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Abstract. Human-caused wildfires are controlled by human and natural influences, and determining their key drivers is
critical for understanding spatial patterns of wildfire and implementing effective fire management. We examined an array
of explanatory variables that account for spatial controls of human-caused fire occurrence from 1990 to 2013 among six

ecosystem zones that vary in human footprint and environmental characteristics in British Columbia, Canada. We found
that long-term patterns of human-caused fire in ecosystem zones with a larger human footprint were strongly controlled by
biophysical variables explaining conditions conducive to burning, whereas fire occurrence in remote ecosystem zones was
controlled by various metrics of human activity. A metric representing the wildland–urban interface was a key factor

explaining human-caused fire occurrence regardless of ecosystem zone. Our results contribute to the growing body of
research on the varying constraints of spatial patterns of fire occurrence by explicitly examining human-caused fire and the
heterogeneity of constraints based on human development.
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Introduction

Human-caused wildfires can be a threat to ecological systems,

housing developments and valuable natural resources, and
present high associated economic costs. Human-caused fires are
problematic for fire suppression as they are frequently in close

proximity to housing developments (Bar-Massada et al. 2014)
and can destroy homes and force mandatory evacuations. For a
typical year in British Columbia (BC), Canada, 40% ofwildfires
are human caused and some of these events are costly; for

example, the cigarette-ignited 2003 McLure Fire cost over
CAD$30 million to suppress and caused over $8.2 million in
damages to private property (Kulig et al. 2013). As a result of

climate change and sprawling human development, human-
caused fire frequency is expected to increase in many parts of
BC and the world (Hammer et al. 2007; Flannigan et al. 2009).

To develop effective conservation and fire management prac-
tices in BC, researchers and managers need to understand the
underlying forces influencing the spatial patterns of contem-
porary human-caused fire regimes.

Human-caused fires occur as a function of key underlying
influences that control fire ignition. There are three factors
required for a wildfire to occur: (1) the presence of an ignition

source, (2) the presence and structure of fuels that support ignition
and fire spread, and (3) the environmental conditions that support
burning of those fuels (Moritz et al. 2005). Human-caused

ignitions tend to cluster in certain areas, such as the wildland–
urban interface (WUI; CIFFC 2003; Radeloff et al. 2005;

Bar-Massada et al. 2014), defined here as areas where urban
development intermingles with wildland vegetation. In the
WUI, wildland fuels are adjacent to an abundance of potential

ignition sources (people) leading to high human-caused fire
frequency. Transport corridors, specifically roads, are also good
predictors of human-caused ignitions (Cardille et al. 2001;
Narayanaraj and Wimberly 2012). Roads are thought to be a

proxy for ignition agents such as discarded cigarettes or sparks
released from dragging automobile parts, and accessibility
linked to human recklessness such as fireworks, barbecues and

arson. Recreational sites and trails can also be a major source of
human-caused ignitions because hiking and camping often
include the building of a campfire that has the potential to spark

and grow as a wildfire if left unattended (Pew and Larsen 2001;
Reid and Marion 2005).

Although human-caused wildfire requires the presence of a
human ignition agent to start a fire, wildfire is largely controlled

by a combination of biophysical influences that inhibit or
promote burning conditions. For instance, whether or not a fire
spreads from initial ignition is closely associated with the daily

variation in weather and types of wildland fuels present in the
area (Pyne 1984). For example, the absence of moisture from
lower than average precipitation and increased atmospheric

CSIRO PUBLISHING

International Journal of Wildland Fire 2017, 26, 219–229

http://dx.doi.org/10.1071/WF16108

Journal compilation � IAWF 2017 www.publish.csiro.au/journals/ijwf



demand from higher than average temperatures in both daily and
longer temporal scales significantly influences whether an
ignition occurs and if so whether dry conditions are present

for a wildfire to spread (Girardin and Wotton 2009; Meyn et al.
2013). Fine fuels are critical for ignition and fire growth to
become detectable (Pyne 1984), and ecosystems with high

levels of dry fine fuels, such as in grasslands, shrublands and
dry conifer forests, are typically more fire prone than temperate
deciduous and coniferous forests, for example. Fire-conducive

fuel structure and microclimates can be altered by human
activity. Land use, such as timber harvesting, alters the structure
of flammable biomass and has been associated with increases in
both human- and lightning-caused fire frequency (Krawchuk

and Cumming 2009; Lindenmayer et al. 2009). The harvesting
process mechanically removes trees and leaves dry dead slash
on the ground that promotes a structure that is more conducive to

burning (Lindenmayer et al. 2009; Naficy et al. 2010). Timber
harvest opens the canopy, resulting in an increase in local solar
insolation that increases desiccation of fuels. Climate and

weather, particularly temperature and precipitation, contribute
to variability in wildfire behaviour and fire occurrence. In the
Pacific Northwest of North America, the location of our study,

periods of warmer temperatures and lower levels of precipita-
tion promote burning conditions that are associated with
increases in fire frequency and area burned (Littell et al. 2009;
Meyn et al. 2013). Changes to future climate and land cover will

affect wildfire occurrence and behaviour (Flannigan et al. 2009;
Wang et al. 2016), and an explicit understanding of the climatic
and fuel controls on human-caused wildfire is critical for fire

management in upcoming decades.
The human role in contemporary wildfire occurrence under-

scores the need to understand how and why human-caused fire

occurrence varies spatially. Numerous studies have analysed
spatial patterns of contemporary human-caused wildfire across
North America based on a variety of human and environmental
variables, at different spatial and temporal scales. Unique

combinations of roads, housing, land cover, recreation, climate
and soil moisture, among others, differentially explain spatial
patterns in wildfire among study areas (Sturtevant and Cleland

2007; Syphard et al. 2007; Littell et al. 2009; Faivre et al. 2014).
Recent work examining human influences on wildfire across
Canada and the United States (Parisien et al. 2016) found the

relative influence of climate, enduring features, lightning and
anthropogenic factors varied among the 16 hexels used to
subdivide the area, with pervasive anthropogenic influences.

Parisien et al. (2016) provide insight into spatial variability in
human effects on fire probability, but their use of pooled data
from lightning- and human-caused fires obscures differences
thatmay exist between the two classes of fires. Studies explicitly

focused on the province of BC have reported mixed conclusions
about key explanatory variables controlling human-caused fire.
Based on statistical models of daily human-caused wildfires

across the entire province, biophysical variables such as weather
were the strongest determinants of fire occurrence, whereas
human variables such as road density were relatively insignifi-

cant (Magnussen and Taylor 2012). Using a coarser temporal
scale and finer spatial resolution, and focusing on lightning- and
human-caused fires combined, Taylor et al. (2005) developed
models for six regions in BC and found that road and population

density provided significant explanatory power in predicting the
spatial variation in fire probability, but the sign of explanatory
variables was inconsistent among the regions. Geographic het-

erogeneity in driving factors likely underpins differences in
model outcomes in different locations and at different scales,
and for different classes of fires; however, synthesis aimed at

understanding this geographic variability is lacking.
Fire occurrence in different ecosystems is constrained by

distinctive limiting factors. Krawchuk and Moritz (2011) pro-

pose the varying constraints hypothesis that outlines the hetero-
geneity of key limiting factors for global patterns of fire based
on differences among ecosystems and across a gradient in net
primary productivity. For example, the hypothesis predicts that

in areas where resource availability (fuel, net primary produc-
tivity) is high, fuel moisture conditions will act as the dominant
constraint on fire activity, suggesting conducive fire conditions

are the main limiting factor in the ecosystem. In contrast, in
areas where resource availability is lower or more variable, such
as deserts, grasslands or dry forests and shrublands, the impor-

tance of fuel moisture decreases and availability of fuels is the
main limiting factor of wildfire. We can extend the varying
constraints hypothesis to the human realm to examine spatial

differences of constraints on human-caused fire occurrence. In
the context of BC, patterns of human-caused fire and socio-
ecological conditions are highly variable among ecosystems;
thus we expect heterogeneity in key drivers among them. For

example, relatively hot and dry summers dominate the pro-
vince’s rain-shadowed areas and contribute to a fire environ-
ment that is highly prone to wildfire ignition. These areas also

have dense clusters of human development and an abundance of
potential human ignition sources. In contrast, vast remote
regions of cold, moist boreal forest have fewer human-caused

fires, which are likely limited by different spatial controls.
Here, we examine the relative contribution of human activity

to patterns of human-caused fire occurrence in recent decades
among BC’s diverse ecosystems. Specifically, our work focuses

on the development of statistical regression models, with explicit
comparison and interpretation of spatial patterns and drivers of
human-caused fire across gradients of climate, vegetation and

human activity. Our main objectives are three-fold: to determine
(1) what human influence and biophysical variables have the
strongest effects on human-caused wildfire occurrence patterns,

and how these variables differ among ecosystems, (2) what
human influence variables are most influential, that is, have the
largest effect sizes in driving human-caused fire occurrence

across the study area as a whole, and (3) where human activity
affects fire occurrence most prominently, that is, in which
ecosystems are human influence variables most important,
overall?

Methods

Study area

Our study area was a large region of BC, the westernmost prov-
ince of Canada that occupies an area of ,950 000 km2. The

province of BC is highly variable in temperature, precipitation
and topography, resulting in a diverse range of ecosystems. Land
managers and scientists in BC use the Biogeoclimatic Ecosystem
Classification (BEC) system to identify 16 unique ecosystems
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based on soil, vegetation and topographic properties (Meidinger
and Pojar 1991), which yield distinct fire regimes (Wong et al.

2004). For the purposes of this study, we focused on eight BEC

zones covering 53% of the province that represent the bulk of
where fire and human activity occurs. We combined three BEC
zones, the Ponderosa Pine, Bunchgrass and Interior Douglas-fir

zones, as they neighbour each other and have similar natural
disturbance dynamics (Wong et al. 2004); combining zones
boosted the sample size for model development because two of

the three cover relatively small areas. The resulting study region
includes six ‘ecosystem zones’ (Table 1; Fig. 1): Boreal White
Black Spruce (hereafter BWBS), Coastal Western Hemlock

Table 1. Description of key variables for each of the six ecosystem zones analysed in the study

Table includes zone name, N as number of grid cells for each zone type, mean number of fires per 10 � 10-km grid cell with standard

deviation, mean proportion (p) of wildland–urban interface (WUI) per 10 � 10-km grid cell with standard deviation, and dominant

vegetation. Abbreviations: BWBS, Boreal White Black Spruce; CWH, Coastal Western Hemlock; ICH, Interior Cedar–Hemlock;

PPBGIDF, Ponderosa Pine þ Bunchgrass þ Interior Douglas-fir; SBPS, Sub-boreal Pine-Spruce; SBS, Sub-boreal Spruce. Major

vegetation came from Pojar et al. (1987)

Zone N Mean fires (s.d.) Mean p of WUI (s.d.) Major vegetation

BWBS 1718 0.87 (2.58) 7.84� 10�4 (0.12) Populus tremuloides, Picea glauca, Picea engelmannii,

Pinus contorta, Picea mariana

CWH 1174 2.40 (6.78) 2.41� 10�2 (0.10) Tsuga heterophylla, Thuja plicata, Pseudotsuga menziesii

ICH 652 2.48 (4.10) 1.28� 10�2 (0.05) T. heterophylla, T. plicata, Pinus ponderosa, P. menziesii,

P. tremuloides

PPBGIDF 544 13.38 (18.10) 4.74� 10�2 (0.04) P. ponderosa, Pseudoroegneria spicata, Hesperostipa comata,

Artemisia tridentata, P. menziesii

SBPS 241 3.01 (8.83) 4.02� 10�4 (0.01) P. contorta, Picea glauca

SBS 1099 2.42 (4.21) 6.92� 10�3 (0.00) P. glauca, Abies lasiocarpa, P. mariana, P. contorta

BWBS

N

BEC ZONE

CWH

ICH

PPBGIDF

SBPS

SBS

Other zones
Canada

USA 0 125 250 500
km

BWBS PPBGIDF

CWH SBPS

ICH SBS

Fig. 1. The Biogeoclimatic Ecosystem Classification (BEC) zones used for analysis of human-caused wildfire counts. The legend uses the following

abbreviations: BWBS, Boreal White Black Spruce; CWH, Coastal Western Hemlock; ICH, Interior Cedar–Hemlock; PPBGIDF, Ponderosa

Pine þ Bunchgrass þ Interior Douglas-fir; SBPS, Sub-boreal Pine-Spruce; SBS, Sub-boreal Spruce. BWBS photograph from Wikipedia (2015a).

CWHphotograph fromWikipedia (2015b). ICH photograph fromWikipedia (2015c). PPBGIDF photograph fromWikipedia (2015d). SBPS photograph

from Simon Fraser University – Geography (2015). SBS photograph from Wikipedia (2015e). Projection: BC Equal Area Albers.
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(CWH), Interior Cedar–Hemlock (ICH), Ponderosa Pine þ
Bunchgrassþ InteriorDouglas-fir (PPBGIDF), Sub-boreal Pine–
Spruce (SBPS) and Sub-boreal Spruce (SBS).

The six ecosystem zones exhibit distinct human and envi-
ronmental heterogeneity. The BWBS zone has the largest area,
covering BC’s section of Canada’s boreal forests. The summers

are short but warm, and receive moderate levels of precipitation
with some longitudinal variation. The BWBS zone is one of the
least inhabited but supports several First Nations communities

and natural resource hubs. The CWH zone occupies BC’s
coastline, which receives the most precipitation in the province
and supports BC’s temperate rainforests (Pojar et al. 1987).
There is clustering of human development in the southern

section of the CWH zone, including Vancouver, a provincial
centre of commerce and culture. The ICH zone occupies the
wettest region of the interior with the bulk of the zone on the

windward side of the Columbia Mountains (Wong et al. 2004).
The summers are typically warm and dry, though in comparison
to other interior regions, the ICH receives notably more precipi-

tation. Human development in the ICH is concentrated in the
south, and includes the cities of Nelson and Trail, among others.
The PPBGIDF zone is in the southern rain shadow ofBC’s Coast

Mountains, and is the hottest and driest of BC’s ecosystem zones
during the summer (Pojar et al. 1987). The desirable summer
temperatures and prominent natural resources result in a rela-
tively large human footprint dominated by tourism, agriculture

and forestry. The PPBGIDF zone includes the economic centre
of BC’s interior, including the cities of Kamloops and Kelowna.
The SBPS and SBS are the sub-boreal regions of the province,

with the SBPS occupying a small region of the cold, high
plateaus. The rain shadow from the Coast Mountains results in
dry conditions almost year round, making this the second driest

zone in the study. The cold climate limits agriculture and
forestry resulting in only small communities and resource
towns. The SBS zone neighbours the SBPS zone to the east
and north, and has a slightly warmer temperature and more

precipitation (Meidinger and Pojar 1991). The SBS zone is an
important forestry hub for the province, spawning many
resource communities and population centres, such as Prince

George.

Data analysis

We developed Poisson and negative binomial generalised linear
models (GLMs) for each ecosystem zone to model human-
caused fire ignition counts for the period 1990–2013 against a

set of human influence and biophysical variables (Table 2)
representing potential ignition sources, resources to burn and
conditions for burning.

Data for statistical models were collected at 10 � 10-km

resolution resulting in 5428 sample cells, capturing the sum in
fire activity over a 24-year period between 1990 and 2013. We
chose the spatial and temporal resolution as a trade-off between

an area able to capture variability of the drivers of the fire
ignitionswhile generating a large enough sample size to produce
robust statistical models. The 24-year study period represented

an era when fire data collection methods were relatively consis-
tent in BC and reflect a contemporary fire regime, the focus of
our study. For each cell, we extracted counts of human-caused
fire occurrence (sum count over the study period), as well as

explanatory variables from existing datasets (Table 2). We chose
the list of candidate human and biophysical variables due to their
representation of fire behaviour andoccurrence, and demonstrated

use in previous studies in North America (Sturtevant and Cleland
2007; Syphard et al. 2007; Littell et al. 2009; Faivre et al. 2014).
For a detailed description of the data compilation for statistical

modelling, consult the online supplementary materials. The sup-
plementary materials also include methods of mapping the WUI
from Canada-wide land cover and 2011 Canadian census data,

similar to a method first outlined in Radeloff et al. (2005).
Sample grids were assigned to respective ecosystem zones

usingmaximum area tools in ArcGIS 10.1 (ESRI 2013). All data
processing was done in ArcGIS 10.1 and data analysis was

completed in the R statistical package (R Core Team 2013).
The focus of the studywas to interpret the importance of each

explanatory variable in each ecosystem zone and compare

effects among zones, which can be difficult when dealing with
variables in different units. Thus, we scaled the data by centring
and standardising all explanatory variables by subtracting each

variable’s mean and dividing by its standard deviation. Scaling
preserves the relationship of the data, but converts all respective
units to measures of their standard deviations rather than indivi-

dual units (Schielzeth 2010). The standardised regression coeffi-
cients, or b coefficients, are directly comparable (Schielzeth
2010).

Regarding statistical modelling, when overdispersion was

detected in fire data for a particular ecosystem zone, we used a
negative binomial GLM that provides an extra parameter y for
estimating the overdispersion. We did not include interaction

terms because the number of potential interactions occurring
between the 17 explanatory variables would be relatively high
and we had no a priori expectations for interactions among

particular variables. We also excluded non-linear (e.g. quadratic)
terms, as interpretations in multiple regression can be difficult
where statistical effects are marginal and this is beyond the scope
of this study.

We checked for correlation among variables, which can
provide misleading estimates in multiple regression (Zuur et al.
2009), based on Spearman’s rank correlation tests. If we found

two or more potential explanatory variables with a Spearman’s
correlation greater than 0.7, we ran bivariate Poisson models of
each against our fire count variable and discarded the terms with

the lowest proportional deviance explained. We also examined
the variance inflation factor (VIF) for each term in our final
model. If explanatory variables had a VIF.10, we examined the

two or more terms using bivariate regression and dropped the
explanatory variable explaining the least variation in human-
caused ignitions.

To select the best subset of explanatory variables for the final

model for each ecosystem zone, we used backwards stepwise
selection based on Akaike’s Information Criterion (AIC), which
values parsimonious models and penalises for complexity. We

also calculated a measure of variable importance by removing
each term from the final model and calculating the relative
contribution to the final AIC value, that is, the DAIC; the higher

the DAIC, the more important the variable in the model.
After final model selection, we performed various model

diagnostics to evaluate the model fitness, assess distributional
assumptions and examine trends in the data. We examined
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residual spatial autocorrelation by using spline correlograms
measuring positive or negative correlation of residuals. We also
examined the amount of variability explained by each model

using the proportional deviance explained, also referred to asD2,
which is a similar metric to linear regression’s coefficient of
determination, R2.

We employed an averaging technique to combine two
measures of variable importance, the b coefficients (b) and
DAIC, into a final ranking similar to methods in Syphard and

Franklin (2009) and Bar-Massada et al. (2013). First, we
selected the top six variables in the final model for each
ecosystem zone and ranked these variables according to the
two measures of variable importance, a weighting from 1 to 6.

We chose the top six variables because this was the average
number of final terms throughout all of the models. If one
variable was present in the top six terms of one importance

ranking (e.g. in theDAIC rank) but absent in the other (e.g. the b
rank), we assigned a rank of two times the number of final terms
for a maximum rank of 12. We considered this a simple and

reasonable penalisation for inconsistent results between the two
measures of variable importance. We then averaged the ranks
between the b coefficient and AIC ranking to develop a final

ranking system for all zones and ranking for each zone.
There are numerous ways in which our modelling approach

could be improved. Nearly all variables we included in our
models, although representing the full 24-year fire dataset, are

an annual snapshot. For example, land cover data are ameasure of
one year, which we chose as a balance between reducing lengthy
processing times and acquiring spatially explicit variables. We

also used vegetation types in statistical modelling, but acknowl-
edge the importance of specific fuel types in the fire ignition
process. For example, dry fine fuels are the primary fuel type

needed for a successful ignition and areas with high levels of dry
fine fuels, such as grasslands, are typically more fire prone than
areaswith higher overall fuel loads, such as temperate rainforests,
even accounting for variation in local climate (Pyne 1984).

Though fuel types are important for the prediction of fire occur-
rence for fire management, the nature of our research question
relies on examining the fire patterns on a longer temporal scale

and coarser spatial scale. We opted to focus on the effects of
general types of vegetation in determining variable importance
and asking our research questions.

Results

There were 16 596 human-caused fires in 5428 sampling units
within the six ecosystem zones. The PPBGIDF zone group had
the highest average number of human-caused fires with 13.38
(s.d.¼ 18.10; Table 1) per 100 km2 sampling unit over 24 years.

The BWBS, the largest and most remote zone, averaged the
lowest number of fires, with 0.87 (s.d.¼ 2.58) per unit area and
time. The SBPS, ICH, SBS and CWH zones all had similar

averages: 3.01 (s.d.¼ 8.83), 2.48 (s.d.¼ 4.10), 2.42 (s.d.¼ 4.21)
and 2.40 (s.d. ¼ 6.76).

All models showed evidence of overdispersion and were fit

using a negative binomial distribution. There was minor but
significant residual spatial autocorrelation at short lag distances
that we report but do not consider further. The models explained
a substantial amount of variability. The proportional deviance

explained, referred to as D2, is a measure of variability
explained; 1.00 represents all variability explained and 0.00
represents none. D2 values ranged from 0.39 to 0.62 for the six

models (see Tables S1–S6 in supplementary material available
online), with BWBS having the highest value at 0.62 and CWH,
the second highest with 0.50. PPBGIDF had a D2 value of 0.42,
and the remaining three zones all had a value of 0.39.

Our first objective was to determine which human influence
variables were important for quantifying spatial variability in
human-caused fire in BC, and how these variables differed

among ecosystems. Overall, WUI was the most frequently
retained variable in the final models (Fig. 2; Table 2) and
significant in all zones except the CWH. Rec areas was the

second-most retained human influence variable, being signifi-
cant in three zones: BWBS, CWH and SBS. Logging, Unpaved
and Paved were all significant in two zones (Logging in BWBS

and ICH; Unpaved in BWBS and SBPS; Paved in BWBS and
SBS), whereas Trail and Rangelandswere only retained respec-
tively in the models for ICH and SBS. Table 2 provides the
measures of variable importance with raw b coefficients and

DAIC for each explanatory term. Details of the final models for
each ecosystem zone are presented in Tables S1–S6. The
following paragraphs provide detailed model results for each

of the six ecosystems zones in alphabetical order.
For the BWBS zone, human influence variables were very

important in controlling spatial patterns of human-caused

fire ignition. The WUI, Logging, Unpaved and Paved variables
were retained in the final model and were top variables in the
average ranking system (Table S1). WUI had the largest b

coefficient (Table 2; b ¼ 1.94; s.e. ¼ 0.19) and the second-
largestDAIC.Logging had the largestDAIC and the third largest
b coefficient (b ¼ 0.79; s.e. ¼ 0.10). Only one biophysical
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variable, Slope, was in the top six most important variables in
BWBS according to average ranking.

For the CWH zone, human-caused fire occurrence was

largely controlled by biophysical variables and no human
influence variables were in the top six in either of the two
rankings. Summer temp and Summer PPT were retained in the

finalmodel and tied as themost important variables according to
the average ranking (Table S2),with both variables being ranked
either first or second according to b coefficients or DAIC.

Summer temp had the highest b coefficient (b ¼ 1.22;
s.e.¼ 0.13), and Summer PPT had the highestDAIC and second
highest b coefficient (b ¼ �0.71; s.e. ¼ 0.06).

Themodel for the ICH zone retained a combination of human

influence and biophysical variables. Summer temp had the
highest average rank (Table S3), with the highest DAIC and
second highestb coefficient (b¼ 1.12; s.e.¼ 0.09).Mixedwood

had the highest b coefficient (b ¼ �1.17; s.e. ¼ 0.28) and the
third highest DAIC. WUI was the highest human influence
variable, ranking third overall, with the second highest DAIC

and third highest b coefficient (b ¼ 0.31; s.e. ¼ 0.05). Logging
was consistently ranked fourth between DAIC and b coeffi-
cients (b ¼ 0.17; s.e. ¼ 0.04).

For the PPBGIDF zone, biophysical variables were signifi-
cant explanatory variables and were important for both ranking
systems. The top four variables, all of which were biophysical,
tied for the top ranking as there were inconsistencies between

DAIC andb coefficient ranks (Table S4). The top variables were
Conifer, Summer temp, Summer PPT and Shrub. Shrub had the
highest DAIC, but only the fifth highest b coefficient (b ¼ 0.38;

s.e. ¼ 0.05). Summer PPT had the highest b coefficient
(b¼�0.77; s.e.¼ 0.15), but only the fifth highestDAIC.Conifer
was ranked the same in all rankings, being the thirdmost important

for both DAIC and b coefficient (b¼ 0.42; s.e.¼ 0.07). Summer
Temp had the second highestb coefficient (b¼ 0.55, s.e.¼ 0.10),
but only the fourthhighestDAICrank.WUIwas thehighest human
influence variable andnarrowlymissed being tiedwith the top four

variables, with the second highestDAIC but only the sixth highest
b coefficient (b ¼ 0.14; s.e. ¼ 0.16).

For the SBPS zone, no disagreements were found between

the two measures of variable importance (Table S5). WUI was
the consensus top variable and one of two human influence
variables retained. WUI obtained the highest DAIC rank and

highest b coefficient (b ¼ 4.90; s.e. ¼ 1.10). The variable
Summer PPTwas ranked second for bothDAIC andb coefficient
ranks (b ¼ �1.44; s.e. ¼ 0.28). Decid was the third most

important variable for both DAIC and b coefficients (b ¼ 1.11;
s.e.¼ 0.27).Unpavedwas the only other human variable retained,
ranking fourth for both AIC and b coefficient (b ¼ 0.29;
s.e. ¼ 0.10).

For the SBS zone, Paved was the consensus top variable
(Table S6), ranking first in both DAIC and b coefficient
(b¼ 1.06; s.e.¼ 0.13).Decid (b¼ 0.44; s.e.¼ 0.06) and Shrub

(b¼ 0.51; s.e.¼ 0.08) tied for the next most important variable,
with Conifer (b ¼ 0.62; s.e. ¼ 0.15) and SW (b ¼ 0.32;
s.e. ¼ 0.04) being tied to round out the top five variables.

Rangelands (b ¼ 0.93; s.e. ¼ 0.31) was the second-most
important human influence variable and ranked sixth overall.

The second objective was to assess the effect size of each
human influence variable across the study area as a whole to

better understand the relative influences of human activity on
human-caused fire occurrence. Our quantification of influence
was based on the averaged ranking system, similar to above, but

here summarising only the human influence variables (Table 3).
The rank order of variables was: WUI . Paved . Logging .

Rec areas. Trail. The variable Rec areas, though consistently

retained in many models across ecosystem zones, had little
marginal effect, ranking 13th overall in influence. Trail was the
least influential variable across all regions, being dropped

everywhere expect ICH. All human influence variables had a
positive effect on human-caused ignitions except Trail in the
ICH zone, which was negative.

The third objective was to assess how the statistical effects of

human influence varied among ecosystem zones. The BWBS
model contained the most human variables, retaining five out of
the seven potential options, and had the highest average rank for

human variables, meaning it was the ecosystem zone where the
effect sizes were the strongest. The SBS model retained the
second highest number of human variables, keeping four vari-

ables, and had the third highest average rank. The zones where
the statistical effect size of human influence was lowest were
CWH and PPBGIDF, both retaining just one variable each: Rec

areas andWUI, respectively; CWH and PPBGIDF also had the
lowest ranks of human influence variables, last and second last,
respectively. In fact, the relative importance of human influence
variables tends to decrease with increasing WUI (Fig. 3). The

BWBS and SBS zones had the lowest proportions, but strongest
effects, ofWUI. In contrast, areas with the highest proportions of
WUI, PPBGIDF and CWH were areas where the human-caused

fire occurrence was largely controlled by biophysical variables.

Discussion

Drivers of human-caused fire vary among ecosystem zones in
BC, and contrary to what we expected, human influence vari-
ables had the strongest statistical effects in more remote areas.

We expected fire to be controlled most strongly by human
influences in areas with the highest human-caused fire density
and greatest human footprint, as has been found in places with

human-dominated fire regimes (e.g. Sturtevant and Cleland
2007; Syphard et al. 2007); however we found the opposite. The
PPBGIDF (ponderosa pine, bunchgrass, interior Douglas-fir)

and CWH (coastal western hemlock) are the most populated
zones and contain the highest proportion ofWUI and paved road
densities in our study, but both zones retained only one human

influence variable and, when retained, it had the lowest ranks of
influence. In contrast, BWBS and SBS are some of the least
developed of the ecosystem zones in the study with low mean
paved road density and low proportions of WUI, but had the

most human influence variables retained in models, with the
highest averaged rank. The variability in key controls of human-
caused fire forms a synthesis for understanding the spatial

dynamics of fire in large heterogeneous regions with the
potential to influence how fire management is implemented.

The differences in key drivers of human-caused fire occur-

rence across a gradient of human influence shares conceptually
similar findings with the global-scale varying constraints hypo-
thesis outlined by Krawchuk and Moritz (2011). In our work,
dominant limiting factors of human-caused fire occurrence vary
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in a predictableway.Human influence factors aremore important

in explaining the long-term spatial variability of fire occurrence in
areas where the human footprint is generally lower. By compari-
son, human-caused fire occurrence in areas with a larger human

footprint is regulated by variables that explain the fuel’s ignition

potential. The fire regime triangle provides a good model for
interpreting our results, where the three sides of the triangle –
ignitions, climate and vegetation – help explain the controls of a
fire regime. The relatively urbanised dry southern interior, the

PPBGIDF, has summers that are hot and dry, and potential human
ignition sources are in abundance. Human-caused fire occurrence
appears to be more strongly controlled by patterns of flammable

fine fuels rather than sources of human-caused ignitions, which
are relatively widespread in the environment. The PPBGIDF
model results reflect this idea: four variables explaining the

spatial variability in dry, fine fuel conditions (Conifer, Summer
temp, Summer PPT, Shrub) tied as most important in explaining
spatial variability in human-caused fire. Conifer, Summer temp

and Shrub all had positive associations with the number of fires,
whereas SummerPPTwas negatively associated. By comparison,
the boreal forest (BWBS) in the north-east of BC has relatively
few people and our models suggested that spatial variability of

potential ignition sources is the major limiting factor for human-
caused fire in this remote region. In the BWBS, all variables
accounting for the presence or movement of potential human

ignition sources far outweighed any other biophysical variables in
determining the spatial variability in fire. Parisien et al. (2016)’s
continental analysis of the human influence onwildfire reinforces

our findings on the heterogeneity of driving factors. Although
human indices were associated with fire across North America,
the effect of human influence was found to be less in some of the

more human-altered regions.
Fire occurrence in moist forests was largely controlled by

variables representing fire-conducive conditions. The coastal
temperate rainforests of BC, the CWH, have large human

populations in some regions of the zone, and the second highest
proportion of WUI of the ecosystem zones; fuels and climate

Table 3. Overall ranking of most important variables to human-caused ignitions with ecosystem zone-specific regression coefficients and delta AIC

A smaller ranking value means the variable had greater importance. Human influence variables are presented in bold text. NA, not retained in final model.

See Table 2 for variables and metrics

BWBS CWH ICH PPBGIDF SBPS SBS

Variable Final rank b DAIC b DAIC b DAIC b DAIC b DAIC b DAIC

WUI 1 1.94 42.2 0.06† NA 0.31 31.1 0.14 43.9 4.9 36.49 0.23† 17.1

Summer temp 2 0.29 0.29 1.22 84.3 1.12 145.5 0.55 26.5 NA NA 0.48 13.7

Summer PPT 3 �0.33 2.9z �0.71 154.2 NA NA �0.77 25.2 �1.44 29.57 NA NA

Conifer 4 �0.19 2.7z 0.51 20.4 NA NA 0.42 32.6 NA NA 0.62 14.2

Mixed 5 �0.09 1.6z 0.55 30.8 �1.17 16.2 NA NA NA NA NA NA

Paved 6 1.24 12.3 NA NA NA NA NA NA NA NA 1.06 59.9

Logging 7 0.79 51.5 NA NA 0.17 11.4 NA NA NA NA NA NA

Shrub 8 NA NA NA NA NA NA 0.38 79.9 NA NA 0.51 33.5

SW 9 NA NA 0.13 3.1 �0.14 9.5 NA NA 0.19 1.4 0.32 47.9

Decid 10 0.09 2.4z 0.23 8.2 NA NA NA NA 1.11 15.8 0.44 54.7

Unpaved 11 0.77 40.6 0.20† NA NA NA NA NA 0.29 5.62 NA NA

Elevation 12 NA NA 0.42 11.3 NA NA �0.4 4.4 NA NA NA NA

Rec areas 13 0.41 17.3 0.08† 6.3 NA NA NA NA NA NA 0.13† 14.5

Slope 14 0.58 13.2 NA NA NA NA NA NA NA NA NA NA

Wetland 15 NA NA 0.42 11.3 NA NA NA NA NA NA NA NA

Rangelands 16 NA NA NA NA NA NA NA NA NA NA 0.93 6.7†

Trail den 17 NA NA NA NA 20.11 3.8 NA NA NA NA NA NA

†Retained in final model but not in top six variables and thus not ranked.
zRetained in final model but DAIC , 3.
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Fig. 3. The statistical effects of human influence variables decreases as

proportion of WUI increases: (a) the number of retained human influence

variables in each ecosystem zone against proportion ofWUI; (b) the average
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were fit by linear regression with (a) b ¼ �64.46 (s.e. ¼ 32.03) and

intercept ¼ 3.66 (s.e. ¼ 0.72), with multiple R2 of 0.50; (b) b ¼ �93.70

(s.e. ¼ 40.56) and intercept ¼ 7.68 (s.e. ¼ 0.001), with multiple R2 of 0.57.
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would control fire occurrence, not variables measuring human
activity. Regardless of fire cause, fire ignition in wet forests is
often constrained by climatic factors, as the high levels of

precipitation act as a major regulator of ignitability and combus-
tibility of fuel, and thus fire occurrence (Pyne 1984; Flannigan
et al. 2009). The fact that summer temperature, with a positive

association and precipitation, with a negative association, were
top variables in the CWH model reinforced the documented
climatic controls of fire patterns in wet forests. The ICH is

another notable wet region in BC and, as such, would be
presumed to have similar controlling factors to human-caused
ignitions as would CWH. However, the zone receives less
precipitation and has lower levels of human development;

accordingly we observed a larger effect of human influence
variables. Strong positive associations with summer temperature
and vegetation type were also found, and significant but weak

positive effects from timber harvesting and the WUI.
The sub-boreal regions SBPS and SBS offeredmixed support

for our developing synthesis of spatial variability in the limiting

factors of human-caused ignitions. In the more remote and
higher plateau of the SBPS, the dry climate and small human
footprint suggest variation in ignitions sources (e.g. human

factors) are likely the key limiting factor in the region. Propor-
tion of WUI, though low in the zone, had a large effect size in
both measures of variable importance and reflectsWUI’s strong
positive association with human-caused ignitions. The small

number of human influence variables retained in the final model
is most likely indicative of the undeveloped and undiversified
human footprint in the ecosystem: the two human influence

variables, WUI and unpaved road density, most likely account
for the bulk of the spatial variability describing human ignition
sources in the region.

The large, sub-boreal spruce region, the SBS, is heteroge-
neous with a range of human influences. Spatial pattern of fire in
the zone appears to have a balance of explanatory power from
both human influence and biophysical constraints. Paved road

density was the top variable explaining human-caused ignitions.
Paved road density’s large effect might reflect both the level of
human development, as the metric of human presence, but also

the accidental ignition of fires while re-creating near roads.
After accounting for human-caused ignition sources, fire in the
SBS appears to be limited by flammable fuels, because the next

tier of important variables are all vegetation types.
Our WUI metric was the most important variable across all

regions. The WUI metric clearly captured the bulk of human–

fire interactions, supporting existing findings in other parts of
North America showing that the edge of human development
and specific housing patterns are strong predictors of human-
caused ignition (Syphard et al. 2007; Hawbaker et al. 2013;

Faivre et al. 2014). The WUI was ranked as the top variable in
the average ranking system across all regions, meaning that,
when included, it had some of the largest effect sizes in the

models. Our modelling approach used multiple regression
analyses, where term coefficients are marginal, that is, the effect
of a variable after accounting for all other variables. The

marginal effect of the WUI might be stronger than other human
influence variables, as WUI can potentially capture other
human–fire interactions – for example, escaped campfires or
logging fires, which can cluster around small levels of housing

development. The lack of significant human influence variables
in previous research focused on human-caused fires in BC, such
as in Magnussen and Taylor (2012), might be explained by the

exclusion of WUI or other housing-related metrics in their
analyses, althoughwe understand that the focus of their research
was on daily variations in fire and weather that require exam-

inations of fine-scale dynamic processes.We strongly advise the
inclusion of a WUI-type metric in future research and analysis
on human-caused fire on multiple spatial and temporal scales to

account for ignition source potential.
Metrics for recreational activities were positively associated

with the number of human-caused ignitions, and likely represent
the contribution of hiking, camping and hunting activities to

human-caused wildfire. The proportion of recreational areas
was the second-most retained human influence variable, impor-
tant in the three largest zones: BWBS, SBS andCWH.However,

when retained, the variable had little effect, most likely captur-
ing a small but significant number of fires related to recreational
activities in these large, diverse regions. In hindsight, the

recreational areas explanatory variable likely misses important
areas where popular recreational activities occur, for example,
undesignated crown lands. A re-analysis with an expansive

dataset with all types of recreational areasmight lead to different
conclusions with stronger effect sizes when the variables were
retained.

Metrics representing forest industry activity were positively

associated with human-caused fire. Proportion of timber har-
vesting areas was retained in two zones, BWBS and ICH. The
BWBS has a relatively small harvesting footprint; the fact that

proportion of timber harvesting is relatively low in the boreal
region highlights how sensitive the region could be to a slight
increase in industry footprint, although the variable could be

retained in final models as a result of the overall low population
density in the remote boreal regions of BC and not a signal of
timber harvesting. In the ICH, the significant effect of harvest
activity likely reflects the extensive, but heterogeneous forestry

footprint in the region. The ICH has a productive forestry
industry (Meidinger and Pojar 1991), and the presence of
increased ignition sources related to the industry likely has a

significant effect on human-caused fire occurrence in the region.
The absence of a significant association from harvesting in the
heavily logged CWH zone possibly supports existing research

that the spatial variability in ignitions in very moist regions is
largely controlled by variables related to climate (Lindenmayer
et al. 2009). Landscapes harvested for timber can be associated

with human activity and therefore an increased potential for
human-caused ignitions, but also with changes to the micro-
climate of the area and fuel characteristics (Lindenmayer et al.
2009). Many of the changes attributed to harvesting operations

in western North America have increased flammability of sites,
at least in the near term (Donato et al. 2006; Krawchuk and
Cumming 2009), specifically with dry dead slash accumulation

that is highly flammable (Dodge 1972; Lindenmayer et al.

2009). In our unpublished results, proportion of timber harvest-
ing sites was retained with a positive association in lightning-

caused fire models for both BWBS and ICH using the same
subset of human influence and biophysical variables.

Although human-caused wildfires have the potential to
become large and influential for both human and ecological
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systems, it is important to note that the majority of human-
caused fires are typically smaller than lightning-caused fires.
The fuel structure and connectivity required for a fire to spread is

often fragmented or treated in the locations where human-caused
fires occur. Additionally, human-caused fires cluster around
patterns of human development that have infrastructure, such as

roads, that allows wildfire suppression teams to gain access and
halt active fires, creating what is sometimes called the WUI fire
paradox. Fire management at the WUI, such as fuel reduction

treatments and restricted fire zones adjacent to human settlements,
influence fire occurrence and fire size. Research has identified an
overall negative linear relationship between fire probability and
mean fire size across much of the globe, as increases in anthro-

pogenic variables tend to decrease the size of fires (Hantson et al.
2015; Parisien et al. 2016). Fire management and suppression
effects were not captured in our analyses. An analysis of large,

human-caused fires is a logical next step for future research that
would allow us to determine if large fires show different drivers
from all human-caused fires considered together.

Our research expands on the increasing understanding of the
drivers of spatial variation in human-caused fire occurrence and
shows that the importance of specific socioecological drivers

vary based on levels of human development. In areas with high
levels of human development, our models suggest spatial
patterns in human-caused fire occurrence will typically be more
strongly controlled by variables related to climate and fuel

structure. In contrast, areas with little human development
may be particularly sensitive to future development that will
increase the number of ignition sources. WUI-type metrics

provide important and strong characterisation of spatial patterns
in human-caused fire potential, regardless of the regional
characteristics. Our work contributes to a synthesis on the

constraints of wildfire for an uncertain future where expansion
of human development (Theobald and Romme 2007) and
climate change (Flannigan et al. 2009) create complex and
evolving human–fire interactions.
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