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Abstract. Wildfires can impair human health because of the toxicity of emitted pollutants, and threaten communities,
structures and the integrity of ecosystems sensitive to disturbance. Climate and socioeconomic factors (e.g. population and

income growth) are known regional drivers ofwildfires. Reflecting changes in these factors inwildfire emissions estimates
is thus a critical need in air quality and health risk assessments in the south-eastern United States. We developed such a
methodology leveraging published statistical models of annual area burned (AAB) over the US Southeast for 2011–2060,
based on county-level socioeconomic and climate projections, to estimate daily wildfire emissions in selected historical

and future years. Projected AABs were 7 to 150% lower on average than the historical mean AABs for 1992–2010;
projected wildfire fine-particulate emissions were 13 to 62% lower than those based on historical AABs, with a temporal
variability driven by the climate system. The greatest differences were in areas of large wildfire impacts from

socioeconomic factors, suggesting that historically based (static) wildfire inventories cannot properly represent future
air quality responses to changes in these factors. The results also underscore the need to correct biases in the dynamical
downscaling of wildfire climate drivers to project the health risks of wildfire emissions more reliably.
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Introduction

Wildfires have serious consequences for human health because
of the dramatic increase in the concentrations of pollutants of

known toxicity emitted in wildfire smoke. There have been
several studies (Wegesser et al. 2009; Rappold et al. 2011; Fann
et al. 2013) on the adverse health impacts of wildfire-emitted

particulate matter (PM) and ozone.Wegesser et al. (2009) found
the inherent toxicity of PM from wildfires to be greater than
equal doses of PM in ambient air. These researchers have also

attributed the toxicity of PM collected fromAlaskawildfire sites
in their study, in part, to reactive metals as a major source of
carbon-centred free radicals, following the findings of Leonard

et al. (2000, 2007). Toxic polychlorinated dibenzodioxins and
dibenzofurans, and aromatic compounds are also emitted from
forest and grassland fires (Gullett et al. 2008). In addition to their
adverse health impacts, wildfires can cause extensive damage to

human communities and structures and threaten the integrity of
some ecosystems that are sensitive to disturbance. For example,
in 2016, nearly US$2b of federal funds were spent suppressing

wildfires that totalled more than 2.2� 106 ha (5.5� 106 acres)
on lands managed by the USDA Forest Service and the
Department of the Interior (National Interagency Fire Center

2017a). Of these, the overall South-wide costs in 2016 of
wildfire suppression of more than 494 000 ha (1.22� 106 acres)
burned were reported at $121m (National Fire and Aviation

Management 2017). Wildfires in Smoky Mountain National
Park, TN, alone caused up to $2b in damages by some estimates
(National Park Service 2017) in late November that year. These

are not the only costs of wildfires, however. A large part of the
economic impact of wildfires is because of the human health
impacts of smoke exposure. Fann et al. (2018) estimate the
present combined healthcare costs of mortality and morbidity
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due to exposure to wildfire-attributable PM less than 2.5 mm in
aerodynamic diameter (termed PM2.5) to be $63b (2010 US$)
for short-term exposures, and $495b for long-term exposures

nationwide. Rappold et al. (2011, 2012, 2014) came to similar
conclusions in their study of the health costs of a 45-day peat bog
fire in 2008 at the Pocosin Lakes National Wildlife Refuge in

rural North Carolina, whichwas ignited by lightning following a
long drought. Rappold et al. (2014) put the costs of emergency
department visits during the fire due to excess asthma and

congestive heart failure at over $1m, but their estimated costs of
general health outcomes, predominantly premature mortality,
were $48.4m, far in excess of the medical costs to treat short-
term health outcomes.

Climate change has been increasingly implicated in the rise
in the frequency andmagnitude of large wildfires in theWestern
US because of the increasing frequency and severity of droughts

(Dennison et al. 2014; Stavros et al. 2014; Abatzoglou and
Williams 2016). This increasing trend in total area burned has
been observed even while the absolute numbers of wildfires has

demonstrated a declining trend since the 1960s (National
Interagency Fire Center 2017b). Climate change is also
expected to lead to longer fire seasons in the south-eastern US

bymid-century, as shown in the regional climatemodel analyses
of Liu et al. (2013). However, wildfires in this region are more
strongly connected to human factors (Prestemon et al. 2002;
Mercer and Prestemon 2005; Syphard et al. 2017). Humans both

ignite more fires in this region (Balch et al. 2017) and actively
participate in their suppression (Prestemon et al. 2013). Half of
the major wildfires in late 2016 in and around Gatlinburg, TN,

were attributed to human causes, illustrating the role of humans
on wildfire occurrence in this region. Human factors also play a
role in wildfire impacts in the form of demographics and income

levels of the exposed populations (Gaither et al. 2011; Rappold
et al. 2011, 2014). Increased urbanisation and expansion of the
wildland–urban interface (WUI) is only expected to increase in
the South in the coming decades, increasing the vulnerability of

populations to wildfire smoke exposure. In their study of 37
regions across the continental US, Syphard et al. (2017) found
wide geographical variability in both the fire–climate relation-

ship, and the role of human presence in fire regimes; their study
suggests a geographically complementary role for the two.
Thus, region-specific methods of constructing wildfire emis-

sions inventories (EIs) that account for changes in both climate
and societal factors are a critical need for better estimating how
wildfire emissions and their air-quality impacts will change in

the Southeast andmanagingwildfires and their associated health
risks long-term.

Current wildfire EIs, like those used to provide high-
resolution inputs (at 12-� 12-km grid spacing or finer) required

for air-quality simulations, are typically constructed from the
most current data of fire activity and fuel loads selected for their
completeness, reliability and accessibility. Empirical data of

fire counts for these inventories are provided at the county level
in Situation Reports archived and maintained by the USDA
Forest Service. They are often augmented by data from satellite

remote sensing (RS) of fire pixels detected by the Moderate
Resolution Imaging Spectroradiometer (MODIS) instrument,
served through the National Oceanic and Atmospheric Admin-
istration (NOAA) Hazard Mapping System (Ruminski et al.

2006) and reconciled with ground-based fire reports in the
SMARTFIRE emissions processing system (Larkin et al.

2009). The US Environment Protection Agency (EPA)

National Emission Inventory (NEI), for example, includes a
fire-EI that is updated yearly for its base-year air-quality
assessments and forecasting applications using fire activity

from the USDA Forest Service Situation Reports, MODIS fire
counts from HMS, and fire perimeters from the Monitoring
Trends in Burn Severity project (Eidenshink et al. 2007), all of

which are processed in SMARTFIRE (Pouliot et al. 2012;
Larkin et al. 2014). On-the-ground data that are reported by
state and local agencies can also be included once every 3 years,
during the NEI release.

Wildfire EIs used in global and regional air-quality model-
ling characterise the atmospheric loadings attributable to wild-
fire emissions of pollutants and their precursors under current

conditions. Using these inventories in future-year wildfire
impact assessments will be wrong from the start (McKenzie
et al. 2014) because they do not account for changes in climate,

land use, population density or income levels (which may affect
emissions exposures – e.g. Rappold et al. 2012). All of these
factors are regional drivers in initiating and sustaining wildfires

(Mercer and Prestemon 2005) as well as in suppressing them
(e.g. Butry et al. 2001). Yet, wildfire inventories used in future-
year air quality simulations are based very often on historical
wildfire records, without accounting for how changes in climate

and other factors could affect future wildfire activity. Future air-
quality estimates need to address changes in weather patterns in
future years to estimate daily area burned, and methods do exist

to do so. For example, McKenzie et al. (2006) projected future
daily wildfire activity in the Pacific Northwest region of the US
using a stochastic fire-ignition model that estimates daily area

burned. These estimates are based on fire weather indices
calculated from a mesoscale meteorological-model simulation
for the future modelling period. The results of McKenzie et al.
(2006) showed that this stochasticmethod estimated area burned

in a historical fire season (2003) over the Pacific Northwest to
within 8% of actual burned areas. These estimations, as such, do
not include the influences that future changes in population and

income could have on wildfire activity. Prestemon et al. (2002,
2016) have shown that such changes are important considera-
tions in the human factors dominating wildfire areas burned in

the US Southeast.
The statistical models developed by Prestemon et al. (2016)

take into account the combined impacts of climate and socio-

economic factors on wildfire occurrence to estimate AAB at the
county level. These multi-stage regression models of historical
AABs over the Southeast were used to make multi-decadal
projections of future AAB for the region, with fine-scale

projections of future climate, socioeconomic factors and land
use change as inputs. The statistical models were validated in
each stage of their construction against out-of-sample historical

observations to eliminate bias. These models of AAB thus
provide a framework for the construction of wildfire EIs that
allow air quality and exposure assessments to be based on an

evolving landscape of natural and human factors influencing fire
occurrence, and to project future air quality in the coming
decades more realistically in response to potential changes in
climate and society.

314 Int. J. Wildland Fire U. Shankar et al.



In this work, we leverage the AAB projection models of
Prestemon et al. (2016) that incorporate regional changes in
climate, population, income and land use to project daily

wildfire emissions in the Southeast, and present the results
herein for selected years in the period 2010–2060. We hypothe-
sise and show that wildfire-EIs for the Southeast, if based on

historical AABs, will yield significantly different emission
levels for criteria pollutants from inventories that do account
for these changes. Consequently, we suggest that historical

AABs cannot be used to represent the impacts of projected
changes in climate and society in the region over the next four
decades adequately. Given the uncertainties in the climate
change estimates, and the importance of human influences on

south-eastern US wildfires, both present and future (Prestemon
et al. 2016), realistic wildfire EIs for the Southeast require an
integrated method that accounts for expected changes in both

climate and society. Model projections of changes in fire
activity and fuel loads due to climate change, coupled with
projections of human-caused wildfire, could lead to more

effective land andwildfiremanagement in amanner that reduces
the adverse air-quality impacts of wildfires in future years
(McKenzie et al. 2014; Prestemon et al. 2016). The research

presented here proposes and tests such a methodology in the
south-eastern US. This work is not intended to be an exhaustive
study of climate and socioeconomic drivers of wildfires in the
Southeast, but rather the description of a feasible, scientifically

sound and regionally relevant methodology of constructing
wildfire emissions projections that would include the impacts
of those drivers, and how they might change in the future.

The emissions-projection methodology developed in this
work addresses the stochastic process of wildfires. Although
prescribed burns account for more ignitions in the Southeast than

dowildfires, they are, by definition, planned fires. They therefore
need very different projection methodologies, e.g. incorporating
demographic and socioeconomic factors explicitly rather than
implicitly through the AABs, as is done here, as well as

incorporating different criteria for selecting the burn days. We
address these and related issues in the ‘Conclusions’ section.

Methods

This section describes a dynamic approach to constructing

inventories of daily future wildfire emissions by leveraging a
readily available statistical model that estimates AAB
accounting for changes in climate and society over the five

decades from 2010 to 2060. It describes our application of the
statistical AAB estimation model of Prestemon et al. (2016) and
of the Fire Scenario Builder (FSB) model (McKenzie et al.

2006), which uses these AABs as constraints to estimate daily
areas burned based on wildfire ignition probabilities. The daily
burned areas are then used in the BlueSky fire emissions model
(Larkin et al. 2009) to estimate daily wildfire emissions that are

needed as inputs for future air-quality simulations. Fig. 1 shows
a schematic of these various models and data flows in con-
structing a wildfire EI.

Annual area burned estimation

To evaluate the effects of including changes in regional climate
and socioeconomics on wildfire activity in the Southeast, our

current- and future-year AAB estimates using two different
climate downscaling methods are compared against a base case
of AABs over the region with no projections of climate or
societal influences. A summary of the three AAB estimation

methods is provided in Table 1. These are: (1) a base case of
historical mean AABs at the county-level calculated with data
from 1992 to 2010; (2) a case with AABs that were estimated

with the published statistical model of Prestemon et al. (2016)
using statistically downscaled meteorological inputs; and (3) a
case with AABs estimated with the statistical model of Pre-

stemon et al. (2016) using dynamically downscaled meteoro-
logical inputs. The base case, hereafter called ‘historical’,
consists of historical mean AABs from the wildfire burned areas
compiled from Situation Reports at the county level for 1992–

2011 (Short 2014, 2015), because in this first-time application of
the FSB to the south-eastern US, we aimed for as similar an
implementation to its north-western applications (McKenzie

et al. 2006) as feasible. The historical data also provided the
AABs used in a static case, i.e. one that does not include changes
in climate and socioeconomic factors, to contrast with the other

two AAB estimation methods. As empirically accounted for in
Prestemon et al. (2016), some counties and years of the 1992–
2010 historical period had potentially invalid observations of

wildfire areas burned in the Short (2014) database (K. C. Short,
pers. comm.). Gap filling of these invalid observations of his-
torical data was done by replacing potentially invalid observa-
tions in the Short (2014) database with in-sample predictions of

AAB generated with the statistical models of Prestemon et al.

(2016). Gap filling accounted for 35.1% of the observations in
the region from 1992 to 2010. The county-level historical mean

AABs were remapped using a GIS tool on a column–row grid at
12-� 12-km grid spacing over the south-eastern US modelling
domain (D02) shown in Fig. 2 for the wildfire inventory

development; their sum over this domain is estimated at
450 499 ha (Fig. 3). The historical case is equivalent to a pro-
jection of future wildfires in the Southeast that ignores changes
in climate and socioeconomic factors, and the 19-year historical

AAB
Estimator

Fire Scenario Builder

Gridded AAB
2010–2060

Fuel Load
Database

Daily Areas Burned
(2010 and Selected

Future Years)
 

2010 and Future-year Daily
Wildfire Inventory

BlueSky Fire
Emissions

Model

Situation Reports
(historical)

Gridded
FWIs

Downscaled
Climate Data

(hourly)

(monthly)

Fig. 1. Flow diagram of various models and data needed for estimating

benchmark (2010) and future wildfire emissions. AAB, annual area burned;

FWIs, fire weather indices.
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mean of AAB (1992–2010) is used as its representative constant
value, as shown in the time slices in Fig. 3. For reference, the
actual-year AAB for 2010 is also shown in the figure.

To compare against the historical case, two AAB projections
were made that do account for changes in climate and socioeco-
nomic factors. Both of them projected the statistical models of
Prestemon et al. (2016) onto both 2010 and to future climatology.

The first case, hereafter called ‘statistical d-s’, used monthly
average values of daily maximum temperature, minimum tem-
perature and potential evapotranspiration (PET – Linacre 1977),

and monthly total precipitation as meteorological inputs to the
statistical models of Prestemon et al. (2016). In that work, these
inputs were taken from historical and projected climate data that

were statistically downscaled at 50 � 50 resolution (Joyce et al.

2014) using the downscaling relationship of Daly et al. (2002)
from each of nine general circulation model (GCM) realisations.

The downscaled climate model inputs were remapped using a
Lambert Conformal Conic (LCC) map projection over the south-
eastern US, to domain D02 (Fig. 2) at 12-� 12-km grid spacing,
and aggregated to the required monthly values.

Other key inputs for the statistical model are income and
population growth. Projections of these variables were based on
three of the greenhouse gas (GHG) emission scenarios (Naki-

cenovic and Steward 2000) formulated by the Intergovernmen-
tal Panel on Climate Change (IPCC) in support of its Third
Assessment Report (AR3), which were used in the nine climate

Table 1. Annual area burned data used in the wildfire inventories for the south-eastern US

Note: ‘Statistical model’ refers to the statistical annual area burned (AAB) projection model of Prestemon et al. (2016). The modelling domains D01 and D02

are shown in Fig. 2. CGCM3, CGCM31, Canadian General Circulation Model, ver. 3, ver. 3.1; WRF, Weather Research and Forecasting model

Case name AAB Climate scenario Time

dependence

Spatial resolution of meteorology

Historical County-level historical mean of 1992–2010

Situation Report data remapped to domain

D02

None Static N/A

Statistical d-s Estimated from statistical model with

statistically downscaled climate, county-

level projections of socioeceonomics for

domain D02

CGCM31, scenario A2 Varies

yearly

50 � 50 (latitude� longitude) from

climate model, remapped to domain

D02 at 12-� 12-km

Dynamical d-s Estimated from statistical model with

dynamically downscaled climate, county-

level projections of socioeceonomics for

domain D02

CGCM3, scenario A2,

dynamically downscaled

with WRFG over

domain D01

Varies

yearly

Dynamically downscaled over

domain D02 at 12-� 12-km from

domain D01 WRFG output at

50-� 50-km

120�W

20�N

25�N

30�N

35�N

40�N

45�N

50�N

110�W 100�W 90�W 80�W

D02

D01

Fig. 2. Modelling domains: D01 at 50-� 50-km grid spacing; D02 at 12-� 12-km grid spacing.

316 Int. J. Wildland Fire U. Shankar et al.



realisations (3 GCMs� 3 GHG emission scenarios) reported in
Prestemon et al. (2016). The emissions scenarios A1B, repre-

senting high economic growth and low population growth, A2,
representing moderate economic growth and high population
growth, and B2, representing moderate economic growth and

low population growth, provided the basis for the income and
population growth rates used by Prestemon et al. (2016) for the
South-east from the 2010 county-level data to 2060. Historical
data needed for projecting population growth at the county level

were obtained from the US Census Bureau (2012). Historical
annual personal income data by county came from the US
Bureau of Economic Analysis (2013a) and were converted to

real values (in constant 2005 US$) using the US gross domestic
product deflator (US Bureau of Economic Analysis 2013b).
Projections of population and income at 5-year increments for

each scenario were obtained from the USDA Forest Service
(2014), and linearly interpolated for the intervening years.
Finally, inputs to the statistical model of changes in land use

expected under the future climate scenarios, including those due
to changes in the use of forest, cropland, pasture, and urban
lands, were estimated at the county level by Wear (2013).

Prestemon et al. (2016) provide justification for using the

AR3 scenarios rather than the more currently used Representa-
tive Concentration Pathways (RCPs) developed under the
IPCC’s Fifth Assessment Report (AR5): unlike the RCPs, the

AR3 emission scenarios are directly and mechanistically linked
to projections of economic and population growth. These
internally consistent socioeconomic projections were also the

basis for the county-level projections used by Prestemon et al.

(2016) for income and population growth and by Wear (2013)
for land uses, which provided the input variables known to be
connected to wildfires in the South-east. Updating those

projections to be consistent with the RCPs would have required
a complete revamp of these region-specific projection data, and
was beyond the scope of their work.

The second AAB projection used dynamical, rather than
statistical, downscaling of climate model results to provide the
meteorological inputs to the AAB estimator, and is hereafter

called ‘dynamical d-s’. Meteorological fields for this projection
were simulated by a mesoscale meteorological model, the
Advanced Research Weather Research and Forecasting

(WRF) model, ver. 3.4.1 (Skamarock et al. 2008), forced by
dynamically downscaled climate model inputs at its lateral
boundaries. The dynamical d-s projection was motivated by
the need to examine the effects of using consistent meteorologi-

cal inputs throughout the inventory development, beginning
with the AAB projections, and continuing on to the daily
wildfire emissions estimates, as they will also be used later in

the hourly air-quality impact assessments. Dynamical, rather
than statistical, downscaling has been the practice over the past
few decades for generating meteorological inputs for air quality

models, because it provides a complete and consistent frame-
work of hourly, 3-D meteorological fields needed to process
emissions from all the meteorologically driven sectors (e.g.

vegetation, dust, sea spray, fires) and drive the air quality
simulations, at the spatiotemporal scales appropriate for tropo-
spheric chemistry and transport of trace pollutants. It is, there-
fore, important to understand its performance and its limitations

to improve the reliability of its projections of wildfire activity
and emissions. For comparison with statistical d-s AAB projec-
tions, the relevant hourly meteorological fields (minimum and

maximum daily temperature, PET and precipitation) fromWRF
were aggregated to the temporal resolution (monthly) of the
predictor variables in the statistical model. Due to its high

computational cost, the dynamical downscaling for this com-
parative study could be done only in selected years over the
south-eastern US (domain D02 in Fig. 2), whereas the statistical
downscaling could be applied for every year from 2010 to 2060.

The GCM realisation used for the dynamical downscaling and
comparison with the statistical d-s results was selected from the
publicly available outputs in the North American Regional

Climate Change Assessment Program (NARCCAP – Mearns
et al. 2009) archive. Provided in this archive were GCM outputs
that had been dynamically downscaledwithWRF at 50-� 50-km

horizontal resolution over the conterminous US (CONUS)
domain D01 in Fig. 2. We examined the NARCCAP archive
for parent GCM–GHG scenario combinations that matched

those used for the statistical downscaling from Joyce et al.

(2014), finding only one, the Canadian General Circulation
Model, ver. 3 (CGCM3) using the A2 GHG emission scenario,
which best fit this criterion. The WRF model results in NARC-

CAP downscaled from this GCM realisation were then used to
provide the lateral boundary conditions (LBCs) for a nested
WRF simulation at 12-� 12-kmhorizontal grid spacing over the

Southeast domain. To the extent possible, the same physics
options were chosen in WRF ver. 3.4.1 for domain D02 as were
used in NARCCAP for domain D01; these options are listed in

Table 2. There were differences in the shortwave and longwave
radiation schemes and the microphysics parameterisations,
because of updates to the WRF model options since the time
of the NARCCAP simulations. However, our south-eastern
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D
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w
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00
0
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5

2043 2048 2053 2058

Year

Fig. 3. Time slices of total annual area burned (AAB) domain-wide

(105 ha) in domain D02 of Fig. 2: historical (triangles) – historical mean

value for 1992–2010 replicated in all years; statistical d-s (squares) –

estimated using statistically downscaled meteorology from the Canadian

General CirculationModel, ver. 3.1 (CGCM31) and A2 scenario realisation;

dynamical d-s (diamonds) – estimated with dynamically downscaled mete-

orology from the Canadian General CirculationModel, ver. 3 (CGCM3) and

A2 scenario realisation; open circle – historical 2010-only data.
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WRF simulations were performed using the nest-down feature

in WRF, i.e. using archived boundary inputs extracted from the
D01 simulation, rather than as part of a two-way nested multi-
domain simulation with D01. The nest-down feature eliminates

the possibility of undesired feedbacks from inconsistent
schemes between the two domains.

Wildfire emissions for the three cases were estimated for a
historical year, 2010, for eventual use in air-quality simulations

that will be evaluated against ambient observations. As no
downscaled data were available for the 2020–2040 period in
NARCCAP, the future fire emissions were projected every 5

years beginning with a randomly selected future year – in our
case, 2043 – providing inventories for 2043, 2048, 2053 and
2058 (thus the data gap 2010–2043). The random year selection

seems reasonable in light of the interannual variability seen in the
AAB projections of Prestemon et al. (2016), which nevertheless
showed a small but significant increase in projectedmedianAAB

over the region, 2056–2060, relative to 2016–2020.
To ensure a robust comparison between the statistical and

dynamical d-s methodologies, the AAB projections for the
statistical d-s case were then redone in this work using only

the downscaled inputs from the CGCM31/A2 climate model
realisation. The AABs presented here for the statistical d-s case,
therefore, differ somewhat from those published in Prestemon

et al. (2016), who reported projected median and uncertainty
bands of AABs calculated using all nine climate realisations,
even though the underlying statistical models remain the same.

Fire Scenario Builder

The Fire Scenario Builder model (McKenzie et al. 2006) is a
stochastic model that estimates daily areas burned at the spatial

scales associated with regional climate and air-quality models.
The FSB was designed specifically to provide coarse-scale fire
areas (as opposed to individual fire perimeters) as inputs to

current and future projections of daily fire emissions and smoke
dispersion. A detailed schematic of the FSBmodel is provided in
Fig. S1, available as Supplementary material to this paper. Two

key assumptions of the FSB are (1) that a fire event in a grid cell
will only occur once in a fire season (assuming that fuels cannot
return to the landscape within the season), and (2) that a fire

season is entirely contained within the calendar year. Using

mean AAB associated with some baseline climatology, which is
usually historical but not necessarily, the FSB samples a fire-
start day randomly from the fire season based on an assigned

probability distribution of fire likelihood. This is typically uni-
form unless informed by particular fire-start data. Here, we use
our three estimates of mean AAB – historical, statistical d-s, and
dynamical d-s – as baselines for the historical case and the two

projections. Although changes in socioeconomic variables are
not explicitly input to the FSB, it includes the response of
wildfires to changes in socioeconomic factors implicit in the

AAB projections. For each model grid cell, the FSB constructs a
cumulative distribution of area burned with the AAB for that
grid cell as the mean, using a mixed model that is a negative

exponential up to the 95th percentile and a truncated Pareto
distribution beyond that value. The beginning and end dates of
the fire season appropriate for the Bailey ecoregion province

(Bailey 1995) allocated to each model grid cell are read from a
national databasemaintained by the USDAForest Service. Fires
are further constrained to burn only if precipitation is less than
5 mm day�1. If it is above that, another fire-start day is sampled.

A fire-weather metric from the historical climatology that
can be simulated for the future is chosen as an indicator of
potential fire size. The fire-weather metric used in this study is

the fire weather index (FWI – Van Wagner and Pickett 1985)
from the Canadian Forest Fire Danger Rating System
(CFFDRS), and the calculation of this metric is accomplished

through its Canadian Forest Fire Weather Index system shown
schematically in Fig. S2. FWI is a comprehensive metric that
incorporates several measures of heat and dryness, and is used in
fire-danger projections in forests within and outside Canada

(Liu et al. 2010; Stavros et al. 2014). It is computed from the
dynamically downscaled daily meteorology for all selected
years. We note that the use of this metric necessitated the use

of dynamically downscaled meteorological data in all daily fire
emissions estimates, even in the case where the AABs were
estimated with statistically downscaled meteorological inputs,

because the temporal aggregation (monthly) at which the
statistical d-s inputs were available was too coarse to calculate
daily FWI. Area burned on the randomly selected fire-start day

Table 2. Weather Research and Forecasting (WRF) model physics options for the D01 and D02 modelling domains

Domain Long-wave

radiation

Short-wave

radiation

Microphysics Cumulus convective

scheme

Boundary layer scheme Land surface

model

D01 (CONUS) CAM3A CAM3 Prognostic cloud liquid

and ice, rain, snowB

Grell 3-D ensembleC Yonsei University explicit

entrainment schemeD
NoahE

D02 (Southeast) RRTMGF RRTMG WRF Single- Moment

6-Class (WSM6) micro-

physics w/graupelG
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for each case is calculated as the quantile from the cumulative
distribution of AAB that corresponds to the quantile of the FWI
from the climatology for that case matching that day’s FWI.

Fires as treated by the FSB can burn up to 4047 ha (10 000 acres)
per day; larger fires are modelled as multiday fires.

At first glance, the use of our 12-� 12-km spatial resolution

may seem too coarse for the FSB, but our selection of this
resolution can be understood as follows. The FSB is really
simulating annual fire activity as a surrogate for real fire

simulation. Actual fires do not burn contiguously for 144 km2

except in extreme events, but the coarse scale (relative to that of
typical fires) of the FSB application for air-quality modelling
requires a stochastic representation of AAB, the relevant fire

metric. Therefore, the area burned in a single year (‘fire’) is
simulated by the FSB, constrained probabilistically by the
historical mean (or a future-year annual mean). Lumping all

possible ‘fires’ in a year into a single ‘event’ would cause drastic
information loss at the scale of fire-spread models, but at our
coarser scale it is the only tractable way to represent AAB, and

actually limits the error propagation that would ensue from
attempts to partition burned area into individual ‘fires’ (some-
where within a 12-� 12-km grid cell).

BlueSky fire emissions model

Using the results from the FSB, daily fire emissions were esti-
mated using the BlueSky smoke emissions modelling frame-
work (Larkin et al. 2009) for each of the cases discussed

(historical, statistical d-s and dynamical d-s). The BlueSky
model accomplishes this by using the gridded daily burned areas
in conjunction with fuel load data available in the Fuel Char-

acteristic Classification System (FCCS) database (McKenzie
et al. 2007) to estimate daily fire emission rates. BlueSky is a
highly modular framework that links state-of-the-science

models of meteorology, fuels consumption and emissions, and
provides flexibility in the data sources for fire activity and fuel
load inputs. Fuels consumption in BlueSky is based on the

CONSUME model, ver. 3.0 (Ottmar et al. 2006), the default
modelling option, which is an empirical model developed by the
USDA Forest Service based on 106 different pre- and post-burn
plots covering several vegetation types and fire conditions.

Emissions are estimated as daily rates by a fire emissions
module for CO, CO2, CH4 and PM2.5. In our application,
BlueSky is used at the latitude–longitude location of each fire

strictly for estimating total emission magnitudes of the various
emitted species. The fire emissions estimated in BlueSky for the
‘fire’ modelled by the FSB are processed in the Sparse Matrix

Operator Kernel Emissions (SMOKE) processing system
(Houyoux et al. 2000) similarly to other point sources, which are
vertically distributed in the air-quality model simulation in a
later step (not presented here), using the plume-rise algorithm

within that model.

Results

This section presents the comparisons of the historical mean

AABs from a retrospective period against those estimated using
the climate-downscaling approaches described previously,
examining both time slices of AABs aggregated over the south-
eastern modelling domain, and their spatial distributions in each

modelled year. Similar analyses are then presented of the
wildfire emissions of PM2.5 estimated using each set of these

AABs.

Comparisons of AAB estimation methods

The purpose of these analyses is to examine the sensitivity of the

statistical model estimates of AABs to the downscaling method
used to provide their meteorological inputs, because the AABs
are used as constraints on the daily burned area estimates needed

to calculate wildfire emissions. AABs from the historical mean
over a 19-year period, 1992–2010 (inclusive), provide a
benchmark to compare against the modelled estimates of AABs

using the downscaled climate inputs. These historical mean
AABs summed over the domain D02 add up to 450 499 ha,
shown as a constant value in Fig. 3 for all years modelled. The
spatial pattern of the historical mean AABs is shown in Fig. 4.

Prestemon et al. (2016) found that human-caused ignitions,
whether accidental or intentional, dominate over lightning-
caused ignitions in the peak locations shown in Fig. 4. These

occur in the western part of the domain, in Oklahoma, Arkansas
and Missouri, along the Gulf coast, in Florida, up the Southeast
Coast, and in the Appalachian region. These are regions where

there are both an abundance of fuels and ample human popu-
lations with access to those fuels.

The domain-total AAB estimate in 2048 is much lower than

in the other modelled years for the case of statistically down-
scaled meteorology (Fig. 3). This low estimate can be explained
through the interannual variability of the AAB from 2010 to
2060 shown in Fig. S3. As previously noted, the years for our

study were selected at an arbitrary interval of 5 years beginning
at a randomly chosen year, 2043. In a random year such as 2048,
there can be as much as�50 000 ha difference from the domain-

total mean AAB value. The statistical d-s AAB estimates
summed over the D02 domain are distributed around, and fall
within�7% of the historical mean AABs, but there are larger

negative deviations from the historical mean in 2048 (�20%)
and 2058 (�13%). Given the excellent agreement seen in Fig. 3
for this case with the actual AABvalue for 2010, the deviation of
its AABs projections from the historical mean is a clear conse-

quence of the influences of climate and socioeconomic factors,
each with its own variability.
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The spatial differences in AAB for the statistical d-s case
from the historical case (Fig. 5, left panels) show that in 2010,
the positive and negative differences are smaller than those in

other years, and largely offset each other. In 2043, there are large
negative differences (i.e. historical AABs are much greater than
the statistical d-s estimates) in the ecoregion provinces to the
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north in northern Missouri, offset by a large positive difference
in ecoprovinces in Florida and along the Gulf coast. In 2048, the
positive differences in these coastal ecoprovinces are not large

enough to offset the negative differences in the interior of the
domain, and the domain-wide difference is a net negative,
consistent with the time-slice plot in Fig. 3. In 2053, the small

net-positive difference is due to the positive AAB differences in
these coastal ecoregion provinces and much of Texas, out-
weighing the negative differences in the interior of the domain.

Finally, in 2058, the spatial pattern once again shows negative
differences dominating over larger areas of the domain, and to a
greater extent than in 2010, with little or no contribution from
Texas. The net result overall is a negative difference, i.e. lower

AAB values in the statistical d-s case than in the historical case.
AAB estimates for the dynamical d-s case are significantly

lower than in the other two cases in each of the 5 modelled years

(Fig. 3). The temporal variability in AAB is also quite different
between the two downscaling methods, with the closest agree-
ment in 2048 (a difference of 10 814 ha), and the greatest

differences in 2053 and 2010 (182 591 ha and 148 249 ha
respectively). Spatial differences in AAB for the dynamical
d-s case relative to the historical case (Fig. 5, right panels) show

less temporal variability than for the statistical d-s case (Fig. 5,
left panels). The greatest negative differences are seen to occur
along the Gulf coast and Eastern seaboard, whereas the portion
of the domain west and north-west of Missouri is the main

contributor to positive differences. These positive differences
offset the negative differences across the domain significantly in
2048, consistent with the smallest domain-wide difference in all

the years shown in Fig. 3 between the historical and dynamical
d-s AAB estimates. Similar spatial offsets of positive and
negative differences occur to a lesser degree in 2043 and

2053, although the net result domain-wide in each of these
years is still a negative difference (i.e. the historical AABs are
greater than dynamical d-s estimates). Unlike the case of the
statistical d-s, the Appalachian region in the right panels has a

persistent large negative difference, as do parts of theGulf coast;
these are also areas where the historical mean AABs had the
largest values (see Fig. 4). As both the downscaling methods

used the same parent climate model realisation, these differ-
ences in the spatial patterns in Fig. 5 are a result of the
differences in the downscaling methods themselves.

The right panels of Fig. 5 show that dynamical downscaling
leads to much less wildfire activity in the Southeast, relative to
the 19-year historical mean, while statistical downscaling pre-

serves more of the large-scale circulation patterns in the region
in the future decade and shows smaller differences from the
historical fire activity. Liu et al. (2013) also found such spatial
differences in their analyses of future wildfire activity in the

dynamically downscaled results with the HRM3 regional cli-
mate model (RCM) compared with the HadGCM climate model
used in their previous analysis (Liu et al. 2010). Their study over

North American regions used the Keetch–ByramDrought Index
(KBDI – Keetch and Byram 1968) as the indicator of fire
potential and compared the results of the KBDI calculation

from RCM results for the different GCM/RCM downscaling
combinations in NARCCAP. Although the climate system
showed a warming overall in the 2041–2070 period over North
America relative to the 1971–2000 period, there were

pronounced differences in the locations of peak precipitation
and temperature between the HRM3 and the HadGCM. It is

worth noting that their 2013 results are at a coarser resolution
(50-� 50-km) for the various regions, and used a different
GCM/RCM combination to calculate future climate change

from the one used in our study (CGCM3/WRFG) over the
Southeast. The HRM3 model that they used for their Southeast
assessments had the smallest KBDI increase of all the RCMs in

NARCCAP in the future decades in the Central Plains and Deep
South, the region of our study. By comparison, theWRFG, used
to provide boundary inputs for our Southeast WRF simulation,

showed more mixed results, with a moderate KBDI increase
from warming and drying in the Deep South, but a KBDI
decrease in the Central Plains because of increased precipitation
in the future. However, ourWRFmodel results for the Southeast

are from a nest-down simulation at a 12-� 12-km spatial
resolution from the dynamically downscaled WRFG model
results in NARCCAP. Any biases, particularly in precipitation,

relative to the GCM will be propagated in the boundary inputs
extracted from those results and input to our Southeast WRF
simulations. Another major difference in our method from the

Liu et al. (2013) study is that their study did not consider county-
level socioeconomic factors, and used a different indicator of
wildfire, the KBDI, from our fire weather metric (FWI) and
would be expected to produce different results. We explain this

further under ‘Discussion’.

PM2.5 predictions from wildfires

The AABs estimated from the three cases described previously

were used to develop wildfire emission inventories suitable for
air quality model simulations needed in impact assessments of
ambient PM2.5. Fig. 6 shows the variability of PM2.5 emissions

from wildfires among the selected years. For this figure, the
emission rate of total PM2.5 calculated for each point fire by the
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BlueSky fire emission model was mapped to the south-eastern
US domain (D02) modelling grid using the SMOKE processor
(Houyoux et al. 2000), and the gridded daily emissions were

vertically integrated and summed over the year in each grid
column for each year modelled. Consistent with the AAB esti-
mates from the three cases shown in Fig. 3, the PM2.5 emissions

estimates are highest for the historical case, followed by the
cases using AABs estimated with statistically and dynamically
downscaled meteorology. The historical and statistical d-s total

PM2.5 emission trends follow each other closely in 2010 and
2043, whereas the dynamical d-s trends are 50% and 20% lower
in these years, and even lower in the later years, except for the
maximum in 2048 leading to good agreement with a corre-

spondingly low value mentioned previously in the statistical d-s
case. The dynamical d-s estimates of PM2.5 emissions are also
the closest of all three cases to the NEI 2010 emission levels

from point wildfires, which are shown here for reference. There
is slightly less variability in the time slices of wildfire PM2.5

emissions using the historical mean AABs than in the case using

statistically downscaled meteorology. As the AAB estimates
used to constrain the daily burned areas are constant for the
historical case, this emissions variability can be attributed to the

mesoscale model calculation of the daily FWI. The tendency of
theWRFmeteorology is to lower the dailywildfire activity, and,
therefore, the emissions, and this is once again evident in these
emissions estimates for the historical case, albeit to a far lesser

degree than in the dynamical d-s case.
Fig. 7 compares the spatial distributions of PM2.5 emissions

using the historical AABs (left panels) against those estimated

using AABs from the dynamical d-s case (right panels). For
simplicity, the statistical d-s results are not included here, but the
comparison of the domain-wide historical v. statistical d-s

estimates of wildfire PM2.5 emissions is available as Fig. S4.
The PM2.5 emissions for the historical (and statistical) case show
greater spatial variability within a given year than for the
dynamical d-s case and higher values in the interior Southeast

because of the underlying higher wildfire activity in this case.
Large differences in the spatial distributions of emissions can be
seen between the two cases in any year along the Southeast

coastal areas, the Appalachian region, eastern Texas and Okla-
homa, and Arkansas and Missouri. Of these, the states to the
west (the southern part of ‘Central Plains’ in Liu et al. 2013,

2014) were part of the region where the NARCCAP model
combination of CGCM3/WRFG tended to predict more sea-
sonal precipitation in the future years (2041–2070), in both

summer and winter, compared with the historical period
(1970–2000). The remaining regions, whichmap approximately
to the ‘Deep South’ of Liu et al. (2013, 2014), saw a decrease in
precipitation in the summer in the future years, but this decrease

was among the lowest for all the model combinations in the
NARCCAP suite. These spatial differences in wildfire PM2.5

emissions distributions between the statistical and the dynam-

ical d-s cases, therefore, suggest that precipitation increases
have an overriding influence on emissions compared with the
temperature increases seen in future years.

The spatial distributions of PM2.5 emissions in Fig. 7 in each
of the future years are generally consistent with the trends of
annual total AABs shown in Fig. 3. The much lower AABs in
2048 for the dynamical d-s case translate into smaller, albeit

more numerous, wildfires with lower annual total PM2.5 emis-
sions in Fig. 7. The biggest spatial differences in 2048 relative to
the historical case are seen to occur in Appalachia, North and

Central Florida, in eastern Texas and Oklahoma, and around the
Arkansas–Missouri state boundary.

Fig. 8 shows the total seasonal PM2.5 emission estimates for

spring, summer and fall (autumn) in each selected year using
the historical mean AABs, and those estimated with dynami-
cally downscaled meteorology. Differences in each season

between the historical and dynamical d-s cases show the effect
of the AAB constraints imposed on the PM2.5 emission rates.
Furthermore, the effect of the dynamically downscaled meteo-
rology is seen in the seasonal variability of these emissions.

Both the historical AABs and those from the dynamical d-s
case yield the lowest emissions of PM2.5 in the spring and the
highest in the summer, whereas the NEI estimates for 2010 had

the lowest emissions in the summer and higher PM2.5 emissions
in both spring and fall. These seasonal plots indicate that the
common feature among the historical and dynamical d-s cases,

which is the WRF meteorology used to calculate daily FWI,
dictates the seasonal variability in wildfire activity in any given
year, as well as the variability among the modelled years in

each season. In all years, there is also a consistently more
pronounced summer high in PM2.5 emissions in the historical
than in the dynamical d-s case because of its (constant) higher
AAB values. The variability of PM2.5 emissions among the

modelled years also somewhat reflects the AAB difference
patterns shown in Fig. 5.

Discussion

Prestemon et al. (2016) showed that the statistical d-s estimates
of AAB reflected the counteracting influences of the climate and
socioeconomic variables driving wildfire activity in the South-

east. According to those analyses, the 2056–2060 average
annual wildfire areas burned in the Southeast due to human
causes would decrease by 6% over the 2016–2020 average in

response to changes in socioeconomic influences, but a com-
parison of the averages over the same periodswould show a 34%
increase due to lightning-ignited fires, which were minimally
influenced by socioeconomic factors. As a majority of areas

burned in the southern US are from human causes, the conclu-
sion in that work was that the projected average AAB for 2056–
2060 would be higher by ,4% relative to that for 2016–2020

from all causes, with its temporal variability attributable mainly
to that of the climate system (see Fig. S3). This variability can
also be seen in this work, specifically in the frequency dis-

tributions of Fig. 9 of domain-wide totals around the annual
mean of the gridded AABs in each year for each of the esti-
mation methods. Given the wide range of the data, values of
AAB less than 10 ha are not shown so that the trends around the

median values can be seen more clearly. The historical mean
AABs used to represent 2010 have a higher median value than
either of the other two estimation methods, consistent with the

time slices shown in Fig. 3. The statistical d-s AAB distributions
have higher maxima than the dynamical d-s distributions in
every year, even though their median values are slightly lower

than for the dynamical d-s in 2048 and 2058. The higher sta-
tistical d-s AABs are also consistent with the domain-total AAB
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time slices for these two cases (Fig. 3). The effects of competing
climate and socioeconomic factors in the AABs for the statis-
tical d-s are also clear in Fig. 3: any biases due to the dynami-

cally downscaled meteorological inputs are not applicable in
these AABs. Those biases would, therefore, also have a smaller
effect on the PM2.5 emissions in this case (Fig. 6) than in the

dynamical d-s case.
The WRF model used in the dynamical downscaling yields

very different spatial patterns of AAB from the statistical d-s
AAB estimates. The differences between the AABs estimated

from statistical and dynamical d-s are a consequence of differ-
ences between the downscaling methods themselves, as they are
both using similar climate model realisations, as well as the

same GHG emissions, population, and income growth assump-
tions, corresponding to IPCC AR3 scenario A2.

The role of the GCM–GHG emissions scenario in the

differences seen in the AAB estimates with climate downscal-
ing can be better understood through an examination of their
mean changes in temperature and precipitation. Fig. 10 shows
the expected changes in precipitation and temperature from
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2000 to 2060 from the GCM–GHG emission scenario combi-
nations for the conterminous US, and for the Southeast. In this
figure, the CGCM31 scenario A2 shows an increase in precipi-
tation from 2000 to 2060 in both the US and the Southeast, of

,4 and ,6%, respectively, over the ensemble mean for
scenario A2. Although this GCM simulation shows a higher-
than-mean increase in temperature US-wide, it also shows a

slightly smaller-than-mean increase in temperature in the
Southeast from 2000 to 2060, compared with the ‘SE
A1B&A2’ value. These changes are small for the five-decade

period. The change in precipitation is in the correct direction
towards explaining the changes seen in the dynamical d-s
estimates relative to the historical case, as well as the statistical
case, but would likely not be the sole cause of the dramatically

lower AAB values for the dynamical d-s case compared with
the other two cases.

A more likely explanation of the lower AAB values for the

dynamical d-s case is 2-fold. One possible reason is the differ-
ence between the mesoscale and synoptic-scale predictions, as
shown in the regional analyses of wildfire regimes by Liu et al.

(2013, 2014). They reported that the dynamical downscaling of
climate showed increases in summertime precipitation in the
future decades (2041–2070) for the Southeast region (moder-

ate), and South Central region (small) compared with the
historical period (1971–2000). This was different from the
predictions of the GCM used in their previous studies (Liu

et al. 2010). The second likely explanation is the known high
bias in precipitation in WRF (Alapaty et al. 2012; Spero et al.

2014), which would also tend to lower the AAB estimates.
Dynamical downscaling is also used in the D01 domain to

produce the lateral boundary conditions for the Southeast
domain, and thus inherits biases in the NARCCAP downscaling
withWRF; thus, the influence of the high bias in precipitation in

WRF could become magnified, producing consistently lower
AABs. This may also account for the differences in our results
from those of Liu et al. (2013) for the Southeast, which showed

increases in the fire potential indicator (KBDI) by at least one
level, and an increase in the length of the fire season in nearly all
months. Of note, the Liu et al. (2013) analyses used a single level
of dynamical downscaling from the GCM, i.e. only for domain
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D01, a coarser resolution (50-� 50-km), a different fire poten-
tial index, the KBDI, from that of our work (FWI), and did not

include county-level socioeconomic changes.
The historical case, which uses historical mean AABs to

constrain daily area burned, estimates higher total PM2.5 emis-

sions than the dynamical d-s case for every year and season
except in the fall of 2043. These higher values could be partly
because of the much higher AABs in some years in the 19-year

fire history (e.g. in 2000 and 2006) than in the future projections,
as indicated by the lower actual-year AAB for 2010 compared
with the 19-year historical mean shown in Fig. 3. Equally
important, the historical mean AABs do not include the socio-

economic changes projected in the dynamical d-s case, which
were shown to offset the influences of climate warming on the
AAB projections in the Southeast (Prestemon et al. 2016). The

projected variability in climate and socioeconomic factors from
the CGCM3 scenario A2 climate simulation influences the
dynamical d-s AAB projections but has no role in the historical

AABs. The effects of awet bias inWRFon theAABswould also
be compounded in the PM2.5 emissions by those on the daily
FWI inputs to the FSB, leading to lower annual totals and peak
values in spatial distributions of PM2.5 emissions in the dynam-

ical d-s case than in the historical case.
The fall wildfire emission levels are lower than summer

levels in all years and cases modelled. The possible WRF ver.

3.4.1 overprediction of precipitation and underprediction of
temperature appear to have the greatest effect in the fall season
fire activity, translating into lower wildfire PM2.5 emissions.

Overall, we would expect PM2.5 trends to follow those of the
AABs, although the relationship is clearly nonlinear, due to the
stochastic nature of the daily disaggregation of the AABs in

the FSB as well as the spatiotemporal variability in the down-
scaled predictions of fire weather. It is clear that the latter will, at
a minimum, introduce variability that cannot be inferred from
the historical data.

Conclusions and future work

Wildfire area burned, and the resulting emissions of PM2.5 in the
Southeast for the period 2010–2060 are seen to be a result of two
competing drivers, climate and socioeconomics, each with its

own spatiotemporal variability. This may not always lead to
uniform increases in wildfire activity and emissions in future
climate regimes. The historical mean AABs are higher than

those estimated from statistically downscaled meteorology in
most of the years modelled, and higher in all years than those
estimated with dynamically downscaled meteorology. Histori-
cally based estimates of wildfire emissions in the Southeast are

consistently higher (by 13–62%) for PM2.5 than those estimated
by either of the projection methodologies. The large differences
in the temporal variability and spatial patterns of PM2.5 emis-

sions in future years compared with their historical values are
attributable in part to the temporal variability of the future cli-
mate and socioeconomics underlying the annual area burned

projections, and to the dynamically downscaled meteorology
used to estimate future daily fire activity. Thewildfire emissions
estimated from a historical mean of areas burned, even for the
most recent 19-year period, do not appear to be representative of

how the climate and socioeconomic variables driving wildfire
activity and emissions could change in future decades. Our
results, therefore, suggest that the use of historical AABs is not

sufficient to construct wildfire emission inventories for simu-
lating future-year air quality bymid-century, be they for climate
change impact assessments, or for projecting population health

risks from wildfire smoke.
This work also shows significant variability among the

modelled years in the AABs and the corresponding wildfire

PM2.5 emissions as a result of the natural variability of the
climate system. Better inferences of temporal trends can be
obtained in the dynamical downscaling by ensemble simulations
that bracket the extremes in climate and societal change over
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represented by grey squares and open diamonds, and the Southeast data, by black triangles and open circles.
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the 2010–2060 period using representative high- and low-fire
frequency years from among several GCM/GHG emission
scenarios.

Another finding of this work is that the high bias in precipi-
tation in the WRF model could be the reason for significantly
lower wildfire emissions estimates from dynamical downscal-

ing than from statistical downscaling of climate in the AAB
estimation model inputs. The effect of the dynamical downscal-
ing of climate on wildfire emissions is important, because this is

the most consistent method in current use to calculate meteoro-
logical inputs for estimating daily wildfire activity and wildfire
emissions, and for driving the air-quality simulations. Thus, we
need to understand and correct biases in the dynamical down-

scaling, particularly as regards precipitation in the Southeast,
because of its strong influence on fire weather, and soil and fuel
conditions. Less biased downscaling would provide more

reliable support of natural resource management and wildfire
health risk assessments.

Future contributions from ongoing work will examine the

current (2010) and future-year air-quality impacts based on
these emissions estimates. Furthermore, fuel loads are expected
to respond both to climate and to evolving fire suppression

activities in the Southeast. Excessive fuel buildup, for example,
has been cited as the cause of the large wildfires in the past two
fire seasons in the south-eastern and western US. Fuel load
changes were not explicitly included in the modelled wildfire

emission estimates, although the land use changes included in
the AAB projections do indirectly account for them in the
aggregate. Decisions on where and what to burn in managed

firesmay benefit from tools that incorporate fuel load changes in
these dynamic estimates of wildfire emissions.
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