
10.1071/WF22067

International Journal of Wildland Fire

Supplementary Material

The dynamics of burning activity on degraded peatland in two villages in

Central Kalimantan, Indonesia

Samuel Robb
A,*

, Yanetri Asi Nion
B
, Trisna Anggreini

B
, Russell Richards

C,D
, Ammar

Abdul Aziz
E
, Stephen Joseph

F
 and Paul Dargusch

A,G

ASchool of Earth and Environmental Sciences, University of Queensland, St Lucia, Brisbane,

Qld 4072, Australia

BFaculty of Agriculture, University of Palangka Raya, Palangka Raya, Central Kalimantan,

Indonesia

CSchool of Business, University of Queensland, Brisbane, Qld, Australia

D
Coastal and Marine Research Centre, Griffith University, Gold Coast, Qld, Australia

E
School of Agriculture and Food Sciences, University of Queensland, Brisbane, Qld,

Australia

F
School of Materials Science and Engineering, University of New South Wales, Sydney,

NSW, Australia

G
Department of Geography, Universitas Negeri Malang, East Java, 65145, Indonesia

*Correspondence to: Email: samuel.robb@uq.net.au

mailto:samuel.robb@uq.net.au

Table S.1: Model Assumptions

Module Assumption

Population The population model assumed a simple stock and flow of births, deaths,

immigration and emigration. Historical birth and death rates were

assumed from Indonesian national statistics (UNPD 2019). Populations

were calibrated against survey information (Kemendagri 2015; BRG

2019a). Birth rates continue to converge to two births per woman by

2065. Immigration inflows were assumed as occurring over four years

from 1975 to 1979 in Kalampangan.

Labour The labour module assumed that workers transitioned between

livelihoods while seeking to maximise highest long-term (52 week

moving average) return to labour. This reflected the attitudes of GMB

participants who were receptive to changing livelihoods where higher

incomes were available. Livelihoods were assumed to have no barriers to

entry where available, however the livelihoods are assumed as being

physically and culturally constrained in some scenarios. Physical

constraints include limited fish populations based on natural carrying

capacity. Cultural constraints include where traditional law prohibits

certain practices as with the Dayaknese ‘local wisdom’ regarding

peatland farming, or where only a limited number of alternative

livelihoods are available.

Labour transitioned between livelihoods by an increment with a

maximum threshold per week. Labour increments are assumed in the base

case to be no greater than the total labour pool divided by 52, implying

that the total labour pool may transition between livelihoods over the

period of a year. The assumptions of labour increment size and labour

allocation response to long-term return to labour averages were not

derived from specific sources and were the subject of sensitivity testing.

Fishing Fisher incomes and trends in fish catch were calibrated against village

surveys (TSF 2019), which indicated that fish catch had halved over the

prior decade. Actual fish populations were unknown but were selected

through calibration against incomes and trends in fish catch, which are

variables dependent on fish populations. Fish populations were modelled

as a simple stock and flow of births and deaths. Fish populations were

constrained by the carrying capacity of the ecosystem. Real fish prices

were assumed as being fixed, with local supply having no influence on

regional fish prices. There was no affirmation amongst villagers that local

fish supply influenced regional prices. Local fishers indicated that fish

catch increased threefold during the dry season as low water levels

concentrated fish populations (Robb, Nion, Anggreini, Richards, Aziz, et

al. 2022). Fish catch per unit of effort therefore included this seasonal

fluctuation, with fish yields peaking during the peak of the dry season and

reaching a nadir at the peak of the wet season.

Farming Farming income per hectare of farmland is taken from village level

surveys (Kemendagri 2015). Average income per farmer from farming is

assumed to be equivalent to the total farmland income divided by the total

number of farmers. As farmer density increases, returns to farm labour

decline where all else is held constant. Income from farming is assumed

to increase at a rate equivalent to Indonesian GDP growth per capita.

Farmland demand for every given farmer is initially equivalent to one

hectare, this being a median farm size per farmer.

Peatland rate of

regeneration

Where peatland is fully rewetted, the rate of regeneration is assumed to be

10% per year, which includes an assumed program of intentional

restoration. Where the average peatland water table depth is below zero,

the rate of regeneration is assumed to be 1% per year. These rates of

regeneration were calibrated against observations from Hościło (2009),

where regeneration rates of secondary forest were anticipated to range

between 60 years for rarely disturbed degraded peat swamp and several

centuries for highly degraded peatland.

Rainfall and climate Average monthly rainfall data from the model was adjusted for ENSO (El

Niño Southern Oscillation) conditions by calibrating against previous

models of the relationship between ENSO and rainfall in Palangkaraya

adopted from Susilo et al. (2013). Average seasonal rainfall was

multiplied by the ENSO index adjusted by a multiplier. As per the

averages in Susilo et al. (2013), El Niño decreased rainfall during the dry

season, and la Nina conditions increased rainfall during the dry season.

Where such conditions prevailed, a multiplier was applied which

increased or decreased the influence of the ENSO index.

ENSO Adjusted Weekly Rainfall = Weekly rainfall x (1 – ENSO

index × Multiplier ENSO)

The multiplier was a constant adjusted as a function of ENSO and

seasonal climatic conditions. There were four separate multipliers, El

Niño dry season, El Niño wet season, la Nina dry season, la Nina wet

season. These multipliers were adjusted so that model rainfall averages

for these subcategories reflected averages presented in Susilo et al. (2013)

within one standard error.

The ENSO index itself was taken from historical data (NOAA 2020) in

combination with a simple oscillating function with a period of five years

and an amplitude of 1.25.

𝐸𝑁𝑆𝑂(𝑡) = −1.25 × sin(
2π (t + 0.25 × 26)

52 × 5
)

Fire risk Wildfire ignition points are assumed to emerge as a result of (i) peatland

condition increasing vulnerability to fire and (ii) human population and

presence increasing ignition point frequency. A wildfire ‘ignition point’ is

defined as any fire hotspot that occurs outside of a 2 km radius and 48

hour duration of any other prior hotspot. This buffer assumption is

adopted from Vetrita and Haryani (2012) to give an estimate of ignition

points contained within hotspot datasets. ‘Fire risk’ is defined as the

probability of the occurrence of an ignition point within a defined spatial

area and time period (Bachmann and Allgöwer 2001). Peatland condition

itself is dependent on land cover, water table depth and seasonal or ENSO

climatic conditions. Human causes of hotspots include intentional and

unintentional origins. Unintentionally caused fires, such as through

haphazard cigarette disposal, are assumed to be proportional to population

increases. Intentionally lit fires are assumed as occurring due to (i)

controlled fires for agricultural purposes that become uncontrolled, and

(ii) uncontrolled fires used for land clearing to prepare land for sale.

Intentionally lit ignition points are therefore dependent on labour

allocation to the associated livelihoods and land prices. Actual

proportional allocations were estimated through calibration against fire

hotspot data (fig. 3.4).

Peatland condition Peatland water table averages were assumed to be a combination of

drainage through canal building, peat subsidence from organic carbon

mineralisation and seasonal rainfall. Physical peat subsidence through

initial compaction following drainage and deforestation was not

considered. Annual water tables were assumed to rise and fall due to

seasonal increases and decreases in average weekly rainfall. Areas that

are deforested are assumed to have been drained. Peatland mineralisation

was assumed to be a function of peatland water table depth. The

relationship between peatland water table depth and greenhouse gas

emissions was adopted from Evans et al. (2019), and is defined as the

following:

Subsm = 0.0431 WTDm-1.24 (for WTDm > 0)

Subsm = 0 (for WTDm ≤ 0)

Where ‘WTDm’ is the mean water table depth (in centimetres) and

‘Subsm’ is the mean annual subsidence rate (in centimetres). Where

WTDm was less than or equal to zero centimetres, then the rate of

subsidence was assumed to be zero.

Greenhouse gas model Greenhouse gas emissions were measured as a summation of changes to

above ground biomass (AGB) carbon stocks and peat soil mineralisation,

which included changes in peat soil carbon content.

Above ground biomass (AGB) carbon stock estimates were adopted from

Hościło (2009), who measured plots of different land cover types within 5

kilometres of the study area. The change in greenhouse gas emissions in a

given time period (t-1, t) is calculated in the model as:

ΔGHG𝑡,𝑡−1= (CAGB (AGBt − AGBt−1)+ CPS (PSt − PSt−1)) δCO2eq:C

Where CPS is the carbon content per tonne of peat soil (MgCO2e Mg−1);

CAGB is the carbon content of the above ground biomass (ΔAGB is the

change in above ground biomass and ΔPS is the change in peat soil layer

due to subsidence . δCO2eq:C is the conversion ratio between organic carbon

and carbon dioxide equivalent.

Total changes in above ground biomass and peat soil, whether through

degradation or accumulation, are calculated as the sum of greenhouse gas

flux over time.

Total GHG = ∑ C𝐀𝐆𝐁 (AGBt − AGBt−1)𝑇
1 δCO2eq:C + ∑ C𝐏𝐒(PSt −𝑇

1

 𝑃𝑆t−1) δCO2eq:C

𝑃𝑆𝑡 =D A𝑃𝑆 β

Carbon content of dry weight AGB is assumed from Hościło (2009) for

woody biomass and Yulianti (2018) for ferns. The carbon content and

bulk density of peat soil was assumed as 56% and 0.09 g cm-3 respectively

as per measurements of peat soil in Central Kalimantan (Hościło 2009).

Biochar yield effect Biochar was assumed to have a 1.67% increase in saleable harvest yield

per tonne of biochar applied per hectare. The aggregate amount of biochar

that was assumed to be applied with each planting was 1 Mg ha-1. Biochar

was further assumed to be applied in concentrated rates at the planting

holes of both crops at an effective rate of 20% weight to weight on pre-

rehabilitation cropping and in post-rehabilitation harvestable

paludiculture and agroforest products.

Figure S1: SD model - population module

Figure S2: SD model - land use module

Figure S3: SD model - fire module

Figure S4: SD model - GHG module

Figure S5: SD model – labour module

Figure S6: SD model - alternative livelihood module

Figure S7: SD model - fishing module

Figure S8: SD model – cropping on drained peatland module

Figure S9: SD model – biochar module

Table S2: Model equations

Top-Level Model:

Population[1](t) = Population[1](t - dt) + (Immigration[1] + Births[1] - Mortality[1] - Emigration[1])

* dt

 INIT Population[1] = Extreme_Value_Test:_Population*500

 UNITS: People

Population[2](t) = Population[2](t - dt) + (Immigration[2] + Births[2] - Mortality[2] - Emigration[2])

* dt

 INIT Population[2] = 0

 UNITS: People

 4032, Kalampangan 2015

 1027, Tumbang Nusa 2018

Births[1] = Births_per_woman_per_week[1]*0.5*Population {UNIFLOW}

 UNITS: People/Week

Births[2] = Births_per_woman_per_week[2]*0.5*Population[2] {UNIFLOW}

 UNITS: People/Week

Emigration[Villages] = IF(Population <= 0) THEN 0 ELSE IF (Labour.Average_income_per_worker

< Emigration_threshold/Week AND Population > 0) THEN Labour.Mod_throughput/Week ELSE 0

{UNIFLOW}

 UNITS: People/Week

Immigration[1] = Immigrant_flows[1]*Extreme_Value_Test:_Population/DT {UNIFLOW}

 UNITS: People/Week

Immigration[2] = Immigrant_flows[2]*Extreme_Value_Test:_Population/DT {UNIFLOW}

 UNITS: People/Week

Mortality[Villages] = IF(Population <= 0) THEN 0 ELSE

Population/1000*Mortality_rate_per_1000_people/weeks_per_year {UNIFLOW}

 UNITS: People/Week

Births_per_woman_over_lifetime[Villages] = GRAPH(TIME)

 UNITS: People/People

Births_per_woman_per_week[Villages] =

Births_per_woman_over_lifetime/(lifespan*weeks_per_year)

 UNITS: People/People/Week

Emigration_threshold = 200000*(1+.0315/52)^((TIME-50*52)/Week)

 UNITS: IDR / Person

Extreme_Value_Test:_Population = 0

 UNITS: People / People

Immigrant_flows[1] = 0

 UNITS: People/Week

Immigrant_flows[2] = IF(TIME = 15*52) THEN 400 ELSE (IF(TIME = 16*52) THEN 400 ELSE

(IF(TIME = 17*52) THEN 400 ELSE (IF(TIME = 18*52) THEN 400 ELSE (IF(TIME = 19*52)

THEN 400 ELSE 0))))

 UNITS: People/Week

Labour_Pool[Villages] = Population*0.8

 UNITS: People

lifespan = GRAPH(TIME)

 UNITS: Years

Mortality_rate_per_1000_people[Villages] = GRAPH(TIME)

 UNITS: People/People/Year

Week = 1

 UNITS: Week

weeks_per_year = 52

 UNITS: weeks/year

Agriculture:

Agricultural_land[Villages](t) = Agricultural_land[Villages](t - dt) + (Land_opening[Villages] +

Return[Villages] - Land_use_constraint[Villages] - Transition[Villages]) * dt

 INIT Agricultural_land[Villages] = 0

 UNITS: Hectares

Alternative_cultivation[Villages](t) = Alternative_cultivation[Villages](t - dt) + (Transition[Villages]

- Return[Villages]) * dt {NON-NEGATIVE}

 INIT Alternative_cultivation[Villages] = 0

 UNITS: Hectares

Area_for_harvest[Villages](t) = Area_for_harvest[Villages](t - dt) + (Maturity[Villages] -

Inundation_mortality[Villages] - Unspoiled[Villages]) * dt

 INIT Area_for_harvest[Villages] = 0

 UNITS: Hectares

Demand_for_cropping_land[Villages](t) = Demand_for_cropping_land[Villages](t - dt) +

(Demand_Accumulation[Villages] - Land_opening[Villages]) * dt

 INIT Demand_for_cropping_land[Villages] = 0

 UNITS: Hectares

Farmers[Villages](t) = Farmers[Villages](t - dt) + (New_Farmers[Villages] - End_farming[Villages])

* dt

 INIT Farmers[Villages] = 0

 UNITS: People

Growing[Villages](t) = Growing[Villages](t - dt) + (Planting[Villages] - Maturity[Villages]) * dt

{CONVEYOR}

 INIT Growing[Villages] = 0

 TRANSIT TIME = 4*3

 INFLOW LIMIT = INF

 CAPACITY = INF

 CONTINUOUS

 ACCEPT MULTIPLE BATCHES

 UNITS: Hectares

Post_flood_harvest[Villages](t) = Post_flood_harvest[Villages](t - dt) + (Unspoiled[Villages] -

Crop_harvest[Villages]) * dt {NON-NEGATIVE}

 INIT Post_flood_harvest[Villages] = 0

 UNITS: Hectares

Crop_harvest[Villages] = IF(Post_flood_harvest<=0) THEN 0 ELSE Post_flood_harvest/Week

{UNIFLOW}

 UNITS: Hectares / Week

Demand_Accumulation[Villages] = New_Farmers*Land_demand_per_farmer {UNIFLOW}

 UNITS: Hectares/Week

End_farming[Villages] = IF (Farmers <= 0) THEN 0 ELSE IF(Labour.Max_Income >

Expected_farming_income) THEN Farmers/Week MOD

(Labour.Mod_throughput/Week)*(1+Policies.Full_rewetting) ELSE 0 {UNIFLOW}

 UNITS: People/Week

Inundation_mortality[Villages] = IF(Area_for_harvest<=0) THEN 0 ELSE IF(Cropland_flooding=0)

THEN Area_for_harvest/DT ELSE IF(Permanent_Inundation_mortality<=0) THEN 0 ELSE

Area_for_harvest/DT*Permanent_Inundation_mortality {UNIFLOW}

 UNITS: Hectares / Week

Land_opening[Villages] = IF(Land_use.Ag_land_limit<=Agricultural_land) THEN 0 ELSE IF

(Land_use.Deviation > 1) THEN 0 ELSE (IF(Agricultural_land >= Land_use.Ag_land_limit)

THEN 0 ELSE((IF(Land_use.Depth_of_water_table< 0.4) THEN 0 ELSE (

IF(Land_use.Weekly_rainfall <= 0) THEN 0 ELSE Demand_for_cropping_land MOD

Land_use.Ag_land_limit)) *Land_use."Indicator_-_free_area"/Week)) {UNIFLOW}

 UNITS: Hectares/Week

Land_use_constraint[Villages] = IF (Land_use.Deviation>2) THEN Land_use.Deviation ELSE IF (

Land_use.Ag_land_limit/Week < Agricultural_land/Week) THEN ABS

(Land_use.Ag_land_limit/Week - Agricultural_land/Week) ELSE 0 {UNIFLOW}

 UNITS: Hectares/Week

Maturity[Villages] = CONVEYOR OUTFLOW

 UNITS: Hectares / Week

New_Farmers[1] = (Labour.New_farmer[1] +IF(TIME=0) THEN

Labour.Initial_Agriculture_labour[1]*.Population[1]/Week ELSE 0) {UNIFLOW}

 UNITS: People/Week

New_Farmers[2] = (Labour.New_farmer[2]+.Immigration[2] + IF(TIME=0) THEN

Labour.Initial_Agriculture_labour[2]*.Population[2]/Week ELSE 0) {UNIFLOW}

Planting[Villages] = IF(Area_for_harvest >= Agricultural_land) THEN 0 ELSE

Agricultural_land/Week+Crop_harvest {UNIFLOW}

 UNITS: Hectares / Week

Return[Villages] = (IF(Policies.Scenario = 4) THEN 1 ELSE 0)*

(IF(Labour."Alternative_:_(Farmers_+_Alternative)" > "Ag_land_:_Ag_land_+_Alt._cult.") THEN

(Alternative_cultivation/Week MOD Labour.Mod_throughput/Minimum_Farmer_Density/Week)

ELSE 0) {UNIFLOW}

 UNITS: Hectares/Week

Transition[Villages] = (IF(Policies.Scenario = 4) THEN 1 ELSE 0)*

(IF(Labour."Alternative_:_(Farmers_+_Alternative)" < "Ag_land_:_Ag_land_+_Alt._cult.") THEN

(Agricultural_land/Week MOD Labour.Mod_throughput/Minimum_Farmer_Density/Week) ELSE 0)

{UNIFLOW}

 UNITS: Hectares/Week

Unspoiled[Villages] = Area_for_harvest/Week-Inundation_mortality {UNIFLOW}

 UNITS: Hectares / Week

"Ag_land_:_Ag_land_+_Alt._cult."[Villages] = IF(Agricultural_land+Alternative_cultivation <=0)

THEN 0 ELSE Agricultural_land/(Agricultural_land+Alternative_cultivation)

 UNITS: Hectare / Hectare

"1_metre" = 1

 UNITS: Meter

Actual_Farmers_per_hectare[Villages] = IF(Agricultural_land<=0) THEN 0 ELSE

Farmers/Agricultural_land

 UNITS: People/Hectare

Baseline_farmer_density = 1/(0.65)

 UNITS: People / Hectare

Crop_income_per_farmer[Villages] = IF(Farmers<=0) THEN 0 ELSE

Cropping_total_income/Farmers

 UNITS: IDR / People / Week

Crop_income_per_hectare[Villages] = Potential_Crop_Income_per_Hectare*(1+Yield_increase*1)*

(1+Biochar.Aggregate_Biochar_Yield_Effect*ST:_BC_Ag)*Year

 UNITS: IDR/hectare/week

Cropland_flooding[Villages] = IF(Land_use.Depth_of_water_table<0.4) THEN 0 ELSE 1

 UNITS: Hectare/Hectare

Cropping_total_income[Villages] = Crop_harvest*Week*Crop_income_per_hectare*

(IF(Fire.Air_pollution_index > 2000) THEN 0.5 ELSE 1)

 UNITS: IDR/Week

Expected_farming_income[Villages] = IF(MAV_52wk_crop_income_per_farmer = 0) THEN

Potential_Crop_Income_per_Hectare/Baseline_farmer_density ELSE

MAV_52wk_crop_income_per_farmer

 UNITS: IDR / Person / Week

Extreme_Value_Test:_Ag_Land = 1

 UNITS: Indicator Variable

Farmer_density[Villages] = IF(Agricultural_land = 0) THEN 0 ELSE IF(Farmers/Agricultural_land

>= Minimum_Farmer_Density) THEN Farmers/Agricultural_land ELSE Minimum_Farmer_Density

 UNITS: People/Hectare

Farmer_Density_52wk_MA[Villages] = MEAN(Farmer_density, DELAY(Farmer_density, 1),

DELAY(Farmer_density, 2), DELAY(Farmer_density, 3), DELAY(Farmer_density, 4),

DELAY(Farmer_density, 5), DELAY(Farmer_density, 6), DELAY(Farmer_density, 7),

DELAY(Farmer_density, 8), DELAY(Farmer_density, 9), DELAY(Farmer_density, 10),

DELAY(Farmer_density, 11), DELAY(Farmer_density, 12), DELAY(Farmer_density, 13),

DELAY(Farmer_density, 14), DELAY(Farmer_density, 15), DELAY(Farmer_density, 16),

DELAY(Farmer_density, 17), DELAY(Farmer_density, 18), DELAY(Farmer_density, 19),

DELAY(Farmer_density, 20), DELAY(Farmer_density, 21), DELAY(Farmer_density, 22),

DELAY(Farmer_density, 23), DELAY(Farmer_density, 24), DELAY(Farmer_density, 25),

DELAY(Farmer_density, 26), DELAY(Farmer_density, 27), DELAY(Farmer_density, 28),

DELAY(Farmer_density, 29), DELAY(Farmer_density, 30), DELAY(Farmer_density, 31),

DELAY(Farmer_density, 32), DELAY(Farmer_density, 33), DELAY(Farmer_density, 34),

DELAY(Farmer_density, 35), DELAY(Farmer_density, 36), DELAY(Farmer_density, 37),

DELAY(Farmer_density, 38), DELAY(Farmer_density, 39), DELAY(Farmer_density, 40),

DELAY(Farmer_density, 41), DELAY(Farmer_density, 42), DELAY(Farmer_density, 43),

DELAY(Farmer_density, 44), DELAY(Farmer_density, 45), DELAY(Farmer_density, 46),

DELAY(Farmer_density, 47), DELAY(Farmer_density, 48), DELAY(Farmer_density, 49),

DELAY(Farmer_density, 50), DELAY(Farmer_density, 51))

 UNITS: People/Hectare

Land_demand_per_farmer = 2

 UNITS: Hectare / People

MAV_52wk_crop_income_per_farmer[Villages] = MEAN(Crop_income_per_farmer,

DELAY(Crop_income_per_farmer, 1), DELAY(Crop_income_per_farmer, 2),

DELAY(Crop_income_per_farmer, 3), DELAY(Crop_income_per_farmer, 4),

DELAY(Crop_income_per_farmer, 5), DELAY(Crop_income_per_farmer, 6),

DELAY(Crop_income_per_farmer, 7), DELAY(Crop_income_per_farmer, 8),

DELAY(Crop_income_per_farmer, 9), DELAY(Crop_income_per_farmer, 10),

DELAY(Crop_income_per_farmer, 11), DELAY(Crop_income_per_farmer, 12),

DELAY(Crop_income_per_farmer, 13), DELAY(Crop_income_per_farmer, 14),

DELAY(Crop_income_per_farmer, 15), DELAY(Crop_income_per_farmer, 16),

DELAY(Crop_income_per_farmer, 17), DELAY(Crop_income_per_farmer, 18),

DELAY(Crop_income_per_farmer, 19), DELAY(Crop_income_per_farmer, 20),

DELAY(Crop_income_per_farmer, 21), DELAY(Crop_income_per_farmer, 22),

DELAY(Crop_income_per_farmer, 23), DELAY(Crop_income_per_farmer, 24),

DELAY(Crop_income_per_farmer, 25), DELAY(Crop_income_per_farmer, 26),

DELAY(Crop_income_per_farmer, 27), DELAY(Crop_income_per_farmer, 28),

DELAY(Crop_income_per_farmer, 29), DELAY(Crop_income_per_farmer, 30),

DELAY(Crop_income_per_farmer, 31), DELAY(Crop_income_per_farmer, 32),

DELAY(Crop_income_per_farmer, 33), DELAY(Crop_income_per_farmer, 34),

DELAY(Crop_income_per_farmer, 35), DELAY(Crop_income_per_farmer, 36),

DELAY(Crop_income_per_farmer, 37), DELAY(Crop_income_per_farmer, 38),

DELAY(Crop_income_per_farmer, 39), DELAY(Crop_income_per_farmer, 40),

DELAY(Crop_income_per_farmer, 41), DELAY(Crop_income_per_farmer, 42),

DELAY(Crop_income_per_farmer, 43), DELAY(Crop_income_per_farmer, 44),

DELAY(Crop_income_per_farmer, 45), DELAY(Crop_income_per_farmer, 46),

DELAY(Crop_income_per_farmer, 47), DELAY(Crop_income_per_farmer, 48),

DELAY(Crop_income_per_farmer, 49), DELAY(Crop_income_per_farmer, 50),

DELAY(Crop_income_per_farmer, 51))

 UNITS: IDR / Person / Week

Minimum_Farmer_Density[Villages] = 1.0315^(-TIME/52/Week)

 UNITS: People / Hectare

Permanent_Inundation_mortality[Villages] = IF(Policies.Permanent_flooding = 0) THEN 0 ELSE (

IF(Land_use.Subsided_peat_layer >= 1.5 AND Land_use.Subsided_peat_layer<= 5.5) THEN

(Land_use.Subsided_peat_layer-1.5)/4/"1_metre" ELSE (IF (Land_use.Subsided_peat_layer < 5.5)

THEN 0 ELSE 1))

 UNITS: Metre / Metre

Potential_Crop_Income_per_Hectare = 10^6*1.5

 UNITS: IDR/Hectare/Week

Proportion[Villages] = IF (.Population <= 0) THEN 0 ELSE Farmers/.Population

 UNITS: People / People

ST:_BC_Ag = 1*1

 UNITS: IDR / IDR

Week[Villages] = 1

 UNITS: Week

Year = 1

 UNITS: Year

Yield_increase = GRAPH(TIME)

 UNITS: Tonne/Tonne

Fishing:

Carrying_capacity[1](t) = Carrying_capacity[1](t - dt) + (Rehabilitation[1] - Degradation[1]) * dt

 INIT Carrying_capacity[1] = .75*10^6*Extreme_Value_test:_Fish_Carrying_Capacity

 UNITS: Fish

Carrying_capacity[2](t) = Carrying_capacity[2](t - dt) + (Rehabilitation[2] - Degradation[2]) * dt

 INIT Carrying_capacity[2] = 1*10^4*Extreme_Value_test:_Fish_Carrying_Capacity

 UNITS: Fish

Fish[1](t) = Fish[1](t - dt) + (fish_replacement[1] - fish_death[1] - Harvest[1]) * dt

 INIT Fish[1] = INIT(Carrying_capacity[1])

 UNITS: Fish

Fish[2](t) = Fish[2](t - dt) + (fish_replacement[2] - fish_death[2] - Harvest[2]) * dt

 INIT Fish[2] = INIT(Carrying_capacity[2])

 UNITS: Fish

Fishers[1](t) = Fishers[1](t - dt) + (New_fishers[1] - Fishers_transition[1]) * dt

 INIT Fishers[1] = .Labour_Pool[1]*0.4

 UNITS: People

Fishers[2](t) = Fishers[2](t - dt) + (New_fishers[2] - Fishers_transition[2]) * dt

 INIT Fishers[2] = 0

 UNITS: People

Lost_capacity[Villages](t) = Lost_capacity[Villages](t - dt) + (Degradation[Villages]) * dt {NON-

NEGATIVE}

 INIT Lost_capacity[Villages] = 0

 UNITS: Fish

Degradation[Villages] = GRAPH(Total_fishing_effort)

Points: (0.000, 20.00), (1.000, 0.00) {UNIFLOW, GF EXTRAPOLATED}

 UNITS: Fish/Week

fish_death[Villages] = IF(Average_annual_lifespan_potential<=0) THEN Fish/Week ELSE

1/(Average_annual_lifespan_potential)*(Fish) {UNIFLOW}

 UNITS: Fish/Week

fish_replacement[Villages] = Fish_recruitment*Fish/Weeks_per_year {UNIFLOW}

 UNITS: Fish/Week

Fishers_transition[1] = IF (Fishers <=0) THEN 0 ELSE (IF(

Weekly_52wk_MA_income_per_fisher[1]< Labour.Max_Income[1]) THEN Fishers/Week MOD

Labour.Mod_throughput[1]/Week ELSE 0) {UNIFLOW}

 UNITS: People/Week

Fishers_transition[2] = IF (Fishers <= 0) THEN 0 ELSE

(IF(Weekly_52wk_MA_income_per_fisher[2] < Labour.Max_Income[2]) THEN Fishers/Week MOD

Labour.Mod_throughput[2]/Week ELSE 0) {UNIFLOW}

 UNITS: People/Week

Harvest[Villages] = Fish_catch {UNIFLOW}

 UNITS: Fish/Week

New_fishers[Villages] = Labour.New_fisher+ IF(TIME=1) THEN

INIT(.Labour_Pool)/DT*Labour.Initial_Fishing_labour ELSE 0 {UNIFLOW}

 UNITS: People/Week

Rehabilitation[Villages] = IF(Carrying_capacity < INIT(Carrying_capacity)) THEN

(Rehabilitation_rate*Carrying_capacity+"Beje_/_Keramba_technique")/DT ELSE 0 +(IF (TIME >

(2020-1965)*52) THEN PULSE(

Policy:_Increased_fishing_capacity*0.10*INIT(Carrying_capacity),55*52, 52*5) ELSE 0)

{UNIFLOW}

 UNITS: Fish/Week

Av_Vessel_Size = 10

 UNITS: People/Vessel

Average_annual_lifespan_potential[1] = MEAN(Fish_lifespan_potential[1],

DELAY(Fish_lifespan_potential[1],1), DELAY(Fish_lifespan_potential[1],2),

DELAY(Fish_lifespan_potential[1],3), DELAY(Fish_lifespan_potential[1],4),

DELAY(Fish_lifespan_potential[1],5), DELAY(Fish_lifespan_potential[1],6),

DELAY(Fish_lifespan_potential[1],7), DELAY(Fish_lifespan_potential[1],8),

DELAY(Fish_lifespan_potential[1],9), DELAY(Fish_lifespan_potential[1],10),

DELAY(Fish_lifespan_potential[1],11), DELAY(Fish_lifespan_potential[1],12),

DELAY(Fish_lifespan_potential[1],13), DELAY(Fish_lifespan_potential[1],14),

DELAY(Fish_lifespan_potential[1],15), DELAY(Fish_lifespan_potential[1],16),

DELAY(Fish_lifespan_potential[1],17), DELAY(Fish_lifespan_potential[1],18),

DELAY(Fish_lifespan_potential[1],19), DELAY(Fish_lifespan_potential[1],20),

DELAY(Fish_lifespan_potential[1],21), DELAY(Fish_lifespan_potential[1],22),

DELAY(Fish_lifespan_potential[1],23), DELAY(Fish_lifespan_potential[1],24),

DELAY(Fish_lifespan_potential[1],25), DELAY(Fish_lifespan_potential[1],26),

DELAY(Fish_lifespan_potential[1],27), DELAY(Fish_lifespan_potential[1],28),

DELAY(Fish_lifespan_potential[1],29), DELAY(Fish_lifespan_potential[1],30),

DELAY(Fish_lifespan_potential[1],31), DELAY(Fish_lifespan_potential[1],32),

DELAY(Fish_lifespan_potential[1],33), DELAY(Fish_lifespan_potential[1],34),

DELAY(Fish_lifespan_potential[1],35), DELAY(Fish_lifespan_potential[1],36),

DELAY(Fish_lifespan_potential[1],37), DELAY(Fish_lifespan_potential[1],38),

DELAY(Fish_lifespan_potential[1],39), DELAY(Fish_lifespan_potential[1],40),

DELAY(Fish_lifespan_potential[1],41), DELAY(Fish_lifespan_potential[1],42),

DELAY(Fish_lifespan_potential[1],43), DELAY(Fish_lifespan_potential[1],44),

DELAY(Fish_lifespan_potential[1],45), DELAY(Fish_lifespan_potential[1],46),

DELAY(Fish_lifespan_potential[1],47), DELAY(Fish_lifespan_potential[1],48),

DELAY(Fish_lifespan_potential[1],49), DELAY(Fish_lifespan_potential[1],50),

DELAY(Fish_lifespan_potential[1],51), DELAY(Fish_lifespan_potential[1],52))

 UNITS: Weeks

Average_annual_lifespan_potential[2] = MEAN(Fish_lifespan_potential[2],

DELAY(Fish_lifespan_potential[2],1), DELAY(Fish_lifespan_potential[2],2),

DELAY(Fish_lifespan_potential[2],3), DELAY(Fish_lifespan_potential[2],4),

DELAY(Fish_lifespan_potential[2],5), DELAY(Fish_lifespan_potential[2],6),

DELAY(Fish_lifespan_potential[2],7), DELAY(Fish_lifespan_potential[2],8),

DELAY(Fish_lifespan_potential[2],9), DELAY(Fish_lifespan_potential[2],10),

DELAY(Fish_lifespan_potential[2],11), DELAY(Fish_lifespan_potential[2],12),

DELAY(Fish_lifespan_potential[2],13), DELAY(Fish_lifespan_potential[2],14),

DELAY(Fish_lifespan_potential[2],15), DELAY(Fish_lifespan_potential[2],16),

DELAY(Fish_lifespan_potential[2],17), DELAY(Fish_lifespan_potential[2],18),

DELAY(Fish_lifespan_potential[2],19), DELAY(Fish_lifespan_potential[2],20),

DELAY(Fish_lifespan_potential[2],21), DELAY(Fish_lifespan_potential[2],22),

DELAY(Fish_lifespan_potential[2],23), DELAY(Fish_lifespan_potential[2],24),

DELAY(Fish_lifespan_potential[2],25), DELAY(Fish_lifespan_potential[2],26),

DELAY(Fish_lifespan_potential[2],27), DELAY(Fish_lifespan_potential[2],28),

DELAY(Fish_lifespan_potential[2],29), DELAY(Fish_lifespan_potential[2],30),

DELAY(Fish_lifespan_potential[2],31), DELAY(Fish_lifespan_potential[2],32),

DELAY(Fish_lifespan_potential[2],33), DELAY(Fish_lifespan_potential[2],34),

DELAY(Fish_lifespan_potential[2],35), DELAY(Fish_lifespan_potential[2],36),

DELAY(Fish_lifespan_potential[2],37), DELAY(Fish_lifespan_potential[2],38),

DELAY(Fish_lifespan_potential[2],39), DELAY(Fish_lifespan_potential[2],40),

DELAY(Fish_lifespan_potential[2],41), DELAY(Fish_lifespan_potential[2],42),

DELAY(Fish_lifespan_potential[2],43), DELAY(Fish_lifespan_potential[2],44),

DELAY(Fish_lifespan_potential[2],45), DELAY(Fish_lifespan_potential[2],46),

DELAY(Fish_lifespan_potential[2],47), DELAY(Fish_lifespan_potential[2],48),

DELAY(Fish_lifespan_potential[2],49), DELAY(Fish_lifespan_potential[2],50),

DELAY(Fish_lifespan_potential[2],51), DELAY(Fish_lifespan_potential[2],52))

 UNITS: Weeks

Average_Fishing_income[Villages] = MEAN(Fishing_income, DELAY(Fishing_income,1),

DELAY(Fishing_income,2), DELAY(Fishing_income,3), DELAY(Fishing_income,4),

DELAY(Fishing_income,5), DELAY(Fishing_income,6), DELAY(Fishing_income,7),

DELAY(Fishing_income,8), DELAY(Fishing_income,9), DELAY(Fishing_income,10),

DELAY(Fishing_income,11), DELAY(Fishing_income,12), DELAY(Fishing_income,13),

DELAY(Fishing_income,14), DELAY(Fishing_income,15), DELAY(Fishing_income,16),

DELAY(Fishing_income,17), DELAY(Fishing_income,18), DELAY(Fishing_income,19),

DELAY(Fishing_income,20), DELAY(Fishing_income,21), DELAY(Fishing_income,22),

DELAY(Fishing_income,23), DELAY(Fishing_income,24), DELAY(Fishing_income,25),

DELAY(Fishing_income,26), DELAY(Fishing_income,27), DELAY(Fishing_income,28),

DELAY(Fishing_income,29), DELAY(Fishing_income,30), DELAY(Fishing_income,31),

DELAY(Fishing_income,32), DELAY(Fishing_income,33), DELAY(Fishing_income,34),

DELAY(Fishing_income,35), DELAY(Fishing_income,36), DELAY(Fishing_income,37),

DELAY(Fishing_income,38), DELAY(Fishing_income,39), DELAY(Fishing_income,40),

DELAY(Fishing_income,41), DELAY(Fishing_income,42), DELAY(Fishing_income,43),

DELAY(Fishing_income,44), DELAY(Fishing_income,45), DELAY(Fishing_income,46),

DELAY(Fishing_income,47), DELAY(Fishing_income,48), DELAY(Fishing_income,49),

DELAY(Fishing_income,50), DELAY(Fishing_income,51), DELAY(Fishing_income,52))

 UNITS: IDR/Week

Average_weekly_fishing_income_per_person[Villages] = IF(.Labour_Pool <=0) THEN 0 ELSE

Fishing_income/.Labour_Pool

 UNITS: IDR/Person/Week

Baseline_CPUE = 7

 UNITS: Fish/Effort

"Beje_/_Keramba_technique"[Villages] = 0

 UNITS: Fish

"Catch_Per_Unit_Effort_(CPUE)"[Villages] = Baseline_CPUE*

(1+Alternative_livelihood.Income_per_capita_growth/52/2)^(IF(TIME>52*30) THEN (TIME-

52*30)/Week ELSE 0) *Seasonal_effect

 UNITS: Fish/Effort

CPUE_adjusted_for_fish[Villages] = "Catch_Per_Unit_Effort_(CPUE)"*Fish:Carrying_Capacity

 UNITS: Fish/Effort

Extreme_Value_test:_Fish_Carrying_Capacity = 1

 UNITS: Fish

Fish_catch[Villages] = Total_fishing_effort*CPUE_adjusted_for_fish

 UNITS: Fish/Week

Fish_catch_per_vessel[Villages] = (IF(Fire.Air_pollution_index > 2000) THEN 1-0.25 ELSE

IF(Fire.Air_pollution_index > 1000) THEN 1-0.1 ELSE 1)* IF(Vessels <= 0.1) THEN 0 ELSE (

Fish_catch/Vessels /52)

 UNITS: Fish/Vessel/Week

Fish_lifespan_potential[1] = IF (Fish>Carrying_capacity[1]) THEN (3*52

{weeks}*(Food_availability[1])) ELSE 3*52{weeks}

 UNITS: Weeks

Fish_lifespan_potential[2] = IF (Fish>Carrying_capacity[2]) THEN (3*52*(Food_availability[2]))

ELSE 3*52

 UNITS: Weeks

Fish_price[Villages] = 100000

 UNITS: IDR/Fish

Fish_recruitment = 1.75/2

 UNITS: Fish / Fish / Year

Fish:Carrying_Capacity[Villages] = (Fish)/(IF(Carrying_capacity = 0) THEN 0.000000001 ELSE

Carrying_capacity)

 UNITS: Fish / Fish

Fishing_income[Villages] = Fish_price*Fish_catch

 UNITS: IDR/Weeks

Fishing_income_per_fisher[Villages] = IF(Fishers>0) THEN Fishing_income/(Fishers) ELSE IF

(Fish:Carrying_Capacity >1.5) THEN 1.5*10^6 ELSE 0

 UNITS: IDR/People/Week

Food_availability[1] = IF(Fish[1]>Carrying_capacity[1]) THEN Carrying_capacity[1]/(Fish[1])

ELSE 1

 UNITS: Fish / Fish

Food_availability[2] = IF(Fish[2]>Carrying_capacity[2]) THEN Carrying_capacity[2]/Fish[2] ELSE

1

 UNITS: Fish / Fish

Normal_fishing_effort_per_fisher[Villages] = 1

 UNITS: Effort / Person / Week

Policy:_Increased_fishing_capacity = 0

 UNITS: Fish / Fish

Ref_mode:_Fish_Stocks = 0

 UNITS: Fish

Rehabilitation_rate[Villages] = 1/52

 UNITS: Fish / Fish

Seasonal_effect = SIN((TIME+0.25*26)*PI/26)+1

 UNITS: Fish / Fish

Total_fishing_effort[Villages] = Normal_fishing_effort_per_fisher*Fishers

 UNITS: Effort/Week

Vessels[Villages] = Fishers/Av_Vessel_Size*(Seasonal_effect/2*0.75+0.25)

 UNITS: Vessel

Week = 1

 UNITS: Week

Weekly_52wk_MA_income_per_fisher[Villages] = MEAN(Fishing_income_per_fisher,

DELAY(Fishing_income_per_fisher,1), DELAY(Fishing_income_per_fisher,2),

DELAY(Fishing_income_per_fisher,3), DELAY(Fishing_income_per_fisher,4),

DELAY(Fishing_income_per_fisher,5), DELAY(Fishing_income_per_fisher,6),

DELAY(Fishing_income_per_fisher,7), DELAY(Fishing_income_per_fisher,8),

DELAY(Fishing_income_per_fisher,9), DELAY(Fishing_income_per_fisher,10),

DELAY(Fishing_income_per_fisher,11), DELAY(Fishing_income_per_fisher,12),

DELAY(Fishing_income_per_fisher,13), DELAY(Fishing_income_per_fisher,14),

DELAY(Fishing_income_per_fisher,15), DELAY(Fishing_income_per_fisher,16),

DELAY(Fishing_income_per_fisher,17), DELAY(Fishing_income_per_fisher,18),

DELAY(Fishing_income_per_fisher,19), DELAY(Fishing_income_per_fisher,20),

DELAY(Fishing_income_per_fisher,21), DELAY(Fishing_income_per_fisher,22),

DELAY(Fishing_income_per_fisher,23), DELAY(Fishing_income_per_fisher,24),

DELAY(Fishing_income_per_fisher,25), DELAY(Fishing_income_per_fisher,26),

DELAY(Fishing_income_per_fisher,27), DELAY(Fishing_income_per_fisher,28),

DELAY(Fishing_income_per_fisher,29), DELAY(Fishing_income_per_fisher,30),

DELAY(Fishing_income_per_fisher,31), DELAY(Fishing_income_per_fisher,32),

DELAY(Fishing_income_per_fisher,33), DELAY(Fishing_income_per_fisher,34),

DELAY(Fishing_income_per_fisher,35), DELAY(Fishing_income_per_fisher,36),

DELAY(Fishing_income_per_fisher,37), DELAY(Fishing_income_per_fisher,38),

DELAY(Fishing_income_per_fisher,39), DELAY(Fishing_income_per_fisher,40),

DELAY(Fishing_income_per_fisher,41), DELAY(Fishing_income_per_fisher,42),

DELAY(Fishing_income_per_fisher,43), DELAY(Fishing_income_per_fisher,44),

DELAY(Fishing_income_per_fisher,45), DELAY(Fishing_income_per_fisher,46),

DELAY(Fishing_income_per_fisher,47), DELAY(Fishing_income_per_fisher,48),

DELAY(Fishing_income_per_fisher,49), DELAY(Fishing_income_per_fisher,50),

DELAY(Fishing_income_per_fisher,51), DELAY(Fishing_income_per_fisher,52))

 UNITS: IDR/People/Week

Weeks_per_year = 52

 UNITS: Weeks / Year

Labour:

Unallocated_labour[Villages](t) = Unallocated_labour[Villages](t - dt) + (Transition[Villages] -

New_farmer[Villages] - New_fisher[Villages] - New_Alternative[Villages] -

Error_correction[Villages]) * dt {NON-NEGATIVE}

 INIT Unallocated_labour[Villages] = 0

 UNITS: People

Error_correction[Villages] = IF(Unallocated_labour>Unemployed) THEN (Unallocated_labour-

Unemployed)/Week ELSE 0 {UNIFLOW}

 OUTFLOW PRIORITY: 4

 UNITS: People/Week

New_Alternative[Villages] = Policies.Alternative_livelihood_policy*

IF(Alternative_livelihood.Expected_Alternative_Average_Income>= Max_Income) THEN

(Unallocated_labour MOD Mod_throughput*12)/Week ELSE 0 {UNIFLOW}

 OUTFLOW PRIORITY: 3

 UNITS: People/Week

New_farmer[Villages] = IF(Max_Income<= Agriculture.MAV_52wk_crop_income_per_farmer)

THEN (Unallocated_labour MOD Mod_throughput)/Week ELSE 0 {UNIFLOW}

 OUTFLOW PRIORITY: 1

 UNITS: People/Week

New_fisher[Villages] = IF(Max_Income <= Fishing.Weekly_52wk_MA_income_per_fisher) THEN

Unallocated_labour/Week MOD Mod_throughput/Week ELSE 0 {UNIFLOW}

 OUTFLOW PRIORITY: 2

 UNITS: People/Week

Transition[Villages] = IF(TIME > 1) THEN

(Fishing.Fishers_transition+Alternative_livelihood.Alternatives_leave+Agriculture.End_farming) +

Unemployed/Week ELSE 0 {UNIFLOW}

 UNITS: People/Week

"52wkMAv_income_per_person"[Villages] = MEAN(Income_per_person ,

DELAY(Income_per_person ,1), DELAY(Income_per_person ,2), DELAY(Income_per_person

,3), DELAY(Income_per_person ,4), DELAY(Income_per_person ,5),

DELAY(Income_per_person ,6), DELAY(Income_per_person ,7), DELAY(Income_per_person

,8), DELAY(Income_per_person ,9), DELAY(Income_per_person ,10),

DELAY(Income_per_person ,11), DELAY(Income_per_person ,12), DELAY(Income_per_person

,13), DELAY(Income_per_person ,14), DELAY(Income_per_person ,15),

DELAY(Income_per_person ,16), DELAY(Income_per_person ,17), DELAY(Income_per_person

,18), DELAY(Income_per_person ,19), DELAY(Income_per_person ,20),

DELAY(Income_per_person ,21), DELAY(Income_per_person ,22), DELAY(Income_per_person

,23), DELAY(Income_per_person ,24), DELAY(Income_per_person ,25),

DELAY(Income_per_person ,26), DELAY(Income_per_person ,27), DELAY(Income_per_person

,28), DELAY(Income_per_person ,29), DELAY(Income_per_person ,30),

DELAY(Income_per_person ,31), DELAY(Income_per_person ,32), DELAY(Income_per_person

,33), DELAY(Income_per_person ,34), DELAY(Income_per_person ,35),

DELAY(Income_per_person ,36), DELAY(Income_per_person ,37), DELAY(Income_per_person

,38), DELAY(Income_per_person ,39), DELAY(Income_per_person ,40),

DELAY(Income_per_person ,41), DELAY(Income_per_person ,42), DELAY(Income_per_person

,43), DELAY(Income_per_person ,44), DELAY(Income_per_person ,45),

DELAY(Income_per_person ,46), DELAY(Income_per_person ,47), DELAY(Income_per_person

,48), DELAY(Income_per_person ,49), DELAY(Income_per_person ,50),

DELAY(Income_per_person ,51))

 UNITS: IDR / Person / Week

Actual_workforce[Villages] =

Agriculture.Farmers+Alternative_livelihood.Alternative_Labourers+Fishing.Fishers

 UNITS: People

"Alternative_:_(Farmers_+_Alternative)"[Villages] =

IF(Agriculture.Farmers+Alternative_livelihood.Alternative_Labourers<=0) THEN 0 ELSE (

Agriculture.Farmers/(Agriculture.Farmers+Alternative_livelihood.Alternative_Labourers))

 UNITS: People / People

Average_income_per_worker[Villages] = MEAN(Income_per_worker ,

DELAY(Income_per_worker ,1), DELAY(Income_per_worker ,2), DELAY(Income_per_worker

,3), DELAY(Income_per_worker ,4), DELAY(Income_per_worker ,5),

DELAY(Income_per_worker ,6), DELAY(Income_per_worker ,7), DELAY(Income_per_worker

,8), DELAY(Income_per_worker ,9), DELAY(Income_per_worker ,10),

DELAY(Income_per_worker ,11), DELAY(Income_per_worker ,12),

DELAY(Income_per_worker ,13), DELAY(Income_per_worker ,14), DELAY(Income_per_worker

,15), DELAY(Income_per_worker ,16), DELAY(Income_per_worker ,17),

DELAY(Income_per_worker ,18), DELAY(Income_per_worker ,19),

DELAY(Income_per_worker ,20), DELAY(Income_per_worker ,21),

DELAY(Income_per_worker ,22), DELAY(Income_per_worker ,23),

DELAY(Income_per_worker ,24), DELAY(Income_per_worker ,25),

DELAY(Income_per_worker ,26), DELAY(Income_per_worker ,27), DELAY(Income_per_worker

,28), DELAY(Income_per_worker ,29), DELAY(Income_per_worker ,30),

DELAY(Income_per_worker ,31), DELAY(Income_per_worker ,32),

DELAY(Income_per_worker ,33), DELAY(Income_per_worker ,34),

DELAY(Income_per_worker ,35), DELAY(Income_per_worker ,36),

DELAY(Income_per_worker ,37), DELAY(Income_per_worker ,38), DELAY(Income_per_worker

,39), DELAY(Income_per_worker ,40), DELAY(Income_per_worker ,41),

DELAY(Income_per_worker ,42), DELAY(Income_per_worker ,43),

DELAY(Income_per_worker ,44), DELAY(Income_per_worker ,45),

DELAY(Income_per_worker ,46), DELAY(Income_per_worker ,47),

DELAY(Income_per_worker ,48), DELAY(Income_per_worker ,49),

DELAY(Income_per_worker ,50), DELAY(Income_per_worker ,51))

 UNITS: IDR / Person / Week

Fishing_Perc_of_total_income[1] = 0.9

 UNITS: IDR / IDR

Fishing_Perc_of_total_income[2] = 0.1

 UNITS: IDR / IDR

Gender[Villages] = 1

 UNITS: People/People

Household_size[Villages] = 4

 UNITS: People/Household

Households[Villages] = .Population/Household_size

 UNITS: Household

Income_per_household[Villages] = "52wkMAv_income_per_person"*Household_size

 UNITS: IDR / Household / Week

Income_per_person[Villages] = IF(.Population<=0) THEN 0 ELSE Total_income/.Population

 UNITS: IDR / Person / Week

Income_per_worker[Villages] = IF (.Labour_Pool <= 0) THEN 0 ELSE Total_income/.Labour_Pool

 UNITS: IDR / Person / Week

Initial_Agriculture_labour[1] = 0.1*Gender

 UNITS: People/People

Initial_Agriculture_labour[2] = 0.9*Gender

 UNITS: People/People

Initial_Fishing_labour[1] = 0.8*Gender

 UNITS: People / People

Initial_Fishing_labour[2] = 0.1*Gender

 UNITS: People / People

Labour_Shortage[Villages] = IF(Workforce>=.Labour_Pool) THEN Workforce-.Labour_Pool ELSE

0

 UNITS: People

Max_Income[Villages] = MAX(MAX(Agriculture.MAV_52wk_crop_income_per_farmer,

Fishing.Weekly_52wk_MA_income_per_fisher),

MAX(Alternative_livelihood.Expected_Alternative_Average_Income,

Agriculture.MAV_52wk_crop_income_per_farmer))

 UNITS: IDR / People / Week

Mod_throughput[1] = ST:_Mod_Throughput* IF(.Labour_Pool[1]<100) THEN 10 ELSE

.Labour_Pool[1]/520

 UNITS: People

Mod_throughput[2] = ST:_Mod_Throughput *IF(.Labour_Pool[2]<100) THEN 30 ELSE

.Labour_Pool[2]/520

 UNITS: People

ST:_Mod_Throughput[Villages] = 1*1

 UNITS: People / People

Total_income[Villages] = Agriculture.Cropping_total_income+ Fishing.Fishing_income+

Alternative_livelihood.Alternative_total_income

 UNITS: IDR/Week

Unemployed[Villages] = IF(.Labour_Pool>Workforce) THEN ABS(.Labour_Pool-Workforce) ELSE

0

 UNITS: People

Week = 1

 UNITS: Week

Workforce[1] =

Fishing.Fishers[1]+Agriculture.Farmers[1]+Alternative_livelihood.Alternative_Labourers[1]

 UNITS: People

Workforce[2] =

Fishing.Fishers[2]+Agriculture.Farmers[2]+Alternative_livelihood.Alternative_Labourers[2]

 UNITS: People

Land_use:

Built_village_extent[1](t) = Built_village_extent[1](t - dt) + (Village_expansion[1]) * dt {NON-

NEGATIVE}

 INIT Built_village_extent[1] = INIT(.Population)*Land_per_person

 UNITS: Hectares

Built_village_extent[2](t) = Built_village_extent[2](t - dt) + (Village_expansion[2]) * dt {NON-

NEGATIVE}

 INIT Built_village_extent[2] = 0

 UNITS: Hectares

Depth_of_water_table[Villages](t) = Depth_of_water_table[Villages](t - dt) + (drain[Villages] -

Peat_subsidence[Villages] - Rewetting[Villages]) * dt

 INIT Depth_of_water_table[Villages] = 0

 UNITS: Meter

Forest_extent[Villages](t) = Forest_extent[Villages](t - dt) + (Regeneration[Villages] -

Deforestation[Villages]) * dt {NON-NEGATIVE}

 INIT Forest_extent[Villages] = Total_land_area-INIT(Built_village_extent)

 UNITS: Hectares

Shrubs_or_degraded[Villages](t) = Shrubs_or_degraded[Villages](t - dt) + (Deforestation[Villages] +

Fallow[Villages] - Regeneration[Villages] - Ag_expansion[Villages] - Village_expansion[Villages]) *

dt {NON-NEGATIVE}

 INIT Shrubs_or_degraded[Villages] = 0

 UNITS: Hectares

Subsided_peat_layer[Villages](t) = Subsided_peat_layer[Villages](t - dt) +

(Peat_subsidence[Villages]) * dt

 INIT Subsided_peat_layer[Villages] = 0

 UNITS: Meter

Ag_expansion[Villages] = IF (Deviation > 0 OR Agriculture.Agricultural_land < Land_constraints

AND Shrubs_or_degraded > 0) THEN Agriculture.Land_opening+Deviation ELSE 0 {UNIFLOW}

 OUTFLOW PRIORITY: 2

 UNITS: Hectares/Week

Deforestation[Villages] = IF(Shrubs_or_degraded<=0 OR Ag_expansion>0) THEN Ag_expansion

+Village_expansion+Fire.Burnt_Forest_Area+ (Forestry)/Week ELSE

Fire.Burnt_Forest_Area+(Forestry)/Week +Agriculture.Land_opening {UNIFLOW}

 UNITS: Hectares/Week

drain[Villages] = (canal_drain-DELAY(canal_drain, DT)) {UNIFLOW}

 UNITS: Meters/Week

Fallow[Villages] = 0 {UNIFLOW}

 UNITS: Hectares/Week

Peat_subsidence[1] = IF (Peat_layer[1] <=0) THEN 0 ELSE (IF(Weekly_water_table[1]>0) THEN

(Rate_of_Subsidence[1]+Rate_of_fire_subsidence[1]) ELSE 0) {UNIFLOW}

 UNITS: Meters/Week

Peat_subsidence[2] = IF (Peat_layer[2] <= 0) THEN 0 ELSE (IF(Weekly_water_table[2]>0) THEN

(Rate_of_Subsidence[2]+Rate_of_fire_subsidence[2]) ELSE 0) {UNIFLOW}

 UNITS: Meters/Week

Regeneration[Villages] = IF (Shrubs_or_degraded > 0) THEN

Shrubs_or_degraded*Rate_of_regeneration/Week ELSE 0 {UNIFLOW}

 OUTFLOW PRIORITY: 1

 UNITS: Hectares/Week

Rewetting[Villages] = IF (Rewetting_indicator = 1 AND Depth_of_water_table > 0) THEN

Depth_of_water_table/Week MOD Inflow_to_water_table/Week ELSE 0 {UNIFLOW}

 UNITS: Meters/Week

Village_expansion[Villages] = IF(Built_village_extent>Total_land_area) THEN 0 ELSE

(.Population*Land_per_person-DELAY(.Population*Land_per_person, DT))/Week {UNIFLOW}

 OUTFLOW PRIORITY: 3

 UNITS: Hectares/Week

"1_m" = 1

 UNITS: Meter

"1_m_/_wk" = 1

 UNITS: Meter/Week

Ag_land_limit[1] = 0.01*Total_land_area[1]

 UNITS: Hectares

Ag_land_limit[2] = 1000

 UNITS: Hectares

Canal_adjustment[Villages] = IF(((TIME > 52*(2025-1965)) AND Agriculture.Proportion<0.1)

AND Policies.Full_rewetting = 1) THEN 0 ELSE (IF(Depth_of_water_table < 0.4) THEN (IF

(TIME > 52*15) THEN "1_m"/DT ELSE 0) ELSE 0)

 UNITS: Meters / Week

canal_drain[Villages] = Extreme_Value_Test:_Canal_building* (IF (TIME >= 52*15) THEN

"1_m_/_wk"+Canal_adjustment ELSE 0)

 UNITS: Meters/Week

Climate_change = 1*1

 UNITS: mm/Week

Deviation[Villages] = IF(Total_land_area < Error_check_1) THEN ABS(Total_land_area-

Error_check_1)/Week ELSE 0

 UNITS: Hectares/Week

ENSO = IF(TIME<= (2021-1965)*52) THEN ENSO_data ELSE ENSO_Model

 UNITS: ENSO/ENSO

ENSO_adjusted_weekly_rainfall = IF(ENSO_Rainfall_model < 0) THEN 0 ELSE

ENSO_Rainfall_model

 UNITS: mm

ENSO_data = GRAPH(TIME)

 UNITS: ENSO/ENSO

ENSO_Model = (-1.25*(SIN((TIME+0.25*26)/(52*5/(PI*2)))))

 UNITS: ENSO/ENSO

ENSO_Rainfall_model = (Weekly_rainfall* (1- 0.25* (IF (ENSO*10 >= 7 AND ((TIME MOD 52)

< 25.7) OR ((TIME MOD 52) > 47.57)) THEN 0 ELSE 1)* (IF (ENSO*10 <= -7 AND ((TIME

MOD 52) < 25.7) OR ((TIME MOD 52) > 47.57)) THEN 0 ELSE 1)* (IF (ENSO*10 >= 7 AND

((TIME MOD 52) > 25.7) OR ((TIME MOD 52) < 47.57)) THEN 5 ELSE 1)* (IF (ENSO*10 <= -7

AND ((TIME MOD 52) > 25.7) OR ((TIME MOD 52) < 47.57)) THEN 0.5 ELSE 1) * ENSO)) +-

10*TIME*(Climate_change-1)/5200

 UNITS: mm

Error_check_1[Villages] = Built_village_extent+Forest_extent+Shrubs_or_degraded+

Agriculture.Agricultural_land+Agriculture.Alternative_cultivation

 UNITS: ha

Extreme_Value_Test:_Canal_building = 1

 UNITS: Meters / Meters

Extreme_Value_Test:_Forestry = 1

 UNITS: Hectares/Hectares

Extreme_Value_Test:_Peat_Layer = 1

 UNITS: Meter / Meter

Fire_subsidence = 0.2

 UNITS: Meters

Forestry[Villages] = Extreme_Value_Test:_Forestry* IF(TIME > 52*15 AND TIME < 52*50 AND

Forest_extent > 0.1) THEN 0.02/52*INIT(Forest_extent) MOD Forest_extent ELSE 0

 UNITS: Hectares

"Indicator_-_free_area"[1] = IF (Total_land_area[1]-Agriculture.Agricultural_land[1]>=0) THEN 1

ELSE 0

 UNITS: Hectares / Hectares

"Indicator_-_free_area"[2] = IF (Total_land_area[2]-Agriculture.Agricultural_land[2]>=0) THEN 1

ELSE 0

 UNITS: Hectares / Hectares

Inflow_to_water_table[Villages] = (ENSO_Rainfall_model/Rainfall_to_water_table_ratio-0.5)

 UNITS: Meters

Land_constraints[1] = 10

 UNITS: Hectares

 Land_constraints[2] = 992

 UNITS: Hectares

Land_per_person[Villages] = GRAPH(TIME)

 UNITS: Hectares/People

Peat_layer[1] = IF(Peatland_layer_depth[1]*Extreme_Value_Test:_Peat_Layer-

Subsided_peat_layer[1] > 0) THEN Peatland_layer_depth[1]-Subsided_peat_layer[1] ELSE 0

 UNITS: Meter

Peat_layer[2] = IF(Peatland_layer_depth[2]*Extreme_Value_Test:_Peat_Layer-

Subsided_peat_layer[2] > 0) THEN Peatland_layer_depth[2]-Subsided_peat_layer[2] ELSE 0

 UNITS: Meter

Peat_swamp_vulnerability_to_fire[Villages] = (IF(Depth_of_water_table<= 0) THEN 0 ELSE 1)

 UNITS: Meter / Meter

Peatland_layer_depth[1] = 10

 UNITS: Meters

Peatland_layer_depth[2] = 5

 UNITS: Meters

Rainfall = (140*SIN((TIME+0.25*26)*PI/26)+245)

 UNITS: mm

Rainfall_to_water_table_ratio = 80

 UNITS: mm/Meters

Rate_of_fire_subsidence[Villages] = Fire_subsidence

*(Fire.Burnt_shrub_area+Deforestation)/Total_land_area

 UNITS: Meter/Week

Rate_of_regeneration[Villages] = IF(Depth_of_water_table <=0) THEN .1/52 ELSE .01/52

 UNITS: Hectares / Hectares

Rate_of_Subsidence[Villages] = (IF(Depth_of_water_table > 0) THEN 1 ELSE 0)* (IF(Peat_layer >

0) THEN 1 ELSE 0)* IF

(((RoS_linear_variable*Weekly_water_table+RoS_constant)/Weeks_per_year)<=0) THEN 0 ELSE (

IF (Peat_layer<Weekly_water_table) THEN

((RoS_linear_variable*Peat_layer+RoS_constant)/Weeks_per_year) ELSE

((RoS_linear_variable*Weekly_water_table+RoS_constant)/Weeks_per_year))

 UNITS: Meter/Week

Ref_mode:_Kal_Ag_land = GRAPH(TIME)

 UNITS: Hectares

Ref_mode:_Kal_Built_extent = GRAPH(TIME)

 UNITS: Hectares

Ref_Mode:_Kal_degraded_land = GRAPH(TIME)

 UNITS: Hectares

Ref_mode:_Kal_Forest_extent = GRAPH(TIME)

 UNITS: Hectares

Ref_mode:_TN_Ag_land = GRAPH(TIME)

 UNITS: Hectares

Ref_mode:_TN_Built_extent = GRAPH(TIME)

 UNITS: Hectares

Ref_Mode:_TN_degraded_land = GRAPH(TIME)

 UNITS: Hectares

Ref_mode:_TN_Forest_extent = GRAPH(TIME)

.810514), (5199, 4531.810514) {GF EXTRAPOLATED}

 UNITS: Hectares

Rewetting_indicator[Villages] = IF(((TIME > 52*(2025-1965)) AND

Agriculture.Proportion<Transition_threshold) AND Policies.Full_rewetting = 1) THEN 1 ELSE 0

 UNITS: Metre / Metre

RoS_constant[Villages] = 1.24/100

 UNITS: Meter / Year

RoS_linear_variable[Villages] = 0.0431

 UNITS: Meter / Meter / Year

ST:_Transition_Threshold = 1*0.1/0.1*1

 UNITS: Tonne / Tonne

Total_land_area[1] = 19482.69089

 UNITS: Hectares

Total_land_area[2] = 3392.865705

 UNITS: Hectares

Transition_threshold[Villages] = 0.1*ST:_Transition_Threshold

 UNITS: Tonne / Tonne

Week = 1

 UNITS: Week

Weekly_rainfall = Rainfall/(52/12)

 UNITS: mm

Weekly_water_table[Villages] = Depth_of_water_table-Inflow_to_water_table

 UNITS: Meter

Weeks_per_year = 52

 UNITS: Weeks / Year

Policies:

Alternative_livelihood_policy[Villages] = 1

 UNITS: IDR / IDR

Alternative_livelihood_policy_cap[1] = IF(TIME +"Weeks_/_Year"*Initial_year <

Alternative_livelihood.Alternative_livelihood_program_commencement_year[1]*"Weeks_/_Year")

THEN 0.1 ELSE (IF((Scenario=1 OR Scenario=2)) THEN 0.1 ELSE IF(Scenario=3 OR

Scenario=4) THEN 1 ELSE 0)

 UNITS: People / People

Alternative_livelihood_policy_cap[2] = IF(TIME +"Weeks_/_Year"*Initial_year <

Alternative_livelihood.Alternative_livelihood_program_commencement_year[1]*"Weeks_/_Year")

THEN 0.5 ELSE (IF(Scenario=1 OR Scenario=2) THEN 0.5 ELSE IF(Scenario=3 OR Scenario=4)

THEN 1 ELSE 0)

 UNITS: People / People

Full_rewetting = IF(Scenario=1 OR Scenario = 2) THEN 0 ELSE 1

 UNITS: People/People

Initial_year = 1965

 UNITS: Year

Permanent_flooding[Villages] = IF(Scenario=1) THEN 0 ELSE 1

 UNITS: Meter / Meter

Scenario = 1

 UNITS: Unit / Unit

"Weeks_/_Year" = 52

 UNITS: Weeks/Year

Tests:

Kal_Hotspots = GRAPH(TIME)

 UNITS: Hectares

TN_Hotspots = GRAPH(TIME)

 UNITS: Hectares

Biochar:

BC_per_hectare[Villages](t) = BC_per_hectare[Villages](t - dt) + (Biochar_application[Villages] -

Biochar_mineralisation[Villages]) * dt {NON-NEGATIVE}

 INIT BC_per_hectare[Villages] = 0

 UNITS: Tonnes / Hectare

Total_biochar[Villages](t) = Total_biochar[Villages](t - dt) + (BC_application[Villages]) * dt {NON-

NEGATIVE}

 INIT Total_biochar[Villages] = 0

 UNITS: Tonnes

BC_application[Villages] = Agriculture.Agricultural_land[2]*Biochar_application[2] {UNIFLOW}

 UNITS: Tonnes/Week

Biochar_application[Villages] = Biochar_cumulation_rate {UNIFLOW}

 UNITS: Tonnes / Hectare/Weeks

Biochar_mineralisation[Villages] = BC_per_hectare*EXP(-10)/DT {UNIFLOW}

 UNITS: Tonnes / Hectare/Weeks

Aggregate_Biochar_Yield_Effect[Villages] =

Biochar_application_rate/Targeted_application_multiplier*Biochar_yield_effect*Biochar_use*

(IF(BC_per_hectare>0) THEN 1 ELSE 0)*Hectare + (BC_per_hectare/Year-

Biochar_application_rate)* Yield_accumulation*Cumulative_biochar_effect*Biochar_use*Hectare

 UNITS: Tonne/Tonne/Year

 +(Total_biochar-Biochar_application_rate)*.0.1/10*Cumulative_effect

Biochar_application_rate[Villages] = 1

 UNITS: Tonne/Hectare/Year

Biochar_cumulation_rate[Villages] = IF (TIME > 52*60) THEN

Biochar_application_rate/Weeks_per_year*Biochar_use ELSE 0

 UNITS: Tonne / Hectare/Weeks

Biochar_use[Villages] = IF(ST:_Biochar_use = 1) THEN 1 ELSE 0

 UNITS: Tonne / Tonne

Biochar_yield_effect[Villages] = 0.02*ST:_BC_yield_effect

 UNITS: Tonne / Tonne

Cumulative_biochar_effect[Villages] = 1

 UNITS: Tonne/Tonne

Hectare = 1

 UNITS: Hectare

ST:_BC_yield_effect[Villages] = 1*1

 UNITS: Tonne / Tonne

ST:_Biochar_use = 1*1

 UNITS: Person / Person

Targeted_application_multiplier = 0.05

 UNITS: Tonne

Weeks_per_year[Villages] = 52

 UNITS: Week / Year

Year = 1

 UNITS: Year

Yield_accumulation[Villages] = .01

 UNITS: Hectare/Hectare/Tonne

Alternative_livelihood:

Alternative_Labourers[Villages](t) = Alternative_Labourers[Villages](t - dt) +

(New_alternatives[Villages] - Alternatives_leave[Villages]) * dt {NON-NEGATIVE}

 INIT Alternative_Labourers[Villages] = 0

 UNITS: People

Alternatives_leave[Villages] = IF (Alternative_Labourers <= 0) THEN 0 ELSE

IF(Expected_Alternative_Average_Income< Labour.Max_Income) THEN (Alternative_Labourers

MOD Labour.Mod_throughput)/Week ELSE 0 {UNIFLOW}

 UNITS: People/Week

New_alternatives[Villages] = Alternative_livelihood_cap* Labour.New_Alternative {UNIFLOW}

 UNITS: People/Week

"52wk_MA_Alternative_Income_per_worker"[Villages] =

MEAN(Alternative_livelihood_per_worker, DELAY(Alternative_livelihood_per_worker, 1),

DELAY(Alternative_livelihood_per_worker, 2), DELAY(Alternative_livelihood_per_worker, 3),

DELAY(Alternative_livelihood_per_worker, 4), DELAY(Alternative_livelihood_per_worker, 5),

DELAY(Alternative_livelihood_per_worker, 6), DELAY(Alternative_livelihood_per_worker, 7),

DELAY(Alternative_livelihood_per_worker, 8), DELAY(Alternative_livelihood_per_worker, 9),

DELAY(Alternative_livelihood_per_worker, 10), DELAY(Alternative_livelihood_per_worker, 11),

DELAY(Alternative_livelihood_per_worker, 12), DELAY(Alternative_livelihood_per_worker, 13),

DELAY(Alternative_livelihood_per_worker, 14), DELAY(Alternative_livelihood_per_worker, 15),

DELAY(Alternative_livelihood_per_worker, 16), DELAY(Alternative_livelihood_per_worker, 17),

DELAY(Alternative_livelihood_per_worker, 18), DELAY(Alternative_livelihood_per_worker, 19),

DELAY(Alternative_livelihood_per_worker, 20), DELAY(Alternative_livelihood_per_worker, 21),

DELAY(Alternative_livelihood_per_worker, 22), DELAY(Alternative_livelihood_per_worker, 23),

DELAY(Alternative_livelihood_per_worker, 24), DELAY(Alternative_livelihood_per_worker, 25),

DELAY(Alternative_livelihood_per_worker, 26), DELAY(Alternative_livelihood_per_worker, 27),

DELAY(Alternative_livelihood_per_worker, 28), DELAY(Alternative_livelihood_per_worker, 29),

DELAY(Alternative_livelihood_per_worker, 30), DELAY(Alternative_livelihood_per_worker, 31),

DELAY(Alternative_livelihood_per_worker, 32), DELAY(Alternative_livelihood_per_worker, 33),

DELAY(Alternative_livelihood_per_worker, 34), DELAY(Alternative_livelihood_per_worker, 35),

DELAY(Alternative_livelihood_per_worker, 36), DELAY(Alternative_livelihood_per_worker, 37),

DELAY(Alternative_livelihood_per_worker, 38), DELAY(Alternative_livelihood_per_worker, 39),

DELAY(Alternative_livelihood_per_worker, 40), DELAY(Alternative_livelihood_per_worker, 41),

DELAY(Alternative_livelihood_per_worker, 42), DELAY(Alternative_livelihood_per_worker, 43),

DELAY(Alternative_livelihood_per_worker, 44), DELAY(Alternative_livelihood_per_worker, 45),

DELAY(Alternative_livelihood_per_worker, 46), DELAY(Alternative_livelihood_per_worker, 47),

DELAY(Alternative_livelihood_per_worker, 48), DELAY(Alternative_livelihood_per_worker, 49),

DELAY(Alternative_livelihood_per_worker, 50), DELAY(Alternative_livelihood_per_worker, 51))

 UNITS: IDR/People/Week

Alternative_livelihood_cap[Villages] = IF(Labour.Workforce <=0) THEN 0 ELSE

IF(Alternative_Labourers/(Policies.Alternative_livelihood_policy_cap*Labour.Workforce) >= 1)

THEN 0 ELSE 1

 UNITS: People/People

Alternative_livelihood_per_worker[Villages] = Policies.Alternative_livelihood_policy*

(IF(Fire.Air_pollution_index > 2000) THEN 0.75 ELSE IF(Fire.Air_pollution_index > 1000) THEN

0.9 ELSE 1)* (IF(TIME <=(2015-1965)*52) THEN 0 ELSE 1) *

((1+Biochar.Aggregate_Biochar_Yield_Effect*ST:_Biochar_Alternative_Livelihood))*

Policies.Alternative_livelihood_policy + ((Initial_alternative_livelihood* (1+

Income_per_capita_growth/52) ^((TIME-40*52)/Week)))

 UNITS: IDR/People/Week

Alternative_livelihood_program_commencement_year[Villages] = 2025

 UNITS: Year

Alternative_total_income[Villages] = Alternative_livelihood_per_worker*Alternative_Labourers

 UNITS: IDR/Week

Expected_Alternative_Average_Income[Villages] =

IF(Policies.Alternative_livelihood_policy_cap*Labour.Workforce<=Alternative_Labourers) THEN 0

ELSE "52wk_MA_Alternative_Income_per_worker"

 UNITS: IDR/People/Week

Income_per_capita_growth[Villages] = 0.0315

 UNITS: Rate/Rate

Initial_alternative_livelihood[Villages] = 0.8*10^6 * ST:_Alt_livelihood *(IF(TIME >

(Alternative_livelihood_program_commencement_year-1965)*"Weeks_/_Year") THEN 1 ELSE 0)

 UNITS: IDR/People/Week

ST:_Alt_livelihood = 1*1

 UNITS: IDR / IDR

ST:_Biochar_Alternative_Livelihood[Villages] = 1*1

 UNITS: Year*IDR/People/Week

Week = 1

 UNITS: Week

"Weeks_/_Year" = 52

 UNITS: Weeks / Year

Fire:

Ag_Farmer_Ignition_Point_Frequency = ST:_Ignition_Point_Frequency*0.2

 UNITS: IP / People / Week

Air_pollution_index[Villages] = Burnt_shrub_area[1]*Pollution_calibration

 UNITS: µg/m³/Week

Burn_area_:_Hotspot_ratio = 15.5

 UNITS: Hectare / IP

Burnt_Forest_Area[Villages] =

(Land_use.Forest_extent*Land_use.Peat_swamp_vulnerability_to_fire)*Prob_of_forest_burning*(IF(

Land_use.ENSO_adjusted_weekly_rainfall<30) THEN 1 ELSE 0) / Week

 UNITS: Hectares/Week

Burnt_shrub_area[1] = Hotspots[1] *Burn_area_:_Hotspot_ratio

 UNITS: Hectares / Week

Burnt_shrub_area[2] = Hotspots[2] *Burn_area_:_Hotspot_ratio

 UNITS: Hectares / Week

Expectation_of_PKY_becoming_capital = IF (52*(2019.8-1965) > TIME AND TIME > 52*(2019-

1965)) THEN 1 ELSE 0

 UNITS: People/People

General_population_Ignition_Point_Frequency = .045*ST:_Ignition_Point_Frequency

 UNITS: IP / People / Week

Hotspots[1] =

Potential_Hotspots[1]*vulnerability_of_degraded_peat_swamp_to_burning[1]/10^6*Land_use.Shrub

s_or_degraded[1]

 UNITS: IP / Week

Hotspots[2] =

Potential_Hotspots[2]*vulnerability_of_degraded_peat_swamp_to_burning[2]/10^6*Land_use.Shrub

s_or_degraded[2]*(1+Expectation_of_PKY_becoming_capital*17)

 UNITS: IP / Week

Ignition_points[Villages] = (IF(Land_use.ENSO_adjusted_weekly_rainfall<30) THEN 1 ELSE 0)*(

Agriculture.Farmers*Ag_Farmer_Ignition_Point_Frequency+ (.Population-

Agriculture.Farmers)*General_population_Ignition_Point_Frequency)

 UNITS: IP / Week

Pollution_calibration[Villages] = 70

 UNITS: µg/m³/hectare

Potential_Hotspots[1] = IF(Land_use.ENSO<0) THEN 0 ELSE

5*Ignition_points[1]*EXP(Land_use.ENSO)

 UNITS: IP / Week

Potential_Hotspots[2] = IF(Land_use.ENSO<0) THEN 0 ELSE

3*Ignition_points[2]*EXP(Land_use.ENSO)

 UNITS: IP / Week

Prob_of_forest_burning[Villages] = 1/100/52

 UNITS: Hectares / Hectares

ST:_Ignition_Point_Frequency = 1*1

 UNITS: IP / People / Week

Total_Burn_Area[Villages] = Burnt_shrub_area+Burnt_Forest_Area

 UNITS: Hectares/Week

vulnerability_of_degraded_peat_swamp_to_burning[Villages] =

(IF(Land_use.ENSO_adjusted_weekly_rainfall<30) THEN

ABS((Land_use.ENSO_adjusted_weekly_rainfall - 25)/Vulnerability_ratio) ELSE 0)

*(IF(Land_use.Weekly_water_table<0.041) THEN 0 ELSE 1)

 UNITS: mm/mm/Hectare

Vulnerability_ratio[Villages] = 20

 UNITS: Hectare*mm

Week = 1

 UNITS: Week

GHG_emissions:

Net_accumulated_GHG_emissions_from_reduced_AGB[Villages](t) =

Net_accumulated_GHG_emissions_from_reduced_AGB[Villages](t - dt) + (Mineralisation[Villages]

- Regeneration[Villages]) * dt

 INIT Net_accumulated_GHG_emissions_from_reduced_AGB[Villages] = 0

 UNITS: Tonnes

Total_PS_accumulated_emissions[Villages](t) = Total_PS_accumulated_emissions[Villages](t - dt) +

(Total_PS_emissions_rate[Villages]) * dt {NON-NEGATIVE}

 INIT Total_PS_accumulated_emissions[Villages] = 0

 UNITS: Tonnes

Mineralisation[Villages] = IF((CO2e_sequestered_in_AGB-DELAY(CO2e_sequestered_in_AGB,

1))/Week < 0) THEN -1/Week*(CO2e_sequestered_in_AGB-DELAY(CO2e_sequestered_in_AGB,

1)) ELSE 0 {UNIFLOW}

 UNITS: Tonnes/Week

Regeneration[Villages] = IF((CO2e_sequestered_in_AGB-DELAY(CO2e_sequestered_in_AGB,

1))/Week > 0) THEN (CO2e_sequestered_in_AGB-DELAY(CO2e_sequestered_in_AGB, 1))/Week

ELSE 0 {UNIFLOW}

 UNITS: Tonnes/Week

Total_PS_emissions_rate[Villages] =

Carbon_content_in_tonnes_per_hectare_of_1m_deep_peat*CO2e:C

*(Land_use.Rate_of_Subsidence+Land_use.Rate_of_fire_subsidence) *(IF(Land_use.Peat_layer>0)

THEN 1 ELSE 0) *(Degraded_land_vulnerable_to_fire) {UNIFLOW}

 UNITS: Tonnes/Week

"1m_depth" = 1

 UNITS: meter

AGB_GHG_flux[Villages] = Mineralisation-Regeneration-DELAY(Mineralisation-Regeneration, 1)

 UNITS: Tonnes/Week

Annualised_Emissions_per_capita[Villages] = IF(.Population = 0) THEN 0 ELSE

Total_PS_emissions_rate/.Population*Weeks_per_year

 UNITS: Tonnes / Person / Year

Carbon_content_in_tonnes_per_hectare_of_1m_deep_peat[Villages] =

Peat_C_content*Peatland_bulk_density *"m^3/ha" / "1m_depth"

 UNITS: Tonnes / hectare / Meter

CO2e_sequestered_in_AGB[Villages] = Forest_AGB_Total_C+Shrubland_BGB_Total_C

 UNITS: Tonnes

CO2e:C = 44/12

 UNITS: Tonnes/Tonnes

Degraded_land_vulnerable_to_fire[Villages] = IF(Land_use.Peat_swamp_vulnerability_to_fire>0)

THEN (Land_use.Shrubs_or_degraded+Agriculture.Agricultural_land) ELSE 0

 UNITS: Hectares

Forest_AGB[Villages] = 29.8*0.5

 UNITS: Tonnes / hectare

Forest_AGB_Total_C[Villages] = Land_use.Forest_extent*Forest_CO2e

 UNITS: Tonnes

Forest_CO2e[Villages] = Forest_AGB*CO2e:C

 UNITS: Tonnes/hectare

"m^3/ha"[Villages] = 10000

 UNITS: Cubic Metre / Hectare

Peat_C_content[Villages] = 0.56

 UNITS: Tonne / Tonne

Peatland_bulk_density[Villages] = .09

 UNITS: Tonne / Cubic Metre

Ref_Mode:_Hooijer_et_al_2006 = 220

 UNITS: tonne CO2e / yr / ha

Ref_Mode:_Hoscilo_2009 = 78.57

 UNITS: tonne CO2e / yr / ha

Shrubland_AGB[Villages] = 0.5*(0.5)+8.5*(0.2)

 UNITS: Tonnes/Hectare

Shrubland_BGB_Total_C[Villages] = Shrubland_CO2e*Land_use.Shrubs_or_degraded

 UNITS: Tonnes

Shrubland_CO2e[Villages] = Shrubland_AGB*CO2e:C

 UNITS: Tonnes/Hectare

Total_accumulated_emissions[Villages] =

Total_PS_accumulated_emissions+Net_accumulated_GHG_emissions_from_reduced_AGB-

Biochar.Total_biochar*CO2e:C

 UNITS: Tonne

"Total_accumulated_emissions_in_tonnes_CO2e_/_ha_/_yr"[Villages] =

Total_accumulated_emissions/Land_use.Total_land_area/(TIME/Weeks_per_year)

 UNITS: Tonne / hectare / year

Total_emissions_rate[Villages] = Total_PS_emissions_rate+AGB_GHG_flux

 UNITS: Tonnes/Week

Week = 1

 UNITS: Week

Weeks_per_year = 52

 UNITS: Week / Year

{ The model has 411 (723) variables (array expansion in parens).

 In root model and 10 additional modules with 0 sectors.

 Stocks: 23 (46) Flows: 44 (88) Converters: 344 (589)

 Constants: 82 (115) Equations: 306 (562) Graphicals: 20 (27)

 }

