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Abstract. Natural disturbance dynamics, such as fire, have a fundamental control on forest composition and structure.
Knowledge of fire history and the dominant drivers of fire are becoming increasingly important for conservation and
management practice. Temporal and spatial variability in biomass burning is examined here using 170 charcoal and 15 fire
scar records collated throughout Fennoscandia and Denmark. The changing fire regime is discussed in relation to
local biogeographical controls, regional climatic change, anthropogenic land use and fire suppression. The region has
experienced episodic variability in the dominant drivers of biomass burning throughout the Holocene, creating a
frequently changing fire regime. Early Holocene biomass burning appears to be driven by fuel availability. Increased
continentality during the mid-Holocene Thermal Maximum coincides with an increase in fire. The mid—late Holocene
front-like spread of Picea abies (Norway spruce) and cooler, wetter climatic conditions reduce local biomass burning
before the onset of intensified anthropogenic land use, and the late Holocene increase in anthropogenic activity created
artificially high records of biomass burning that overshadowed the natural fire signal. An economic shift from extensive
subsistence land use to agriculture and forestry as well as active fire suppression has reduced regional biomass burning.
However, it is proposed that without anthropogenic fire suppression, the underlying natural fire signal would remain low

because of the now widespread dominance of P. abies.
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Introduction

Heavily managed forests and active fire suppression have
created an ecosystem almost free of fire throughout Fennos-
candia and Denmark (Zackrisson 1977; Wallenius 2011). The
absence of fire from the landscape not only affects natural
forest regeneration (Ruokolainen and Salo 2006) but also
reduces floral and faunal biodiversity and threatens the sur-
vival of red-listed species such as saproxylic beetles that are
reliant on the regular occurrence of forest fire (Lindbladh et al.
2003). This absence of fire from the Fennoscandian Boreal
ecosystem is thought to have contributed to the widespread
dominance of Picea abies and subsequent decline in deciduous
species (Bjune et al. 2009) with P. abies becoming the most
abundant tree species in northern European forests and
emerging as a new boreal forest keystone species (Seppi et al.
2009). Fire has not always been so rare throughout Fennos-
candia and Denmark: fire scars record a significantly more
intensive fire regime in the recent past (e.g. Niklasson and
Granstrom 2000; Power et al. 2013; Storaunet et al. 2013). Fire
scars are valuable for understanding past human fire activity
(Neolithic to present day slash and burn activity). However,
fire scar records rarely exceed 600 years of age in
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Fennoscandia (Wallenius et al. 2007) and do not pre-date the
time of significant anthropogenic influence.

The anthropogenic fire signal recorded in fire scars gives an
artificially high perception of the historical fire frequency
regime that dilutes the natural fire frequency signal in Fennos-
candia and Denmark. By contrast, charcoal series record fire
history on a palacoecological timescale, which is far beyond the
temporal capability of fire scars and pre-dates significant
anthropogenic disturbance (Clear et al. 2013), with macro-
scopic charcoal recording local fires with high spatial precision
(Ohlson and Tryterud 2000; Higuera et al. 2007). It is only
because of palacoecological data on biomass burning that we
can understand the influence of natural drivers of fire. Even
with minimal anthropogenic disturbance it remains difficult to
disentangle the complex interactions of natural drivers of
biomass burning: climate variability, vegetation type and fuel
availability (Molinari ef al. 2013).

The aim of this paper is to combine available charcoal and
fire scar records from Fennoscandia and Denmark to explore
spatial and temporal heterogeneity and variability in biomass
burning. We aim to identify the changing dominant drivers and
controls of fire throughout the early, mid- and late Holocene.
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Fig.1. Charcoal and fire scar data for 143 individual sites (185 data series)

located throughout Fennoscandia and Denmark. The charcoal data are
divided into four geographical regions: Zone 1 (west coast and mountains)
consisting of the western coast of Norway and Scandes Mountains; Zone 2
(south coast) consisting of southern Scandinavian regions including
Denmark, south-west Norway and Sweden around the Skagerak and
Kattegat Strait; Zone 3 (central continental) comprising sites in central
Sweden; Zone 4 (east continental) consisting of sites in eastern Fenno-
scandia including Finland and Russian Karelia. Fire scar records are
denoted separately.

Materials and methods
Data collection

Charcoal and fire scar data were collated for 143 sites in Fen-
noscandia and Denmark between latitudes 55°12'19"—
70°42'0”"N and longitudes 5°19'4”-32°44'39"E (Fig. 1). Where
available, both macroscopic and microscopic charcoal records
from an individual site were included in the analysis, along with
subsequent analyses. A total of 170 charcoal datasets and 15 fire
scar records were included in the analysis. Data sources included
(1) raw charcoal data and charcoal influx calculations provided
directly by the original researcher, (2) charcoal records available
from the European Pollen Database (EPD) (http://www.
europeanpollendatabase.net, accessed June 2013; Fyfe et al
2009) and (3) digitised data from published articles in peer-
reviewed journals. Published data were digitised using Data
Mugger version 1.1 (K. Welsh, unpubl. data). A standard linear
interpolation age depth model was applied using Clam (Blaauw
2010) to sites with available depth data. Where depth data were
not available, charcoal values were digitised directly against age
and thus relied on the published, pre-calculated age depth cal-
culations. Raw data obtained directly from other researchers
also consisted of pre-calculated age depth curves. Dating con-
trols on sedimentary charcoal records vary including accelerator
mass spectrometry (AMS) "*C dates, >'°Pb dating, varve counts
and cross-correlation of vegetation with nearby dated sites. Fire
scar chronologies were pre-determined by the original
researchers using dendrochronological techniques. All ages
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were converted to calibrated years before present (hereafter cal
years BP, where 0 cal years BP=1950 AD), with all-time
series constrained between —60 and 13 240 cal years BP (2010
AD-11290 BC). To include as many data as possible, the
charcoal dataset was gathered from sites spanning a wide range
of depositional environments including lakes, bogs, mires and
forest hollows. Sites have unique depositional features relating
to individual site location and biogeography (e.g. site type,
elevation, topography and surrounding vegetation type). Site
specific information is available in the Supplementary material.

Spatial and temporal division

All of the sites were spatially sub-divided into four geographical
regions based on their present day climate and continentality.
Zone 1 consisted of the west coast of Norway and Scandes
Mountains; Zone 2 consisted of southern Scandinavian regions
including Denmark, south-west Norway and Sweden around the
Skagerak and Kattegat Straits; Zone 3 central continental sites
comprised sites in central Sweden and Zone 4 sites were in
eastern Fennoscandia, including Finland and Russian Karelia
(Fig. 1). To compare time periods with distinctive charcoal
records, 100-year charcoal averages were calculated, and a
stratigraphically constrained cluster analysis (CONISS) was
implemented in TILIA (Grimm 1987), and identified six time
periods: (1) >10000 cal years BP; (2) 100007800 cal years
BP; (3) 7800-5500 cal years BP; (4) 5500-3000 cal years BP;
(5) 3000-700 cal years BP and (6) 700——60 cal years BP.

Data standardisation and analysis

All charcoal data were standardised using the basic standardi-
sation method (n = max), where # is each charcoal abundance
value and max is the maximum charcoal abundance recorded
within each site. This method of standardisation causes some
loss in the magnitude of data variance, but is essential for data
comparison between sites. For each individual site the stan-
dardised mean value (i) was calculated for each time period (7)
and compared to the mean value of the previous time period
(utyrev). Any increase (positive) or decrease (negative) in the
charcoal abundance was calculated (uf — pit,,,.,) to determine the
temporal rate of change within any given site. The significance
of any rate of change was calculated using a Mann—Whitney U
test, given the non-normal distribution of the data, with the
significance value to accept the null hypothesis (Hy) set at both
5% (P <0.05) and 1% (P <0.01). The Mann—Whitney U test
results comparing the mean charcoal value of each period (ur)
with the mean charcoal value of the previous period (ut,.,) were
plotted using ArcMap10 (ESRI 2011) on five time series maps
(excluding >10000 cal years BP) of Fennoscandia and
Denmark (Fig. 2). Graduated triangles were plotted for two
significance levels: P <0.01 and P < 0.05 for both an increase
and decrease in mean charcoal abundance relative to the mean
of the previous period. Sites that recorded non-significant
increase or decrease in charcoal abundance were denoted with
circles. To be represented on a map, a site required available data
in both the present and previous period. Percentage calculations
for the number of sites that record significant (P <0.01 and
P < 0.05) and non-significant (P = 0.05) increase (positive) or
decrease (negative) in charcoal abundance were calculated for
(ut — pt,ry) and are included in Table 1.
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Table 1. Results of Mann—Whitney U Test and percentage calculations of number of sites that record a relative increase or decrease in charcoal
abundance compared to the previous period
Ut — [ty Charcoal abundance (positive) Charcoal abundance (negative)
(cal years BP) Total number Mann—Whitney U Test Percentage of sites Mann—Whitney-U Test Percentage of sites
of sites P<0.01 P<0.05 P=0.05 % (all) % (sig) % sigsites P<0.01 P<0.05 P=0.05 % (all) % (sig) % sig sites
positive negative
10000-7800 16 2 1 6 56 19 75 1 0 6 44 6 25
7800-5500 49 3 4 20 55 14 58 3 2 17 45 10 42
5500-3000 81 1 8 26 43 11 41 6 7 33 57 16 59
3000-700 115 21 14 34 60 30 63 9 12 25 40 18 37
700——60 145 19 5 36 41 16 44 25 5 55 59 21 56
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Fig. 3. Box plots of standardised charcoal abundance for each site divided into four geographical regions

over six periods. The box plots display median charcoal values, minimum and maximum values, 25th and

75th percentiles, and outliers.

The spatial and temporal distribution of charcoal abundance
was analysed using box plot transformations in R (R Develop-
ment Core Team, 2010) for the four pre-determined geo-
graphical regions over the six periods (Fig. 3). The 100-year
average values calculated for the time series maps were used to
estimate charcoal abundance variation within each geographical
region previously identified for the last (a) 1000 cal years BP
and (b) 10000 cal years BP (Fig. 4).

Fire scar records and charcoal abundance data were com-
bined to estimate the timing of any decline in fire or fire
suppression throughout Fennoscandia and Denmark (Fig. 5).
The date at which the last fire was recorded was used to
determine the timing of a decline in fire and assigned to one of
the following categories: (1) no fire suppression; (2) fire sup-
pression since 150 cal years BP (post-1800 AD) or (3) fire sup-
pression before 150 cal years BP (pre-1800 AD).

Results

Fire activity over the past 10000 years was investigated
based on 185 records, including 170 macroscopic and micro-
scopic sedimentary charcoal series and 15 fire scars datasets.
These records represent 143 different site locations across
Fennoscandia and Denmark. The data from the 170 macroscopic
and microscopic charcoal records are presented in five time
series maps (Fig. 2) and include the position of the spreading
front of P. abies in Fennoscandia (after Giesecke and Bennett
2004). Temporal resolution of sites ranges from between a few
hundred years to thousands of years with relatively few records
available between 10000 and 7800 cal years BP and with an
increase in site abundance for each period as we approach
the present day. The spatial distribution of sites is irregular
throughout the study area with data concentrated in areas along
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Fig. 4. Standardised average charcoal abundance for periods: () 1000 cal
years BP; and (b) 10000 cal years BP at 100-year intervals for four
geographical regions as well as the overall average charcoal abundance
for all sites in Fennoscandia and Denmark. The number of sites included in
the analysis is displayed in (c).

the southern coasts of Fennoscandia and Denmark. There are
relatively few study sites in northern Finland and Russia and
along the Norwegian coast. For this reason the data should be
interpreted with caution. However, these maps provide a
valuable insight into the temporal and spatial variability in
palaeofire records throughout Fennoscandia and Denmark.

10000-7800 cal years BP

There are relatively few sites (n = 16) with sedimentary char-
coal records pre-dating 10000 cal years BP. These sites are
concentrated in western and southern areas of Fennoscandia
with no data available for Denmark (Fig. 2a). In total 56% of
sites recorded an increase in charcoal abundance compared to
the pre-10 000 cal years BP. Also 25% of all sites recorded a
significant variance (P <<0.05) in charcoal abundance, with
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75% of these sites recording a significant increase in charcoal
abundance (Table 1). This indicates an overall increase in
burning compared to pre-10000 cal years BP in southern
Norway, southern and central Sweden and southern Finland.
Sites that recorded a decrease in charcoal abundance compared
to pre-10000 cal years BP are located in Russia, northern
Norway and in central and southern Sweden. Median charcoal
abundance values are generally low for both pre-10000 cal
years BP and 10 000-7 800 cal years BP, with the exception of
Zone 4, which records the highest overall median charcoal
values compared to any other region for any period (Fig. 3). All
zones recorded an increase in median charcoal abundance
between pre-10 000 cal years BP and 10 000-7800 cal years BP.
The mean charcoal curve (Fig. 4) is highly variable during
10 000-7800 cal years BP, probably because of the insufficient
number of sites available, and therefore these data are inter-
preted with caution. Peaks in mean charcoal abundance are
recorded at 9800 and 9300 cal years BP, driven by an increase in
charcoal abundance in Regions 3 and 4, at 8400 cal years BP
driven by an increase in average charcoal abundance in Zones 1
and 2, and at 7800 cal years BP because of an increase in average
charcoal abundance in Zones 2 and 4.

7800-5500 cal years BP

Sedimentary charcoal datasets (n =49) are more abundant and
widespread (Fig. 2b) compared to the previous period, with 55%
of sites recording an increase in charcoal abundance. In total
24% of all sites recorded significant variance (P < 0.01), with
58% of significant sites recording an increase in charcoal
abundance (Table 1). Sites characterised by a significant
increase in charcoal abundance are generally located in a band
spanning from southern Sweden to north-eastern Norway, with
the exception of one site in Russia. In contrast, there is a general
distribution of sites with a decrease in charcoal abundance in
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Denmark and Finland. Zones 1, 2 and 3 recorded an increase in
median charcoal abundance compared to the previous period
(Fig. 3), whereas during this period a sharp decline in charcoal
abundance is registered in Zone 4. The mean charcoal curve
records one peak in abundance values at c. 6900 cal years BP,
driven by consecutive peaks in Zones 1, 2 and 3 (Fig. 4).

5500-3000 cal years BP

It is during this time period that the first overall decline in
charcoal abundance is recorded, with 57% of sites (n=281)
observing a reduction in charcoal values. In total 27% of sites
recorded a significant variance and of these sites, 59% recorded
a decline in charcoal abundance (Table 1). The sites char-
acterised by the most significant decline (P < 0.01) are located
in eastern Sweden and western Finland (Fig. 2¢). All zones
recorded a decline in median charcoal abundance (Fig. 3).
There are four peaks in mean charcoal abundance recorded
during this period (Fig. 4): 5200 cal years BP, driven by a peak
in charcoal in Zones 1 and 4; 45004400 cal years BP with
peaks in Zones 1, 3 and 4; 3700 cal years BP, driven by Zone 1
and 3300 cal years BP, driven by Zones 1 and 4.

3000-700 cal years BP

In total 60% of sites (n = 115) recorded an increase in charcoal
abundance compared to the previous period (Table 1). There are
56 sites (48% of sites) with a significant variance and of these,
63% recorded an increase in charcoal abundance. This is the
period of most significant increase recorded throughout
Fennoscandia and Denmark, with all four zones experiencing an
increase in median charcoal abundance (Fig. 3). The sites that
recorded a significant decrease in charcoal abundance are gen-
erally clustered around the southern coastal areas of Fennos-
candia and Denmark, with some isolated sites in northern areas
of Norway and Sweden (Fig. 2d). The mean curve (Fig. 4)
records peaks in charcoal abundance at 2100 and 1500 cal years
BP, driven by an increase in charcoal abundance in Zones 1, 3
and 4; and at 1300 cal years BP with peaks in Zones 1 and 4.

700-—60 cal years BP

Since 700 cal years BP, the largest number of datasets (n = 145)
recorded an overall decline in the charcoal abundance, with 59%
of sites showing a reduction in charcoal compared to the pre-
vious period (Table 1). In total 37% of sites recorded significant
variance, and 56% of these recorded a significant decrease
in charcoal abundance. This widespread decline is most notable
in a band along the southern coasts of Norway, Sweden and
Finland that extends north along eastern Sweden (Fig. 2e).
However, this reduction is not uniform throughout the research
area: a significant increase in charcoal abundance is recorded in
eastern Fennoscandia, central and western Sweden and some
isolated sites in Norway and Denmark. Box plot observations
are divided during this period, with Zones 2 and 3 recording a
decline in median charcoal abundance, whereas Zones 1 and 4
recorded an increase (Fig. 3). The mean charcoal abundance
curve (Fig. 4) peaks at levels higher than any previous period
between 400 and 300 cal years BP, driven by all four zones.
There is a uniform decline in average charcoal abundance, with
Zone 2 recording a decrease in charcoal abundance from c. 400
cal years BP followed by a decline in charcoal abundance in
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Zones 2 and 3 around 300 cal years BP. A decline in mean
charcoal abundance in Zone 4 is not recorded until 100 cal years
BP (Fig. 4). This overall decline in charcoal abundance is evi-
dent when observing fire absence pre- and post-150 cal years BP
(Fig. 5). A clear cessation of fire is recorded in 52 charcoal sites
and 15 fire scar sites throughout Fennoscandia and Denmark.
All fire scar sites record a decline in fire post-1800 AD, whereas
over half of the charcoal series record fire suppression pre-1800
AD. Sites indicating an earlier (pre-1800 AD) fire absence are
generally located in the southern regions of Fennoscandia, with
the exception of a few sites in central and northern Sweden,
whereas sites recording a later (post-1800 AD) absence of fire
are concentrated in central and northern regions of Sweden,
Finland and Russia.

Discussion

Charcoal (macroscopic and microscopic) and fire scar data
give insight into Holocene temporal and spatial variability in
biomass burning. The time series, determined through CONISS
analysis, correspond to changes in the broad-scale distri-
bution of charcoal in Fennoscandia that may be attributable to
changes in the dominant drivers of biomass burning (see
Marlon et al. 2013; Molinari et al. 2013). The fire history of
Fennoscandia and Denmark can be roughly divided into two
stages: the early-mid-Holocene natural fire signal, where fuel
availability, climate variability and vegetation type are the
likely dominant drivers of biomass burning; and the mid—late
Holocene anthropogenic fire regime, with human induced
ignition and subsequent fire suppression.

Climate, vegetation and fuel availability

Early Holocene warming lead to the retreat of the Weichselian
ice margin and a gradual northward and centralised deglaciation
of Scandinavia (Lundqvist 1986). This deglaciation enabled
expansion of plant distributions with the development of tundra
vegetation dominated by herbs (e.g. Artemisia spp. and
Chenopodiaceae), grasses and sedges with scattered birch stands
and intermittent phases of pine-birch forest development
(Bjorck and Moller 1987). This post-glacial vegetation expan-
sion and increase in fuel availability appears to drive the early
Holocene increase in biomass burning (Fig. 2a). The retreating
ice margin reached the Norwegian coast ¢. 15000-13 000 cal
years BP (Andersen 1979), southern Sweden approx. 13 500 cal
years BP (Berglund 1979) and southern Finland around 13 000
cal years BP (Lunkka et al. 2004), enabling earlier vegetation
development and potentially an earlier increase in biomass
burning compared to the central Fennoscandian sites. This early
forest succession and consequent earlier peak in charcoal
abundance would account for the few sites that record a decline
in biomass burning since 10 000 cal years BP. The coastal and
mountain distribution of sites, in particular sites that record a
decline in biomass burning, are supporting evidence of a multi-
domed late glacial ice sheet suggesting mountain areas of
Norway and Sweden were ice free by the late Weichselian (Paus
etal. 2006). The last remnants of the ice sheet most likely melted
by 8500 cal years BP in central Scandinavia (Andersen 1980;
Lundqvist 1986), explaining the absence of early Holocene sites
in this region. Although the early Holocene experienced rapid
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climatic warming, pollen-inferred temperature reconstruction
indicates mean July temperatures were still low (~11.0°C) and
annual precipitation was high (~600-800 mm; Seppé and Birks
2001). This, coupled with minimal anthropogenic disturbance
can explain the general trend of lower-than-average biomass
burning during the early Holocene.

The mid-Holocene thermal maximum (HTM) is well docu-
mented throughout Scandinavia (Rosén e al. 2001; Seppd
and Birks 2001; Davis et al. 2003) and is characterised by
warm, dry climatic conditions. The timing of the HTM varies,
usually between 6000 and 7000 cal years BP (Davis et al. 2003)
and coincides with an increase in continentality recorded in
areas east of the Scandes Mountains (Giesecke et al. 2008).
These continental climate conditions could account for the
general increase in biomass burning throughout central
Fennoscandia and in Russia (Fig. 2b). Interestingly, Swedish
and Finnish sites experience a striking difference in regional
biomass burning during this period, with 90% of Finnish sites
recording a decline in charcoal abundance, suggesting a factor
other than climate and continentality as a possible driver of
regional biomass burning.

The reasons for the absence of P. abies in the early Holocene,
post-glacial Fennoscandian forest development are poorly
understood (Bradshaw ef al. 2000), with vegetation models
failing to identify the reason behind the late expansion of
P. abies in Scandinavia (Miller et al. 2008). There was a mid—
late Holocene expansion of P. abies on a broad front moving
from east to west into Finland and northern Scandinavia, and
then south and west towards its present-day limits (Giesecke and
Bennett 2004), with some early Holocene population outliers
developing as far west as the Scandes Mountains (Kullman
2001; Giesecke and Bennett 2004). The expanding front of
P. abies has been traced onto the time series map (Fig. 2) after
(Giesecke and Bennett 2004). The map shows the east-to-west
spread of the beginning of the continuous curve of P. abies in the
pollen records. Fire appears to decrease in sites as P. abies
becomes regionally established in Finland (7800—5500 cal years
BP) and in Sweden (5500-3000 cal years BP). This negative
correlation between P. abies and fire has been well documented
for Fennoscandia, with both the spread of P. abies being held
responsible for a reduction in fire (Ohlson et al. 2011), and a
decrease in fire being blamed for the subsequent spread of
P. abies (Bjune et al. 2009). Here, our compilation indicates
that the change in fire regime occurs once P. abies is regionally
established. Clear et al. (2013) record a similar change in the fire
regime linked to fuel type: local fire frequency declines with a
shift from a mixed deciduous forest to a predominantly conifer-
ous forest. It should also be considered that c. 5500 cal years BP
climatic conditions shifted to become predominantly cooler and
wetter than the HTM period (Seppéd and Birks 2001). These
conditions would also favour a reduction in charcoal abundance
and cannot be excluded as possible drivers of mid-Holocene
biomass burning. After 3000 cal years BP intensified anthropo-
genic disturbance of the fire regime makes the P. abies—climate—
fire signal even more difficult to decipher.

Anthropogenic ignition and suppression

A mid-late Holocene increase in biomass burning (Fig. 2d) with
poor regional coherency suggests an increase in the local-scale
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control of fire by humans. Prior to 3500 cal years BP, the human
population was largely controlled by environmental factors
(Tallavaara and Seppd 2012). The establishment and expansion
of agriculture enabled population growth, and human influence
is estimated as the strongest driver of forest compositional
change (Reitalu ef al. 2013). The anthropogenic use of fire
intensified in conjunction with slash-and-burn activity driven by
swidden cultivation and animal husbandry (e.g. Lageras 1996;
Alenius et al. 2008; D’ Anjou et al. 2012). The intensification of
slash-and-burn activity c¢. 1000 cal years BP corresponds to the
expansion of permanent cultivation and the establishment of
permanent village communities (Lageras 1996; Taavitsainen
et al. 1998; Alenius et al. 2013). The sustained increase in
biomass burning during the mid—late Holocene is most likely the
result of intensive anthropogenic land use that controlled bio-
mass burning until it peaked at ¢. 300 cal years BP. The sub-
sequent pre-industrial decline in fire recorded throughout
Scandinavia (excluding Finland and Russia) coincides with an
economic and cultural transition from traditional livelihoods,
such as slash and burn, to modern agriculture and forestry
(Wallenius 2011). Intensive commercial forestry operations
beginning in the late 1800s is also associated with a reduction in
anthropogenic use of fire (Granstrom and Niklasson 2008). The
delay in fire suppression in the east continental region suggests a
later economic and cultural transition. It is not until the twentieth
century Industrial era (c. 100 cal years BP) that there is an
overall decline in fire through Fennoscandia and Denmark.

The cause of the late Holocene decline
in biomass burning

The mid-Holocene decline in biomass burning preceded the
onset of increased anthropogenic activity and can potentially be
linked to the spread of P. abies in Fennoscandia. The subsequent
anthropogenic-induced increase in biomass burning created an
artificially high record of fire that overshadowed the natural
signal. The late Holocene decline in anthropogenic use of fire
as well as active fire suppression reduced biomass burning.
However, it is likely that without active fire suppression, the
natural fire frequency would have remained low because of the
widespread dominance of P. abies.

This paper highlights the importance of palaeoecological
knowledge and how seemingly unprecedented events can be
placed within a long-term perspective (Whitlock 2004). Using
only short-term ecological data provides a modern yet ‘short-
sighted’ view of past environmental change. We should not only
look back at the recent past (i.e. when the fire signal was
artificially high due to anthropogenic land use), but further
back in time to the natural fire signal before significant anthro-
pogenic activity (Clear et al. 2013). It is likely that without an
increase in anthropogenic biomass burning, natural biomass
burning would have continued to decline with the increase in
dominance of P. abies.
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