and sub-sampled at 0–10 cm and 30–60 cm depths. 

Soil pH (1:5 soil:H20) was measured by a pH meter with an 
ion-selective electrode. Organic carbon was measured by the 
combustion method as no carbonates were present in any 
samples. Soil carbon data was only available for the topsoil. 
Soil clay content was assessed by the hydrometer method. 
These particular soil properties were chosen as they contribute 
to important characteristics of soil, such as water holding 
capacity, chemical constraints, and nutrient availability, and 
are of key interest to farmers. 

In terms of median pH values, North Farm had the highest 
topsoil pH, as well as alkaline subsoils (Fig. 2). South Farm 
was characterised by a more acidic topsoil and an alkaline 
subsoil. West Farm had consistent neutral median pH values, 
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Fig. 1. Location of the three study farms across Australia.

Fig. 2. Summary statistics of the soil laboratory analysis for pH, clay
content, and organic carbon content across the three study farms and
two sampled depths.

but with quite a bit of variation in the subsoil. Clay content 
was highest overall for South Farm, followed by North Farm 
and then West Farm. South Farm had the highest median 
topsoil organic carbon content, which was then followed by 
West Farm and then North Farm. 

The number of sampling sites where a soil core was 
extracted for each farm varied from 22 to 91, relative to the 
size of the farm (Table 1). In Australia, soil sampling and 
analysis is expensive, and realistically growers and land 
managers are restricted by the cost. Although a larger number 
of samples would likely produce more accurate predictions, 
the reality is that this is not economically feasible. The 
sampling density for this study ranges from one sample per 
~80–100 ha. 

Table 1. The number of sites and proximally-sensed data available at
each farm.

Farm Farm
size
(ha)

No.
of

sites

Number
of fields

Proximal
electromagnetic

induction available

Proximal
gamma
available

West
Farm

7200 91 52 50 cm, 150 cm K, Th, U, TC

North
Farm

4900 48 5 50 cm, 150 cm K

South
Farm

2000 22 4 50 cm, 150 cm K

K, potassium; Th, thorium; U, uranium; TC, total count.

Proximally-sensed data

A proximal soil sensing survey was conducted to collect high-
resolution apparent soil electrical conductivity (ECa) and 
gamma radiometrics data. The proximal soil sensing survey 
was conducted on 24 m swaths, and the position was recorded 
with differential GPS (DGPS) equipment. Continuous surface 
layers were obtained by kriging with local variograms onto a 
standard 10-m grid through the software R (R Core Team 
2020). 

Electromagnetic induction (EM)
Apparent soil electrical conductivity (ECa) was measured 

via EM using a DUALEM-21S instrument (Dualem Inc., 
Milton, Ontario, Canada). Information representing depths 
to 50 cm and 150 cm of the profile was used for all farms 
in this study (Fig. 3). 

Gamma radiometrics
Gamma radiometric data was recorded using an RSX-1 

gamma radiometric detector with a 4 L Sodium-Iodine crystal 
(Radiation Solutions Inc., Mississauga, Ontario, Canada). 
Data for potassium (K), thorium (Th), uranium (U), and 
total dose were available for West Farm, however, only K 
was available for both North Farm and South farm. 

Remotely-sensed data

A subset of covariate maps are in Fig. 3 for North Farm as an 
example. This subset was chosen to showcase the differences 
in spatial variation and patterns for each different type of data 
described in Table 2. 

Elevation and terrain attributes
A digital elevation model (DEM) at ~30 m resolution 

derived from the Shuttle Radar Topography Mission (SRTM) 
acquired by NASA (Farr et al. 2007) was obtained from the 
ELVIS (ELeVation Information System) platform (Department 
of Finance, Services, and Innovation 2023). A map of 
topographic wetness index (TWI), which was also derived 
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Fig. 3. Maps of a subset of covariates for North Farm. PS, proximally-
sensed; RS, remotely-sensed; BE, bare earth.

from the SRTM, was downloaded through CSIRO’s Data  
Access Portal (CSIRO 2023). 

Airborne gamma radiometrics
Air-borne gamma radiometric potassium, thorium, uranium, 

and total dose data was obtained through the Geophysical 
Archive Data Delivery System (GADDS), Geoscience Australia. 
This data is known to represent the parent material of the 

Table 2. Details of the proximally-sensed and remotely-sensed
variables used for modelling.

Data type Category Data description Spatial
resolution

(m)

Proximallysensed
data

Electro-magnetic
induction

ECa 50 cm

ECa 150 cm

10

10

Ground-based Potassium (%) 10
gamma
radiometrics

Thorium (ppm)

Uranium (ppm)

10

10

Total dose 10

Remotely-sensed
data

Terrain
attributes

DEM (m)

TWI

30

30

Airborne gamma
radiometrics

Potassium (%)

Thorium (ppm)

100

100

Uranium (ppm) 100

Total dose 100

Landsat NDVI NDVI 5th percentile
[2000–2020]

30

NDVI 50th percentile
[2000–2020]

30

NDVI 95th percentile
[2000–2020]

30

Landsat bare Blue band 25
earth image Red band 25

Green band 25

NIR band 25

SWIR1 band 25

SWIR2 band 25

ECa, soil electrical conductivity; DEM, digital elevation model; TWI, topographic
wetness index; NIR, near infra-red; SWIR, shortwave infra-red; NDVI,
normalised difference vegetation index.

soil, and soil types. This data was collected on varying 
swath widths across Australia and is provided as a ~100-m 
resolution gridded product. Airborne radiometric products 
were processed with a low pass filter to remove noise 
(Minty et al. 2009). 

Landsat NDVI percentiles
NDVI imagery from the Landsat 7 satellite at a ~30-m 

resolution was obtained from 1 January 2000 to 31 December 
2020. A cloud-masking filter was applied to these images to 
remove all pixels that were affected by cloud cover. The 
5th, 50th and 95th percentile statistics were then calculated 
to represent the most common value (50th percentile, or 
median), and the lower and upper distribution of the imagery 
(5th and 95th percentile, respectively) over the time period. 
These different percentiles of NDVI reflect long-term trends in 
crop biomass, and therefore a surrogate for variation in 
production. 
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Landsat bare earth (BE) imagery
BE imagery for the Australian continent is available from 

https://nationalmap.gov.au/, and is described by Roberts 
et al. (2019). This BE imagery is obtained from 30-years of 
Landsat data from three different Landsat mission: Landsat 
5, 7, and 8. These databases were used to capture an image of 
the earth at its barest state at a ~25-m resolution. For this 
study, six different bands on the electromagnetic spectrum 
were used for the modelling analysis, including blue, green, 
red, near infra-red (NIR), shortwave infra-red 1 (SWIR1), 
and shortwave infra-red 2 (SWIR2). 

Modelling

The goal of the modelling analysis in this study was to identify 
the remote and proximal sensing variables that produce the 
best models for mapping three different soil properties across 
three different farms. All proximal and remote sensing 
covariate data were collocated using nearest neighbour 
interpolation to a standard 10-m grid, and then this informa-
tion was extracted at each soil sampling site. 

Modelling approach
Multiple linear regression (multivariate linear models) 

were used to build predictive models of the soil properties. 
Although there are many more advanced modelling approaches 
available, such as machine learning, these are generally suited 
to larger datasets (e.g. hundreds of observations). A highly 
suitable approach when mapping soil using relatively few 
samples is a linear mixed model (Lark et al. 2006). However, 
this approach was not implemented in this study because the 
random effects component of the linear mixed model is 
analogous to kriging, and if no spatial relationship is found 
in the data, then the model reverts back to simple multiple 
linear regression. This would mean that some models may 
have a spatial component, and some may not, which would 
obscure the interpretation of which variables are the best 
predictors, which is one of the primary aims of the study. 
Furthermore, we adopted an approach that could realistically 
be implemented by a commercial provider in software which 
requires compromises on model sophistication. 

A separate model for each soil property, depth, and farm 
was used. Models were created for two depths (0–10 cm; 
30–60 cm) for clay content and pH, and only at the 0–10 cm 
depth for total carbon. This approach is often referred to as 
‘2D’ soil mapping, and is the recommended approach when 
consistent and complete soil sample data is available (e.g. 
no missing soil sample data). Three different data scenarios 
were considered in this study, including: 

� Using proximal sensing data only; 
� Using remote sensing data only; and 
� Using both proximal and remote sensing data. 

Variable selection
All of these combinations resulted in a total of 45 different 

models. To reduce the number of variables included in each 
model, the first step was to compute the variance inflation 
factor (VIF) to identify multi-collinearity between predictor 
variables. In spatial data analysis, predictor variables are 
often highly correlated (McMillen 2010), and this can make it 
difficult to interpret the resultant model. The VIF approach 
was implemented as it could be expected that several of the 
variables in Table 2 would be highly correlated. In this 
procedure, all predictors available were first included in the 
model, and then the VIF was calculated. The predictor 
variable that had the largest VIF was then removed if the VIF 
value was greater than 10 (Liu et al. 2021). This process was 
repeated with the model with reduced variables until all 
predictor variables had a VIF smaller than 10. 

After this, a stepwise function was then used to further 
reduce the model and remove redundant variables. The final 
combination of variables was selected using the Akaike 
Information Criterion (AIC), where the model with the lowest 
AIC represents the most parsimonious model. This was done 
using the ‘MASS’ package in the software R (Venables and 
Ripley 2002). 

Model validation
The predictive ability of the models were then assessed 

using leave-one-site-out cross-validation (LOSOCV). This 
was reiterated so that every sample was used as validation 
once for each model. The results of the validation at every site 
were then combined, and the Lin’s concordance correlation 
coefficient (LCCC) and the root mean square error (RMSE) 
were used to assess the model quality. The LCCC assesses 
the fit of the values to the 1:1 line, and is unitless, making it 
a useful tool to compare models of different soil properties, 
farms, and depths. It is considered to be a more useful indi-
cator than the coefficient of determination (R2) when  
assessing the relationship between observed and predicted data. 

Results

Model validation statistics

Fig. 4 and Table 3 show the LCCC values from the LOSOCV 
procedure for all soil properties, farms, depths, and data 
scenarios. Overall, the average results across all three farms 
showed that the models using both proximal and remote 
sensing data resulted in the best LCCC values. This was the 
case for all three soil properties (organic carbon, clay, and pH) 
in both the topsoil and subsoil. Using remote sensing data only 
produced the next best model predictions on average. Based 
on this study, using proximally-sensed data only produced, 
on average, the poorest model predictions. 

When looking at individual farm results, a similar pattern 
in the LCCC value for the combined models being superior to 
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Fig. 4. Distribution of Lin’s concordance
correlation coefficient (LCCC) across different
farms for all models using leave-one-site-out
cross-validation (LOSOCV).

Table 3. Lin’s concordance correlation coefficient (LCCC) of all models using leave-one-site-out cross-validation (LOSOCV).

Soil property Model Depth (cm) West Farm North Farm South Farm Average

Organic carbon (%)

Clay content (%)

pH

Proximal and remote

Proximal only

Remote only

Proximal and remote

Proximal only

Remote only

Proximal and remote

Proximal only

Remote only

Proximal and remote

Proximal only

Remote only

Proximal and remote

Proximal only

Remote only

0–10

0–10

30–60

0–10

30–60

0.53

0.16

0.53

0.61

0.41

0.60

0.38

0.20

0.38

0.32

0.24

0.26

0.72

0.63

0.67

0.54

0.29

0.54

0.63

0.49

0.55

0.34

0.21

0.12

0.37

0.25

0.12

0.53

0.42

0.41

0.64

0.13

0.62

0.78

0.66

0.72

0.53

0.46

0.44

0.65

0.37

0.57

0.28

0.11

0.39

0.56

0.20

0.55

0.68

0.52

0.62

0.42

0.29

0.31

0.45

0.29

0.27

0.51

0.39

0.46

*LCCC values are ranked by colour. Green, best; Orange, middle; Yellow, worst.

the remote or proximal only models was observed on all farms 
(Table 3). However, in the performance assessment between 
remote or proximal only models. On North Farm, the proximal 
models for soil pH at both depths, and subsoil clay content 
out-performed the remote only models. On South Farm, a 
similar result was observed for the subsoil clay content. 

Table 4 shows the corresponding RMSE values for all 
models. Overall, the results reveal a similar pattern to the 
LCCC analysis, with the average RMSE of the combined 
proximal and remote sensing models from the three farms 
always making the most accurate predictions (lowest RMSE) 
and the remote only models generally the next best method. 

6



www.publish.csiro.au/sr Soil Research 62 (2024) SR23112

Table 4. Root mean square error (RMSE) of all models using leave-one-site-out cross-validation.

Soil property Model Depth (cm) West Farm North Farm South Farm Average

Organic carbon (%)

Clay content (%)

pH

Proximal and remote

Proximal only

Remote only

Proximal and remote

Proximal only

Remote only

Proximal and remote

Proximal only

Remote only

Proximal and remote

Proximal only

Remote only

Proximal and remote

Proximal only

Remote only

0–10

0–10

30–60

0–10

30–60

0.29

0.35

0.30

5.25

5.96

5.23

10.27

10.94

10.31

0.46

0.47

0.47

0.77

0.86

0.82

0.11

0.13

0.11

5.60

6.18

5.99

3.72

3.75

3.97

0.46

0.47

0.51

0.34

0.37

0.37

0.28

0.34

0.28

3.86

4.81

4.49

8.21

8.53

8.94

0.58

0.70

0.66

0.41

0.44

0.41

0.23

0.27

0.23

4.85

5.65

5.24

7.40

7.74

7.73

0.50

0.55

0.55

0.51

0.56

0.56

*LCCC values are ranked by colour. Green, best; Orange, middle; Yellow, worst.

Again, when looking at individual farm results, a similar 
pattern in the RMSE value for the combined models being 
superior to the remote or proximal only models was observed 
on all farms. The RMSE assessment between remote or 
proximal only models also showed that on North Farm, the 
proximal models for soil pH at both depths, and subsoil clay 
content out-performed the remote only models. On South 
Farm, the same result was observed for the subsoil clay content 

Variables included in final model

After calculating the VIF to remove highly correlated 
predictors, and stepwise elimination to remove redundant 
predictors, the variables in the final model were recorded 
for all three data scenarios: proximal and remote (Table 5), 
proximal only (Table 6), and remote only (Table 7). 

Table 5 shows the variables included in the final model for 
each farm, soil property, and depth for the model where 
proximal and remote sensing data was available. Overall, 
proximally-sensed gamma radiometrics potassium was the 
most included of all variables in the study, being included in 
10 of the 15 combined models. The EM data (150 cm) was the 
next most included proximally-sensed variable, being in six of 
the 15 combined models. 

In terms of the remotely-sensed data, it was clear that the 
variables based on satellite imagery (NDVI and bare earth) 
were the most useful. In particular, the SWIR1 band from the 
barest earth Landsat imagery was the variable most included 
in the combined models (eight times). This was followed by 
the BE blue band, and NDVI 5th and 95th percentile (seven 
times each). This suggests that remotely-sensed imagery of 
crop biomass and bare soil can represent the variation in 

these important soil properties well on these farms. Further, 
the long-term NDVI imagery used here likely represents the 
whole soil profile as crop roots typically explore the upper 
metre of the soil profile. In contrast, the bare soil products 
likely represents the surface soil, which may or may not be 
related to the subsoil. 

Variables that were not included in any of the combined 
models were the BE green and NIR band, and the total dose 
from both the proximal and remote gamma radiometric 
sensor (not shown in table). Other remotely-sensed variables 
that were rarely used in models were the BE red and SWIR2 
band, NDVI 50th, and DEM. For proximally-sensed variables, 
EM (50 cm) was only included in one model. While thorium 
and uranium were often not included in models, this data was 
only available at one farm so this must be taken into account. 
Overall, only three of the 15 models used no proximally-
sensed data, suggesting that proximal sensing provides 
considerable value when added to remote sensing data. 

Table 6 also shows that gamma radiometrics potassium 
was the most included of all variables in the proximal 
sensing only data scenario models, being included in 10 of 
the 15 models. Both EM data layers (50 cm; 150 cm) were 
included five times each, but never in the same model. This 
suggests that these variables provide very similar information, 
and it is well known the EM at different depths are highly 
correlated. Although only available at one farm (West Farm), 
of the other proximally-sensed gamma radiometrics variables 
only U appeared in any models (two out of five). 

Table 7 revealed a pattern of variable inclusion in the 
remote only models that was similar to that shown in the 
combined models (Table 5). Overall, the BE and satellite 
imagery variables were again predominant. The most included 
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Table 5. Final variables used in each model for the proximal and remote sensing data scenario.

Soil
property

Depth
interval (cm)

Farm Proximal sensing data Remote sensing data

EM
50 cm

EM
150 cm

K Th U DEM TWI K Th U NDVI_5 NDVI
50

NDVI
95

Blue Red SWIR1 SWIR2

Carbon 0–10 West Farm X X X X X X X

X X X X X X X

Carbon 0–10 South Farm X

X X

Carbon 0–10 North Farm

X X X X X X X

Clay 0–10 West Farm X X X X X X X X

Clay 0–10 North Farm X X X X X

Clay 0–10 South Farm X X X

pH 0–10 West Farm X X X X X

pH 0–10 North Farm X X X X

pH 0–10 South Farm X X X X X

Clay 30–60 West Farm X X X X

Clay 30–60 North Farm X X X X X X X

Clay 30–60 South Farm X X

pH 30–60 West Farm X X X X X X

pH 30–60 North Farm X X X

pH 30–60 South Farm X

Total occurrence 1 6 10 1 3 3 6 4 5 4 7 2 7 7 1 8 2

EM, electromagnetic induction; DEM, digital elevation model; TWI, topographic wetness index; NIR, near infra-red; SWIR, shortwave infra-red; K, potassium; Th,
thorium; U, uranium. Frequency of occurence, red = few; green = many.

Table 6. Final variables used in each model for the proximal sensing
only data scenario.

Soil
property

Depth
interval (cm)

Farm Proximal sensing data

EM
50 cm

EM
150 cm

K U

Carbon 0–10 West Farm

Carbon 0–10 North Farm X

Carbon 0–10 South Farm

Clay 0–10 West Farm

Clay 0–10 North Farm X

Clay 0–10 South Farm X

pH 0–10 West Farm

pH 0–10 North Farm

pH 0–10 South Farm X

Clay 30–60 West Farm

Clay 30–60 North Farm

Clay 30–60 South Farm

pH 30–60 West Farm

pH 30–60 North Farm X

pH 30–60 South Farm

Total occurrence 5

X X

X

X X X

X

X

X

X

X

X

X

X X

X

X

5 10 2

Gamma radiometric Th and Total dose were not used in any of themodels and so
are not included in the Table.
EM, electromagnetic induction; K, potassium; U, uranium. Frequency of
occurence, red = few; green = many.

variable was the BE blue band (11 of the 15 models), followed 
by BE SWIR1 and NDVI 5th (eight times), and NDVI 95th 
(seven times). The airborne gamma radiometrics variables 
(especially U) were included in more models for the remote 
sensing only scenario than the combined models, likely 
because the proximally-sensed gamma data was not included. 
While the airborne, and ground-based gamma radiometrics 
are collected at very different spatial resolutions (100 m and 
10 m, respectively), they would still represent the same broad 
patterns across fields and farms. The variables not included in 
any models were again the BE green and NIR bands, and the 
total dose from the airborne gamma radiometric sensor, 
similarly to the combined sensing data scenario. 

Discussion

It is not unexpected that using both proximal and remote 
sensing data for modelling soil properties was found to 
generally result in the best model predictions. Variation in soil 
is driven by a number of different factors and their interaction. 
This can be described by the Scorpan framework (McBratney 
et al. 2003), and several of these factors are represented by the 
covariates used in this study. For example, the NDVI variables 
represent crop biomass, and therefore the vegetation variable 
(organisms, o), the elevation data reflects the relief variable 
(r), and the gamma radiometrics data represents the parent 
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Table 7. Final variables used in each model for the remote sensing only data scenario.

Soil
property

Depth
interval (cm)

Farm Remote sensing data

DEM TWI K Th U NDVI 5 NDVI 50 NDVI 95 Blue Red SWIR1 SWIR2

Carbon 0–10 West Farm X X X X X X X X

Carbon 0–10 North Farm X X X X X X

Carbon 0–10 South Farm X X X X X X X

Clay 0–10 West Farm X X X X X X

Clay 0–10 North Farm X X X X

Clay 0–10 South Farm X X X X

pH 0–10 West Farm X X X X X

pH 0–10 North Farm X X X X

pH 0–10 South Farm X X X X

Clay 30–60 West Farm X X X X X

Clay 30–60 North Farm X X X

Clay 30–60 South Farm X X X

pH 30–60 West Farm X X X X X

pH 30–60 North Farm X X X

pH 30–60 South Farm X X X

Total occurrence 3 5 5 4 8 8 6 7 11 1 8 4

EM, electromagnetic induction; DEM, digital elevation model; TWI, topographic wetness index; NIR, near infra-red; SWIR, shortwave infra-red; K, potassium; Th,
thorium; U, uranium. Frequency of occurence, red = few; green = many.

material variable (p). It is therefore logical that the proximal 
and remote data scenario produces the best model predictions 
as there is a larger suite of variables that describe the variation 
of soil. 

While proximal sensing data has been seen as the ‘gold 
standard’ for within-field digital soil mapping (SPAA 2022), 
there are some other important reasons that may explain why 
the proximal sensing data only scenario generally produced 
the poorest predictions in this study. Proximal sensing data, 
such as soil ECa from an EMI instrument can identify within-
field soil type variability well, however, when aggregating 
several fields together there are some limitations. Differences 
in management between fields can result in considerable 
differences in some soil properties, such as the soil moisture 
levels. This can lead to stark differences in absolute ECa values 
between fields, which is not driven by changes in soil type. 
This exaggerated extent of variability across the site reduces 
its usefulness as a covariate for modelling other soil properties. 
Many remote sensing variables do not suffer from the same 
problems, for example, the sensing of elevation and airborne 
gamma radiometrics are largely unaffected by agricultural 
management. It would be expected that if the focus of the 
study was on mapping individual fields under these different 
data scenarios that the proximal sensing only scenario would 
produce improved results from those observed in the 
current study. 

Overall, the quality of the model predictions in this study 
varies considerably (Fig. 3, Table 3), and this is expected due 
to the differences in soil properties, depths, farms, and data 

scenarios. Although direct comparisons to results from 
other studies must be done with caution, the LCCC values 
from the LOSOCV procedure were similar to other published 
studies for clay content (Zhao et al. 2022), pH (Filippi et al. 
2019b), and organic carbon (Wang et al. 2022). 

The proximally-sensed predictor that was commonly 
identified as an important predictor across various farms, soil 
properties, and depths was the gamma radiometrics potassium. 
Compared to EM instruments, ground-based gamma sensors 
are relatively rare. To the best of our knowledge, only a few 
sensors are operational in Australia. Gamma potassium is 
known to be related to variation in soil type, parent material, 
and texture (Reinhardt and Herrmann 2019), so it is logical 
that this was identified as an important predictor for soil pH, 
clay content, and organic carbon. It is also known to be less 
impacted by differences in soil moisture compared to EM 
instruments (Whelan and Taylor 2013), which could also 
explain why it was identified as important when mapping 
across multiple agricultural fields in this study. The soil ECa 
data was identified as important for models in the proximal 
and remote data scenario (seven of 15 models), and the 
proximal only data scenario (10 of 15 models). Soil ECa data 
collected from EM instruments is very common worldwide, 
and it is well known that this data can be correlated to soil 
texture, moisture content, and overall soil fertility when 
salinity is not a dominant issue (Whelan and Taylor 2013). 

While EM and gamma radiometric proximal sensors were 
used in the study due to prevalence of the sensors and data 
availability, there are also other on-the-go proximal sensors 
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available to use in digital soil mapping on-farm. In particular, 
Veris Technologies have a suite of soil sensors available that 
utilise electrochemical sensors for on-the-go pH measurement, 
and visible and near-infrared (Vis-NIR) sensors to infer carbon 
and organic matter content of soils (Viscarra Rossel and Lobsey 
2016). In the current study, the results showed that the average 
predictions of topsoil carbon were poor for the proximal only 
data scenario (Fig. 4). It could be envisioned that including data 
from these on-the-go Vis-NIR sensors would improve these 
predictions. The inclusion of some of these other proximal 
sensors should be considered in future research. 

The BE and NDVI variables derived from satellite imagery 
were the variables that stood out in terms of their inclusion in 
models. The different percentiles (5th, 50th, 95th) of NDVI 
from 2000 to 2020 used in this study represent long-term 
trends in crop biomass and therefore production. Variation 
in crop production is linked to soil variability, particularly 
the soil properties modelled in the current study, which are 
important drivers of production. The BE imagery product 
based on the Landsat 5, 7 and 8 satellites (Roberts et al. 
2019) proved important for modelling soil pH, clay content, 
and organic carbon. In particular, the blue band and SWIR1 
band were prevalent in many models. The SWIR1 band, 
which covers wavelengths 1.55–1.75 μm for Landsat 5 and 
7, and 1.57–1.65 μm for Landsat 8, is useful in discriminating 
the moisture content, and therefore water holding capacity of 
topsoil (Tian and Philpot 2015). Moisture content can be 
related to other soil properties, such as clay content. This 
could explain why the SWIR1 band was included in 8 of the 
12 soil clay content models for the proximal and remote, 
and remote only data scenarios (Tables 5 and 7). The blue 
band, which covers 0.45–0.52 μm for Landsat 5 and 7, and 
0.45–0.51 μm for Landsat 8, is known to help distinguish 
soil from vegetation. However, it is likely that the blue 
band is picking up differences in soil colour, which can be 
well related to the soil properties modelled in this study 
(Zhang et al. 2023). 

Airborne gamma is commonly used in many Australian 
DSM studies at the national (Viscarra Rossel et al. 2015), 
regional (Pozza et al. 2022), and farm level (Filippi et al. 
2019b). This gamma data has proven useful in modelling 
the variation in several soil properties. However, this study 
shows that satellite-derived sensor data (from the visible and 
near-infrared parts of the electromagnetic spectrum) of crops/ 
plants and soil are also highly valuable in representing within-
field and farm variability of important soil properties. 

The increasing quantity of remote sensing and satellite 
imagery presents an invaluable opportunity for digital soil 
assessment. The accessibility of this data is improving 
considerably with platforms such as Google Earth Engine 
(Gorelick et al. 2017), and the quality is also rising. For 
example, the Sentinel 2 satellites can capture imagery at 
10–20 m resolution, and includes a suite of bands in crucial 
parts of the electromagnetic spectrum (e.g. red edge). While 
many DSM studies have used satellite imagery as a covariate, 

there can be considerable differences in the type of imagery 
and the processing implemented. For example, some studies 
use a single-day remotely-sensed satellite image (Mirzaee 
et al. 2016), whereas others use multitemporal satellite 
images (Pozza et al. 2022). Many things need to be considered 
when processing satellite data for use as a covariate. Some of 
the primary factors are the satellite system (e.g. Landsat 8 or 
Sentinel 2), the time period (e.g. single image or some statistic 
of a collection of images), and the band or spectral index to 
select. These decisions can be made based on the specific 
goals of the study, but can result in an overwhelming amount 
of options. 

In contrast, the BE imagery (Roberts et al. 2019) is  a  
downloadable product, and does not require the same 
processing and decisions as the NDVI variables used in this 
study. This makes it much easier to use, and also more 
reproducible and accessible. These freely available products 
present a great opportunity for creating farm-scale digital 
soil maps for consultants and service providers. 

Conclusions

This study assessed the value of using proximal and remote 
sensing data for mapping three different soil properties 
(organic carbon, clay, and pH), at two depths, and across 
multiple fields for three farms in different biogeographical 
locations across Australia. Three different data scenarios 
were considered: (1) using proximal sensing data only; (2) 
using remote sensing data only; and (3) using a combination 
of proximal and remote sensing. The results showed that using 
a combination of both proximal and remote sensing data 
resulted in the best predictions. Using remote sensing data 
only generally led to better predictions than proximal 
sensing data only. One possible reason for this is that soil 
variation is driven by a number of factors (e.g. organisms/ 
vegetation, relief, parent material), and there is a larger 
and more diverse suite of remotely-sensed variables that can 
be used to represent these factors. Another thing to consider is 
that proximal sensing data is often affected by differences in 
management between fields, and combining data across 
multiple fields as we have done in this study may impact the 
value of this. Nonetheless, it was found that the proximally-
sensed gamma radiometrics potassium was the most widely 
used of all the available variables for the proximal and 
remote data scenario. The remote sensing variables based on 
satellite imagery (NDVI and BE) were the standout predictors 
for many of the models in the data scenarios that included 
remote sensing data. This demonstrates that remotely-
sensed imagery of crop/plant biomass and bare soil can 
represent the variation in important soil properties well. 
In particular, the BE imagery product presents a great 
opportunity for improving farm-scale digital soil mapping 
in Australia as it is also free and easily accessible as a 
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downloadable product. Overall, this study shows that combining 
freely available and fine-scale remotely-sensed products to 
proximally-sensed data leads to more accurate farm-scale soil 
property maps that could inform important management 
decisions. 

References

Arrouays D, Lagacherie P, Hartemink AE (2017) Digital soil mapping 
across the globe. Geoderma Regional 9, 1–4. doi:10.1016/j.geodrs. 
2017.03.002 

CSIRO (2023) CSIRO data access portal. Available at https://data.csiro. 
au/ [Retrieved 8 June 2023] 

Department of Finance, Services and Innovation (2023) NSW foundation 
spatial data framework-elevation and depth-digital elevation model. 
Available at https://data.nsw.gov.au/data/dataset/8f73f5ca-4f7f-
4707-bfe2-0efbb9027107 [Retrieved 8 June 2023] 

Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, 
Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, 
Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The 
shuttle radar topography mission. Reviews of Geophysics 45, RG2004. 
doi:10.1029/2005rg000183 

Filippi P, Jones EJ, Wimalathunge NS, Somarathna PDSN, Pozza LE, 
Ugbaje SU, Jephcott TG, Paterson SE, Whelan BM, Bishop TFA 
(2019a) An approach to forecast grain crop yield using multi-layered, 
multi-farm data sets and machine learning. Precision Agriculture 20, 
1015–1029. doi:10.1007/s11119-018-09628-4 

Filippi P, Jones EJ, Ginns BJ, Whelan BM, Roth GW, Bishop TFA (2019b) 
Mapping the depth-to-soil pH constraint, and the relationship with 
cotton and grain yield at the within-field scale. Agronomy 9, 251. 
doi:10.3390/agronomy9050251 

Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) 
Google earth engine: planetary-scale geospatial analysis for everyone. 
Remote Sensing of Environment 202, 18–27. doi:10.1016/j.rse.2017.06.031 

Grunwald S, Thompson JA, Boettinger JL (2011) Digital soil mapping and 
modeling at continental scales: finding solutions for global issues. Soil 
Science Society of America Journal 75, 1201–1213. doi:10.2136/ 
sssaj2011.0025 

Han SY, Filippi P, Singh K, Whelan BM, Bishop TFA (2022) Assessment of 
global, national and regional-level digital soil mapping products at 
different spatial supports. European Journal of Soil Science 73, 
e13300. doi:10.1111/ejss.13300 

Kerry R, Oliver MA, Frogbrook ZL (2010) Sampling in precision 
agriculture. In ‘Geostatistical applications for precision agriculture’. 
(Ed. M Oliver) pp. 35–63. (Springer) 

Lark RM, Cullis BR, Welham SJ (2006) On spatial prediction of soil 
properties in the presence of a spatial trend: the empirical best linear 
unbiased predictor (E-BLUP) with REML. European Journal of Soil 
Science 57, 787–799. doi:10.1111/j.1365-2389.2005.00768.x 

Liu M, Hu S, Ge Y, Heuvelink GBM, Ren Z, Huang X (2021) Using multiple 
linear regression and random forests to identify spatial poverty 
determinants in rural China. Spatial Statistics 42, 100461. doi:10.1016/ 
j.spasta.2020.100461 

McBratney AB, Mendonça Santos ML, Minasny B (2003) On digital soil 
mapping. Geoderma 117, 3–52. doi:10.1016/S0016-7061(03)00223-4 

McBratney A, de Gruijter J, Bryce A (2019) Pedometrics timeline. 
Geoderma 338, 568–575. doi:10.1016/j.geoderma.2018.11.048 

McMillen DP (2010) Issues in spatial data analysis. Journal of Regional 
Science 50, 119–141. doi:10.1111/j.1467-9787.2009.00656.x 

Minty B, Franklin R, Milligan P, Richardson M, Wilford J (2009) The 
radiometric map of Australia. Exploration Geophysics 40, 325–333. 
doi:10.1071/EG09025 

Mirzaee S, Ghorbani-Dashtaki S, Mohammadi J, Asadi H, Asadzadeh F 
(2016) Spatial variability of soil organic matter using remote sensing 
data. Catena 145, 118–127. doi:10.1016/j.catena.2016.05.023 

Pozza LE, Filippi P, Whelan B, Wimalathunge NS, Jones EJ, Bishop TFA 
(2022) Depth to sodicity constraint mapping of the Murray-Darling 
Basin, Australia. Geoderma 428, 116181. doi:10.1016/j.geoderma. 
2022.116181 

R Core Team (2020) ‘R: a language and environment for statistical 
computing.’ (R Foundation for Statistical Computing: Vienna, 
Austria) Available at https://www.R-project.org/ 

Reinhardt N, Herrmann L (2019) Gamma-ray spectrometry as versatile 
tool in soil science: a critical review. Journal of Plant Nutrition and 
Soil Science 182, 9–27. doi:10.1002/jpln.201700447 

Roberts D, Wilford J, Ghattas O (2019) Exposed soil and mineral map of 
the Australian continent revealing the land at its barest. Nature 
Communications 10, 5297. doi:10.1038/s41467-019-13276-1 

Searle R, McBratney A, Grundy M, Kidd D, Malone B, Arrouays D, 
Stockman U, Zund P, Wilson P, Wilford J, Van Gool D, et al. (2021) 
Digital soil mapping and assessment for Australia and beyond: a 
propitious future. Geoderma Regional 24, e00359. doi:10.1016/ 
j.geodrs.2021.e00359 

SPAA (2022) Soil sampling using data layers: a cheaper and more effective 
alternative to grid sampling. Patrick Filippi, USYD. Precision Ag News 
Winter 2022. 

Tian J, Philpot WD (2015) Relationship between surface soil water 
content, evaporation rate, and water absorption band depths in SWIR 
reflectance spectra. Remote Sensing of Environment 169, 280–289. 
doi:10.1016/j.rse.2015.08.007 

Tilse M, Stockmann U, Filippi P (2023) Proximal soil sensing in the field. 
In ‘Encyclopedia of soils in the environment’. (Eds MJ Goss, M Oliver) 
pp. 579–589. (Elsevier) doi:10.1016/B978-0-12-822974-3.00188-9 

Venables WN, Ripley BD (2002) ‘Modern applied statistics with S.’ 4th 
edn. (Springer: New York) 

Viscarra Rossel R, Lobsey C (2016) Scoping review of proximal soil 
sensors for grain growing. p. 52. (CSIRO) Available at https://doi. 
org/10.13140/RG.2.2.34785.51049 

Viscarra Rossel RA, Chen C, Grundy MJ, Searle R, Clifford D, Campbell PH 
(2015) The Australian three-dimensional soil grid: Australia’s 
contribution to the GlobalSoilMap project. Soil Research 53(8), 
845–864. doi:10.1071/SR14366 

Wang J, Zhao D, Zare E, Sefton M, Triantafilis J (2022) Unravelling drivers 
of field-scale digital mapping of topsoil organic carbon and its 
implications for nitrogen practices. Computers and Electronics in 
Agriculture 193, 106640. doi:10.1016/j.compag.2021.106640 

Whelan B, Taylor J (2013) ‘Precision agriculture for grain production 
systems.’ (CSIRO) doi:10.1080/17538947.2013.817183 

Zhang Y, Hartemink AE, Huang J, Minasny B (2023) Digital soil 
morphometrics. ln ‘Encyclopedia of Soils in the Environment’. 2nd 
edn. (Eds MJ Goss, M Oliver) pp. 568–578. (Academic Press) 
doi:10.1016/B978-0-12-822974-3.00008-2 

Zhao D, Wang J, Zhao X, Triantafilis J (2022) Clay content mapping and 
uncertainty estimation using weighted model averaging. Catena 209, 
105791. doi:10.1016/j.catena.2021.105791 

11

https://doi.org/10.1016/j.geodrs.2017.03.002
https://doi.org/10.1016/j.geodrs.2017.03.002
https://data.csiro.au/
https://data.csiro.au/
https://data.nsw.gov.au/data/dataset/8f73f5ca-4f7f-4707-bfe2-0efbb9027107
https://data.nsw.gov.au/data/dataset/8f73f5ca-4f7f-4707-bfe2-0efbb9027107
https://doi.org/10.1029/2005rg000183
https://doi.org/10.1007/s11119-018-09628-4
https://doi.org/10.3390/agronomy9050251
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.2136/sssaj2011.0025
https://doi.org/10.2136/sssaj2011.0025
https://doi.org/10.1111/ejss.13300
https://doi.org/10.1111/j.1365-2389.2005.00768.x
https://doi.org/10.1016/j.spasta.2020.100461
https://doi.org/10.1016/j.spasta.2020.100461
https://doi.org/10.1016/S0016-7061(03)00223-4
https://doi.org/10.1016/j.geoderma.2018.11.048
https://doi.org/10.1111/j.1467-9787.2009.00656.x
https://doi.org/10.1071/EG09025
https://doi.org/10.1016/j.catena.2016.05.023
https://doi.org/10.1016/j.geoderma.2022.116181
https://doi.org/10.1016/j.geoderma.2022.116181
https://www.R-project.org/
https://doi.org/10.1002/jpln.201700447
https://doi.org/10.1038/s41467-019-13276-1
https://doi.org/10.1016/j.geodrs.2021.e00359
https://doi.org/10.1016/j.geodrs.2021.e00359
https://doi.org/10.1016/j.rse.2015.08.007
https://doi.org/10.1016/B978-0-12-822974-3.00188-9
https://doi.org/https://doi.org/10.13140/RG.2.2.34785.51049
https://doi.org/https://doi.org/10.13140/RG.2.2.34785.51049
https://doi.org/10.1071/SR14366
https://doi.org/10.1016/j.compag.2021.106640
https://doi.org/10.1080/17538947.2013.817183
https://doi.org/10.1016/B978-0-12-822974-3.00008-2
https://doi.org/10.1016/j.catena.2021.105791
www.publish.csiro.au/sr


P. Filippi et al. Soil Research 62 (2024) SR23112

Data availability. The data that support this study cannot be publicly shared due to privacy reasons and may be shared upon reasonable request to the
corresponding author if appropriate.

Conflicts of interest. Professor Thomas Bishop is an Editor of Soil Research but was blinded from the peer review process for this paper. The authors declare
no other conflicts of interest.

Declaration of funding. This research was partly funded by the Grains Research and Development Corporation (GRDC).

Acknowledgements. The authors acknowledge Precision Cropping Technologies (PCT) for collecting the on-farm data, and the farms for collaborating and
sharing data for this project.

Author affiliation
APrecision Agriculture Laboratory, Sydney Institute of Agriculture, School of Life and Environmental Science, Faculty of Science, The University of Sydney, Sydney,
NSW 2006, Australia.

12


	Proximal and remote sensing - what makes the best farm digital soil maps?
	Introduction
	Materials and methods
	Study sites and soil datasets
	Proximally-sensed data
	Electromagnetic induction (EM)
	Gamma radiometrics

	Remotely-sensed data
	Elevation and terrain attributes
	Airborne gamma radiometrics
	Landsat NDVI percentiles
	Landsat bare earth (BE) imagery

	Modelling
	Modelling approach
	Variable selection
	Model validation


	Results
	Model validation statistics
	Variables included in final model

	Discussion
	Conclusions
	References




Accessibility Report


		Filename: 

		SR-23112_online-new.pdf




		Report created by: 

		

		Organization: 

		




[Enter personal and organization information through the Preferences > Identity dialog.]


Summary


The checker found problems which may prevent the document from being fully accessible.


		Needs manual check: 3

		Passed manually: 0

		Failed manually: 0

		Skipped: 0

		Passed: 27

		Failed: 2




Detailed Report


		Document



		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Needs manual check		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Needs manual check		Document has appropriate color contrast

		Page Content



		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Needs manual check		Navigation links are not repetitive

		Forms



		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text



		Rule Name		Status		Description

		Figures alternate text		Failed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables



		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Failed		Tables must have a summary

		Lists



		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings



		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting






Back to Top


