Supplementary Material

Physics-based simulations of grassfire propagation on sloped terrain at field scale: flame dynamics, mode of fire propagation and heat fluxes

Jasmine Innocent^{A,B}, Duncan Sutherland^{B,C}, Nazmul Khan^{A,B} and Khalid Moinuddin^{A,B,*}

^AInstitute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Australia

^BBushfire and Natural Hazards Cooperative Research Centre (CRC), East Melbourne, Vic. 3002, Australia

^CSchool of Science, University of New South Wales, Canberra, ACT 2610, Australia

*Correspondence to: Email: <u>Khalid.Moinuddin@vu.edu.au</u>

Appendix A. Supplementary document

Heat of combustion16400 kJ.kg^{-1}Blustem grass (Overholt et al., 2014)Soot yield 0.008 g.g^{-1} White pine (Australian Radiata pine) (Abu Bakar, 2015)Vegetation drag coefficient 0.125 assuming vegetation elements are spherical (Morvan and Dupuy, 2004)Vegetation load 0.283 kg.m^{-2} Mell et al., 2007 -experimentalVegetation height 0.21 m Mell et al., 2007 -experimentalVegetation moisture content 0.065 Mell et al., 2007 -experimentalSurface-to-volume ratio of vegetation9770 m^{-1}Mell et al., 2007 -experimentalVegetation element density440 kg.m^{-3}White pine (Australian Radiata pine) (Abu Bakar, 2015)Ambient temperature 32° CMell et al., 2007 -experimentalRelative humidity40 %Mell et al., 2007Pyrolysis Temperature400-500KMorvan and Dupuy, 2004Degree of curing100Assuming vegetation100% curedVegetation heat of pyrolysis (Δh_{pyr})200 kJ.kg^{-1}White pine (Australian Radiata pine) (Abu Bakar, 2015)	Input parameters	Used values	Source and reason
Soot yield 0.008 g.g^{-1} White pine (Australian Radiata pine) (Abu Bakar, 2015)Vegetation drag coefficient 0.125 assuming vegetation elements are spherical (Morvan and Dupuy, 2004)Vegetation load 0.283 kg.m^{-2} Mell et al., 2007 -experimentalVegetation height 0.21 m Mell et al., 2007 -experimentalVegetation moisture content 0.065 Mell et al., 2007 -experimentalVegetation char fraction 9770 m^{-1} Mell et al., 2007 -experimentalVegetation element density 440 kg.m^{-3} White pine (Australian Radiata pine) (Abu Bakar, 2015)Ambient temperature 32° CMell et al., 2007 -experimentalRelative humidity 40% Mell et al., 2007 -experimentalPyrolysis Temperature $400-500$ KMorvan and Dupuy, 2004Degree of curing 100 Assuming vegetation100% curedVegetation heat of pyrolysis (Δh_{pyr}) 200 kJ.kg^{-1} White pine (Australian Radiata pine) (Abu Bakar, 2015)	Heat of combustion	16400 kJ.kg^{-1}	Blustem grass (Overholt et al., 2014)
Bakar, 2015)Vegetation drag coefficient0.125assuming vegetation elements are spherical (Morvan and Dupuy, 2004)Vegetation load0.283 kg.m ⁻² Mell et al., 2007 -experimentalVegetation height0.21 mMell et al., 2007 -experimentalVegetation moisture content0.065Mell et al., 2007 -experimental,Surface-to-volume ratio of vegetation9770 m ⁻¹ Mell et al., 2007 -experimentalVegetation char fraction0.17Average of Mell et al., 2007 & bluestem grass (Overholt et al., 2014)Vegetation element density440 kg.m ⁻³ White pine (Australian Radiata pine) (Abu Bakar, 2015)Ambient temperature32°CMell et al., 2007 -experimentalRelative humidity40 %Mell et al., 2007Pyrolysis Temperature400-500KMorvan and Dupuy,2004Degree of curing100Assuming vegetation100% curedVegetation heat of pyrolysis (Δh_{pyr})200 kJ.kg ⁻¹ White pine (Australian Radiata pine) (Abu Bakar, 2015)	Soot yield	0.008 g.g^{-1}	White pine (Australian Radiata pine) (Abu
Vegetation drag coefficient 0.125 assuming vegetation elements are spherical (Morvan and Dupuy, 2004)Vegetation load 0.283 kg.m^{-2} Mell et al., 2007 -experimentalVegetation height 0.21 m Mell et al., 2007 -experimentalVegetation moisture content 0.065 Mell et al., 2007 -experimental,Surface-to-volume ratio of vegetation 9770 m^{-1} Mell et al., 2007 -experimentalVegetation char fraction 0.17 Average of Mell et al., 2007 & bluestem grass (Overholt et al., 2014)Vegetation element density 440 kg.m^{-3} White pine (Australian Radiata pine) (Abu Bakar, 2015)Ambient temperature 32° CMell et al., 2007 -experimentalRelative humidity 40% Mell et al., 2007Pyrolysis Temperature 400 -500KMorvan and Dupuy, 2004Degree of curing 100 Assuming vegetation100% curedVegetation heat of pyrolysis (Δh_{pyr}) 200 kJ.kg^{-1} White pine (Australian Radiata pine) (Abu Bakar, 2015)			Bakar, 2015)
$\begin{tabular}{ c c c c c } \hline & spherical (Morvan and Dupuy, 2004) \\ \hline Vegetation load & 0.283 kg.m^{-2} & Mell et al., 2007 -experimental \\ \hline Vegetation height & 0.21 m & Mell et al., 2007 -experimental \\ \hline Vegetation moisture content & 0.065 & Mell et al., 2007 -experimental, \\ \hline Surface-to-volume ratio of vegetation & 9770 m^{-1} & Mell et al., 2007 -experimental \\ \hline Vegetation char fraction & 0.17 & Average of Mell et al., 2007 & bluestem grass (Overholt et al., 2014) \\ \hline Vegetation element density & 440 kg.m^{-3} & White pine (Australian Radiata pine) (Abu Bakar, 2015) \\ \hline Ambient temperature & 32°C & Mell et al., 2007 -experimental \\ \hline Relative humidity & 40 % & Mell et al., 2007 \\ \hline Emissivity & 0.99 & Mell et al., 2007 \\ \hline Pyrolysis Temperature & 400-500K & Morvan and Dupuy, 2004 \\ \hline Degree of curing & 100 & Assuming vegetation100% cured \\ \hline Vegetation heat of pyrolysis (\Delta h_{pyr}) & 200 kJ.kg^{-1} & White pine (Australian Radiata pine) (Abu Bakar, 2015) \\ \hline \end{tabular}$	Vegetation drag coefficient	0.125	assuming vegetation elements are
Vegetation load 0.283 kg.m^{-2} Mell <i>et al.</i> , 2007 -experimentalVegetation height 0.21 m Mell <i>et al.</i> , 2007 -experimentalVegetation moisture content 0.065 Mell <i>et al.</i> , 2007 -experimental,Surface-to-volume ratio of vegetation 9770 m^{-1} Mell <i>et al.</i> , 2007 -experimentalVegetation char fraction 0.17 Average of Mell <i>et al.</i> , 2007 & bluestem grass (Overholt <i>et al.</i> , 2014)Vegetation element density 440 kg.m^{-3} White pine (Australian Radiata pine) (Abu Bakar, 2015)Ambient temperature 32° CMell <i>et al.</i> , 2007 -experimentalRelative humidity 40% Mell <i>et al.</i> , 2007Pyrolysis Temperature $400-500$ KMorvan and Dupuy,2004Degree of curing 100 Assuming vegetation100% curedVegetation heat of pyrolysis (Δh_{pyr}) 200 kJ.kg^{-1} White pine (Australian Radiata pine) (Abu Bakar, 2015)			spherical (Morvan and Dupuy, 2004)
Vegetation height0.21 mMell et al., 2007 -experimentalVegetation moisture content0.065Mell et al., 2007 -experimental,Surface-to-volume ratio of vegetation9770 m ⁻¹ Mell et al., 2007 -experimentalVegetation char fraction0.17Average of Mell et al., 2007 & bluestem grass (Overholt et al., 2014)Vegetation element density440 kg.m ⁻³ White pine (Australian Radiata pine) (Abu Bakar, 2015)Ambient temperature32°CMell et al., 2007 -experimentalRelative humidity40 %Mell et al., 2007Emissivity0.99Mell et al., 2007Pyrolysis Temperature400-500KMorvan and Dupuy,2004Degree of curing100Assuming vegetation100% curedVegetation heat of pyrolysis (Δh _{pyr})200 kJ.kg ⁻¹ White pine (Australian Radiata pine) (Abu Bakar, 2015)	Vegetation load	0.283 kg.m^{-2}	Mell et al., 2007 -experimental
Vegetation moisture content0.065Mell et al., 2007 -experimental,Surface-to-volume ratio of vegetation9770 m ⁻¹ Mell et al., 2007 -experimentalVegetation char fraction0.17Average of Mell et al., 2007 & bluestem grass (Overholt et al., 2014)Vegetation element density440 kg.m ⁻³ White pine (Australian Radiata pine) (Abu Bakar, 2015)Ambient temperature32°CMell et al., 2007 -experimentalRelative humidity40 %Mell et al., 2007Emissivity0.99Mell et al., 2007Pyrolysis Temperature400-500KMorvan and Dupuy,2004Degree of curing100Assuming vegetation100% curedVegetation heat of pyrolysis (Δh _{pyr})200 kJ.kg ⁻¹ White pine (Australian Radiata pine) (Abu Bakar, 2015)	Vegetation height	0.21 m	Mell et al., 2007 -experimental
Surface-to-volume ratio of vegetation 9770 m^{-1} Mell <i>et al.</i> , 2007 -experimentalVegetation char fraction 0.17 Average of Mell <i>et al.</i> , 2007 & bluestem grass (Overholt <i>et al.</i> , 2014)Vegetation element density 440 kg.m^{-3} White pine (Australian Radiata pine) (Abu Bakar, 2015)Ambient temperature 32° CMell <i>et al.</i> , 2007 -experimentalRelative humidity 40% Mell <i>et al.</i> , 2007Emissivity 0.99 Mell <i>et al.</i> , 2007Pyrolysis Temperature 400 -500KMorvan and Dupuy,2004Degree of curing 100 Assuming vegetation100% curedVegetation heat of pyrolysis (Δh_{pyr}) 200 kJ.kg^{-1} White pine (Australian Radiata pine) (Abu Bakar, 2015)	Vegetation moisture content	0.065	Mell et al., 2007 – experimental,
Vegetation char fraction 0.17 Average of Mell <i>et al.</i> , 2007 & bluestem grass (Overholt <i>et al.</i> , 2014)Vegetation element density 440 kg.m^{-3} White pine (Australian Radiata pine) (Abu Bakar, 2015)Ambient temperature 32° CMell <i>et al.</i> , 2007 -experimentalRelative humidity 40% Mell <i>et al.</i> , 2007Emissivity 0.99 Mell <i>et al.</i> , 2007Pyrolysis Temperature $400-500$ KMorvan and Dupuy, 2004Degree of curing 100 Assuming vegetation100% curedVegetation heat of pyrolysis (Δh_{pyr}) 200 kJ.kg^{-1} White pine (Australian Radiata pine) (Abu Bakar, 2015)	Surface-to-volume ratio of vegetation	9770 m^{-1}	Mell et al., 2007 -experimental
grass (Overholt et al., 2014)Vegetation element density 440 kg.m^{-3} White pine (Australian Radiata pine) (Abu Bakar, 2015)Ambient temperature 32° CMell et al., 2007 -experimentalRelative humidity 40% Mell et al., 2007Emissivity 0.99 Mell et al., 2007Pyrolysis Temperature 400 -500KMorvan and Dupuy,2004Degree of curing 100 Assuming vegetation100% curedVegetation heat of pyrolysis (Δh_{pyr}) 200 kJ.kg^{-1} White pine (Australian Radiata pine) (Abu Bakar, 2015)	Vegetation char fraction	0.17	Average of Mell et al., 2007 & bluestem
Vegetation element density 440 kg.m^{-3} White pine (Australian Radiata pine) (Abu Bakar, 2015)Ambient temperature 32° CMell <i>et al.</i> , 2007 -experimentalRelative humidity 40% Mell <i>et al.</i> , 2007Emissivity 0.99 Mell <i>et al.</i> , 2007Pyrolysis Temperature 400 -500KMorvan and Dupuy,2004Degree of curing 100 Assuming vegetation100% curedVegetation heat of pyrolysis (Δh_{pyr}) 200 kJ.kg^{-1} White pine (Australian Radiata pine) (Abu Bakar, 2015)			grass (Overholt et al., 2014)
Bakar, 2015)Ambient temperature 32° CMell <i>et al.</i> , 2007 -experimentalRelative humidity $40 \ \%$ Mell <i>et al.</i> , 2007Emissivity 0.99 Mell <i>et al.</i> , 2007Pyrolysis Temperature $400-500$ KMorvan and Dupuy,2004Degree of curing 100 Assuming vegetation100% curedVegetation heat of pyrolysis (Δh_{pyr}) $200 \ \text{kJ.kg}^{-1}$ White pine (Australian Radiata pine) (Abu Bakar, 2015)	Vegetation element density	440 kg.m^{-3}	White pine (Australian Radiata pine) (Abu
Ambient temperature 32° CMell <i>et al.</i> , 2007 -experimentalRelative humidity 40% Mell <i>et al.</i> , 2007Emissivity 0.99 Mell <i>et al.</i> , 2007Pyrolysis Temperature 400 -500KMorvan and Dupuy,2004Degree of curing 100 Assuming vegetation100% curedVegetation heat of pyrolysis (Δh_{pyr}) 200 kJ.kg^{-1} White pine (Australian Radiata pine) (Abu Bakar, 2015)			Bakar, 2015)
Relative humidity40 %Mell et al., 2007Emissivity0.99Mell et al., 2007Pyrolysis Temperature400-500KMorvan and Dupuy,2004Degree of curing100Assuming vegetation100% curedVegetation heat of pyrolysis (Δh_{pyr})200 kJ.kg ⁻¹ White pine (Australian Radiata pine) (Abu Bakar, 2015)	Ambient temperature	32°C	Mell et al., 2007 -experimental
Emissivity0.99Mell et al., 2007Pyrolysis Temperature400-500KMorvan and Dupuy,2004Degree of curing100Assuming vegetation100% curedVegetation heat of pyrolysis (Δh_{pyr})200 kJ.kg ⁻¹ White pine (Australian Radiata pine) (Abu Bakar, 2015)	Relative humidity	40 %	Mell et al., 2007
Pyrolysis Temperature400-500KMorvan and Dupuy,2004Degree of curing100Assuming vegetation100% curedVegetation heat of pyrolysis (Δh_{pyr})200 kJ.kg ⁻¹ White pine (Australian Radiata pine) (Abu Bakar, 2015)	Emissivity	0.99	Mell et al., 2007
Degree of curing100Assuming vegetation 100% curedVegetation heat of pyrolysis (Δh_{pyr})200 kJ.kg ⁻¹ White pine (Australian Radiata pine) (Abu Bakar, 2015)	Pyrolysis Temperature	400-500K	Morvan and Dupuy,2004
Vegetation heat of pyrolysis (Δh_{pyr})200 kJ.kg^{-1}White pine (Australian Radiata pine) (Abu Bakar, 2015)	Degree of curing	100	Assuming vegetation100% cured
Bakar, 2015)	Vegetation heat of pyrolysis (Δh_{pyr})	200 kJ.kg ⁻¹	White pine (Australian Radiata pine) (Abu
			Bakar, 2015)
Maximum mass loss rate $0.15 \text{ (kg.s}^{-1}\text{.m}^{-3})$ Mell <i>et al.</i> , 2007 -experimental,	Maximum mass loss rate	$0.15 (\text{kg.s}^{-1}.\text{m}^{-3})$	Mell et al., 2007 -experimental,
Maximum volumetric rate of fuel allowed			Maximum volumetric rate of fuel allowed
to be pyrolysed			to be pyrolysed

 Table S1: Thermo-physical, pyrolysis and combustion parameters for grassfire modelling

Figure S1: Temperature contours (representing plumes) along the geometric centreline of the grass plot, at the same instant in time

 $(30 \pm 1 \text{ s after ignition})$, at wind velocity 6 m.s⁻¹: Frames (e-h) 0°, +10°, +20°, +30°

Figure S2 (a-d): Temperature contours (representing plume) at the same firefront location, at wind velocity 12.5 m.s⁻¹: 0° , $+10^{\circ}$, $+20^{\circ}$ and $+30^{\circ}$ slopes

Figure S2 (e-h): Temperature contours at the same firefront location, at wind velocity 6 m.s⁻¹: 0° , $+10^{\circ}$, $+20^{\circ}$ and $+30^{\circ}$

Figure S2. Temperature contours (representing plumes) along the geometric centreline of the grass plot, at the same fire front location from ignition line: Frames (a-d) - 0° , +10°, +20°, +30° at 12 m.s⁻¹; Frames (e-h) - 0° , +10°, +20°, +30° at 6 m.s⁻¹; Frames (i-l) - 0° , +10°, +20°, +30° at 3 m.s⁻¹

Figure S3 (ae–ai): $+30^{\circ}$ at 6 m.s⁻¹

Figure S3 (aj–an): +10° at 6 m.s⁻¹

Figure S3 (ao–as): 0° at 6 m.s⁻¹

Figure *S6***.** Flame contour (red) with temperature contour shaded in the background along with detachment locations (black dot) and wind vector plots (white arrows), at various instants in time for wind velocity 6 m.s^{-1} , Frames (ae–as): +30°, +10° and 0°

(a) Flame length, 12.5m.s^{-1} , $80 \times 40 \text{ m plot}$

(c) Flame length, $3m.s^{-1}$, 80×40 m plot

(d) Flame length, 12.5m.s^{-1} , $120 \times 40 \text{ m plot}$

(e) Flame length, $6m.s^{-1}$, 120×40 m plot

Figure S4: Flame length vs time for the upslope and downslope cases at wind velocities; (a) 12.5 m.s^{-1} , 80×40 m plot, (b) 6 m.s^{-1} , 80×40 m plot, (c) 3 m.s^{-1} , 80×40 m plot, (d) $+30^{\circ}$, $+25^{\circ}$ at 12.5 m.s^{-1} , 120×40 m plot and (e) $+30^{\circ}$ at 6 m.s^{-1} , 120×40 m plot

(a) Radiative heat flux vs time- 12.5ms^{-1}

(b) Convective heat flux vs time- 12.5ms⁻¹

Figure S5: Heat flux as a function of time from 120×40 m burnable grass plot simulation for higher upslopes at wind velocity 12.5m.s^{-1} : (a) Radiative heat flux vs time and (b) Convective heat flux vs time

Figure S6: Total Heat fluxes as a function of time. (a) Radiative heat flux vs time at velocity 6 m.s⁻¹, (b) Radiative heat flux vs time at velocity $3m.s^{-1}$, (c) Convective heat flux vs time at $6m.s^{-1}$ and (d) Convective heat flux vs time at $3m.s^{-1}$. Please note that in (a) and (c), $+30^{\circ}$ profile is from 120×40 m burnable plot simulation.

REFERENCES

- Abu Bakar AS (2015), Characterization of Fire Properties for Coupled Pyrolysis and Combustion Simulation and Their Optimised Use. PhD Thesis. Victoria University. http://vuir.vu.edu.au/31007/
- Mell W, Jenkins MA, Gould J, Cheney P (2007), A physics-based approach to modelling grassland fires. *International Journal of Wildland Fire*, **16**, 1, 1-22.
- Morvan D, Dupuy J (2004), Modeling the propagation of a wildfire through a Mediterranean shrub using a multiphase formulation. *Combustion and flame*. 138, 3, 199-210.
- Overholt K, Cabrera J, Kurzawski A, Koopersmith M, Ezekoye OA (2014), Characterization of fuel properties and fire spread rates for little bluestem grass. *Fire Technology*, 2014. 50, 1, 9-38