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Marc-André Parisien A,D, Denyse A. DaweA, Carol MillerB,
Christopher A. StockdaleA and O. Bradley ArmitageC

ANatural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB,

T6H 3S5, Canada.
BUSDA Forest Service, Rocky Mountain Research Station, Aldo Leopold Wilderness Research

Institute, Missoula, MT, 59801, USA.
CEmber Research Services Ltd, Eagle Bay, BC, V0E 1T0, Canada.
DCorresponding author. Email: marc-andre.parisien@canada.ca

Abstract. Wildland fire scientists and land managers working in fire-prone areas require spatial estimates of wildfire
potential. To fulfill this need, a simulation-modelling approach was developed whereby multiple individual wildfires are

modelled in an iterative fashion across a landscape to obtain location-based measures of fire likelihood and fire behaviour
(e.g. fire intensity, biomass consumption). This method, termed burn probability (BP) modelling, takes advantage of fire
spread algorithms created for operational uses and the proliferation of available data representing wildfire patterns, fuels

and weather. This review describes this approach and provides an overview of its applications in wildland fire research,
risk analysis and land management. We broadly classify the application of BP models as (1) direct examination, (2)
neighbourhood processes, (3) fire hazard and risk and (4) integration with secondary models. Direct examination analyses
are those that require no further processing of model outputs; they range from a simple visual examination of outputs to an

assessment of alternate states (i.e. scenarios). Neighbourhood process analyses examine patterns of fire ignitions and
subsequent spread across land designations. Fire hazard combines fire probability and a quantitative assessment of fire
behaviour, whereas risk is the product of fire likelihood and potential impacts of wildfire. The integration with secondary

models represents situations where BP model outputs are integrated into, or used in conjunction with, other models or
modelling platforms.
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Introduction

Management of fire-prone landscapes is complex. Large fires

can affect a host of highly valued resources and assets (HVRAs),
including human communities, recreational opportunities,
industrial infrastructure, timber, wildlife habitat and ecosystem

services, such as the provision of clean water (Thompson et al.

2011), among others. These HVRAs might have different
responses to fire, with some benefiting from the natural,

restorative aspects of wildfire, while others could suffer unac-
ceptable harm. In many parts of North America, there is a
general desire to let wildfires fulfil their ecological role, insofar
as they do not compromise the safety of people and critical

infrastructure (Stephens et al. 2016). The inherent spatio-
temporal variability of wildfire further complicates matters,
challenging managers’ ability to prepare for wildfire events.

Knowing in advance the likelihood of burning at each point on
the landscape and the potential fire behaviour and impacts of
wildfires thus provides basic – and necessary – information for

improving planning, mitigation and adaptation in fire-prone
landscapes (Miller and Ager 2013). This generalised need for

a quantitative spatial estimate of fire probability was the impetus
for the development of a modelling framework known as burn

probability (BP) modelling, a ‘brute force’ approach to model-
ling in which fire likelihood is computed by simulating the
ignition and spread of a large number of fires on a static (i.e.

without vegetation succession) landscape (Finney 2005).
Although initially designed for strategic (i.e., long-term)

planning purposes, BP modelling uses tools originally devel-

oped to support operational decision making. This modelling
approach was made possible by the advent of deterministic fire
growth models such as FARSITE in the USA (Finney 1998) and
Prometheus in Canada (Tymstra et al. 2010). Prior to fire growth

models, fire behaviour analysts working on campaign fires
manually estimated fire spread, drawing out their predictions
(i.e. fire perimeter) on topographic maps to support firefighting

efforts (Andrews et al. 2007). Computerised fire-spread algo-
rithms automated this process, thus providing expedited predic-
tions of near-term fire behaviour using real-time and forecasted

fire weather. Users of these systems eventually broadened
their application to more experimental purposes. The earliest
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adaptations often focused on strategic placement of fuel treat-
ments, using a limited handful of simulation runs to test their
effectiveness in mitigating undesirable fire behaviour (van

Wagtendonk 1996; Stephens 1998). Over time, increased com-
puting power and availability of geospatial data have supported
more elaborate uses (Miller andAger 2013). Newer applications

directly included day-to-day variation in weather and random-
ness in the location of ignitions; this ‘batching’ of multiple fires
under observed landscape-level variability became the embry-

onic BPmodel. In an example of ‘convergent evolution’, several
wildland fire scientists, mainly in the USA and Canada, con-
comitantly developed this fledgling idea into several conceptu-
ally similar models (Davis andMiller 2004; Parisien et al. 2005;

Finney 2006; Yang et al. 2008). The motivation for extending
the use of fire-growthmodels was obvious: if an algorithm could
adequately and efficiently estimate the spread and behaviour of

a single fire, modelling thousands of wildfires across a land-
scape could depict the likelihood of fire at any given point and
reveal landscape-scale patterns of fire occurrence that could

otherwise not be gleaned.
Obtaining a quantitative estimate of fire likelihood and

potential fire behaviour at any point on the landscape proved

to be eminently useful to land managers and fire scientists alike.
By accounting for the nearly infinite possible ignition start
points and subsequent spread and likelihood of reaching a
specific place of interest, BP models not only provide robust

estimates of fire likelihood (assuming proper parameterisation),
but also an estimate of the spatio-temporal variability of events.
Ongoing improvements in performance and model processes

have allowed for the expansion of the application and scope of
BP models, as synthesised in Fig. 1. The most fundamental use
of these models has been to compute BP and fire-behaviour

maps to obtain some measure of likelihood or hazard to HVRAs
through predefined combinations and interpretations of model
outputs (Scott et al. 2013). This can be done for a baseline
scenario of inputs or, alternatively, in combinationwithmultiple

scenarios of interest.Whereas baseline scenarios provide insight
into potential fire behaviour on the landscape for a snapshot of
time, performing multiple scenarios allow managers to assess

the effects of alternative management decisions, retrospectively
examine past landscapes or assess potential future conditions.
Beyond the simple examination of BP or fire-behaviour maps,

the analysis of BP model outputs can take advantage of rich
information yielded from the numerous simulated wildfires.
These analyses open the door to applications that consider

‘neighbourhood processes’ or, in other words, the idea that
wildfires igniting in various parts of the landscape – sometimes
remarkably far, in areas where very large fires may occur – may
affect a given HVRA of interest (Scott et al. 2012a). In more

elaborate risk-based uses, BP can quantify the expectation of
loss (or in some cases, benefit) by combining fire likelihoodwith
the impacts to HVRAs from fires. Table 1 provides illustrative

examples of how these BP analyses can, and have been, applied
to address management questions across diverse landscapes.

Burn probability models are designed to incorporate a degree

of sophistication, but also flexibility, to answer complex eco-
logical or management questions. To date, they have been used
to investigate fuel treatment effectiveness, wildland–urban
interface (WUI) exposure, habitat suitability for numerous

species, forestry planning, risk transmission and carbon budget
analyses, to name only a few. Investigating the implications of
climate change projections will undoubtedly become one of the

main uses of BP models, as climate change is expected to
lengthen the fire season and greatly increase the potential for
large and intense wildfires (Flannigan et al. 2013; Riley and

Loehman 2016). This heightened flammability, combined with
an expanding WUI (Theobald and Romme 2007) and increas-
ingly fragile ecosystems (McCarty 2001; Johnstone et al. 2016),

creates a landscape in which unsuppressed fire can have severe
consequences. In contrast, there are circumstances in which
managers might wish to allow fires to burn so as to capitalise on
the natural and restorative aspect of fire (Moritz et al. 2014),

depending on the weather, timing and proximity to HVRAs
(Black et al. 2008). Virtually all planning for fire and fuels
management requires an understanding of where and when fires

may occur – BP models provide managers with a powerful tool
to examine where large and intense wildfires and HVRAs are
most likely to co-occur.

The wide scope and flexibility of potential applications for
BPmodelling highlight its importance as a decision-support tool
in land management and as a well understood framework for

scientific investigation. The rapid expansion in applications of
these models, however, might make it difficult for new users to
understand all of the potential uses of the approach and,
consequently, how to apply models for their specific needs. It

should be noted that there are approaches for modelling the
potential probabilistic outcomes of a particular known fire
ignition that are used to support operational decision making

during an ongoing event (Anderson 2010; Finney et al. 2011a).
Although these approaches might share some of the concepts
and inputs (e.g. weather) with the BP techniques described

herein, they will not be considered in this review. The central
goal is to demonstrate the range of potential and realised
applications of BP models for use in decision making by
managers and wildland fire scientists alike. Specifically, our

objectives are to: (1) describe the inputs and outputs of BP
models; (2) provide an overview of applications for which BP
models have been used; (3) demonstrate common applications

through case studies performed on an illustrative landscape; and
(4) develop a comprehensive list of published studies using the
BPmethod and categorise them by application type. In doing so,

we aim to provide a resource to guide both new and experienced
users of these models. Furthermore, we hope this synthesis will
foster discussions regarding creative new uses of the approach

and will encourage the future evolution and development of
BP modelling.

Purpose

As with any tool, the first step when initiating a project using BP
models is to ascertain that this approach is appropriate for the
question at hand. The strength of BP models lies in their simu-

lation of ignition and spread processes, which is often simplified
in dynamic vegetation models (Abatzoglou and Williams 2016).
Burn probabilitymodelling is ideal for representing howwildfires

ignite and spread across a complex (i.e. heterogeneous) landscape,
and it offers maximum flexibility for exploring alternative sce-
narios. Regardless of the intention for BP modelling, a user must
create ‘baseline’ outputs; that is, outputs based on the most basic
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(and unmanipulated) inputs. This baseline is useful in itself if the

purpose of the BP analysis is to obtain a single set of outputs for
which no alternate state (i.e. scenario) is to be compared (Calkin
et al. 2010). For instance, many studies use BP or fire intensity

maps to examine the spatial variability of wildfire in relation to
landscape characteristics (Carmel et al. 2009) or HVRAs, such as
communities (Alcasena et al. 2016). Baseline outputs are not

necessarily simplistic: they can be used to derive complex land-
scape metrics or to undertake various analyses (as detailed in the
sections below). A robust baseline is also requiredwhen using BP

models to conduct alternate state assessments wherein the base-

line provides a reference state against which to assess change
(Calkin et al. 2010).

An advantage offered by simulation models is the ability to

examine several scenarios through thoughtful manipulation of
inputs. These alternate state assessments generally stem from
specific questions that pertain to land-management needs. For

instance, shortly after the creation of the first BP models, several
studies investigated aspects of vegetation modification (i.e. fuel
treatments) on potential fire likelihood and fire behaviour, such as
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Fig. 1. Process of using burn probability models. BP, burn probability; WUI, wildland–urban interface.
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maximising fuel-treatment placement (Finney 2007; Parisien
et al. 2007) or conserving specific features (e.g. old-growth

stands, endangered species habitat) for wildlife conservation
purposes (Ager et al. 2010a). Scenario building has not been
limited to fuels, however; it has also examined the effect of the
other aspects of the fire environment, namely the number and

spatial patterns of ignitions and changes in fire-conducive
weather. These types of manipulations allow for temporal projec-
tions of fire activity and fire behaviour. Riley and Loehman

(2016), for example, evaluated the potential increase in large-
fire occurrence in northern Idaho, USA, by inputting climate
projections to a BP model. Wang et al. (2016) assessed the future

change in BP in south-central British Columbia (BC), Canada, in
a similar fashion, but also incorporated explicit changes in the
number of ignitions (using a regression model) and fuels (with a
bioclimaticmodel) into future projections. Results of these studies

showed that warmer and drier conditions would promote a greater
potential for fire ignition and spread, but in south-central BC these
same conditions are also likely to deplete the flammable biomass

and lead to an overall decrease in fire likelihood.

Inputs

After defining the purpose of the project, the next step in BP
modelling is the careful preparation of the inputs; that is, to ensure

they are appropriate for the spatial and temporal extent of the
analysis (Scott et al. 2013). In BP parlance, inputs represent fuels
(i.e. land cover, including flammable biomass and unburnable
areas), topography (where relevant), spatio-temporal patterns of

ignitions and daily fire weather (Fig. 1). Most models originating
in the USA or Canada are based on operational fire behaviour
prediction systems that include a characterisation of fuels (often

called ‘fuel types’ or ‘fuel models’). These fuels are associated
with equations defining fire-behaviour components (e.g. rate of
spread, fire intensity) as a function of topography, daily fire

weather and time of year to account for changes in phenology
(Anderson 1982; Forestry Canada Fire Danger Group 1992; Scott

and Burgan 2005). The vegetation of a study area must, therefore,
be classified into pre-existing fuel types in order to use these BP

models. Similarly, topography and weather must conform to the
requirements of these systems; for example, the Canadian system
uses daily noonLocal StandardTime observations of temperature,
relative humidity, wind speed, wind direction and 24-h rainfall.

Burn probability models also incorporate the spatio-temporal
variability in ignitions, often as spatial probability distributions
that vary by season and by cause (i.e. human or lightning) (Scott

et al. 2012a). In fire regimes where wildfires might burn for
multiple days, it is necessary to incorporate realistic day-to-day
variability in weather; this has been done in several ways, such as

modelling the temporal structure of weather (Finney et al. 2011b)
or drawing sequential fire-conducive conditions from historical
databases (Parisien et al. 2013). In addition, it is possible to
account for the spatial effect of topographic relief on wind speed

and wind direction (Forthofer et al. 2014) by incorporating
WindNinja grids to some BP models (e.g. Burn-P3, FlamMap).

Reliable and high-quality data are needed to develop inputs for

BP modelling. Because this modelling approach – often consid-
ered ‘bottom up’ – explicitly uses the factors that control the
ignition and spread to simulate wildfires, it is particularly respon-

sive to data quality. Stratton (2006, 2009) provides guidance for
modellers in terms of data assessment, appropriateness and
evaluation. Fortunately, high-quality data is increasingly avail-

able to BP modellers. Relatively comprehensive and quality-
controlled datasets of historical fires that include the presumed
point of ignition, mapped perimeters and various attributes (e.g.
ignition cause, reporting date) have been compiled and are

continually updated (e.g. Short 2014; Canadian Forest Service
2019). The quality (and quantity) of daily weather data is also
improving for both weather station observations and modelled

datasets, as are fuels data, owing to the rapidly growing availabil-
ity of remotely sensed information. It must be emphasised,
however, that no data source is flawless; for example, to mitigate

shortcomings in land-cover data, Parisien et al. (2013) had to use
four sources of geospatial data to develop a fuels grid for BP

Table 1. Selected examples of burn probability (BP) analyses with descriptions of implemented applications

Refer to Supplementary Material for a more thorough list of applications of BP models

Analysis type Study Location Purpose

Direct BP/fire behav-

iour assessment

Salis et al.

(2014)

Sardinia, Italy Examined how land use, policy and weather changes within two time periods produced variation

in simulated BP, fire size and fire intensity.

Polygon-based

comparisons

Thompson

et al. (2013)

Rocky Mountain

region, USA

Summarised wildfire characteristics for 10 watersheds to facilitate prioritisation for fuel

treatments.

Firesheds Alcasena et al.

(2017)

Northern Spain Delineated the area in which fires could ignite and subsequently spread to communities

(i.e. firesheds). Each fireshed pixel was classified by the number of structures affected by

ignitions from that pixel, providing insight to where fire threats originate.

Source–sink Ager et al.

(2012)

Oregon, USA Quantified areas as net sources or sinks of fire (based on their propensity to export large fires to

other areas versus import fires that originate elsewhere) to inform conservation planning and

fire-mitigation activities.

Risk transmission Oliveira et al.

(2016)

Southern Portugal Investigated the effectiveness of fuel breaks in reducing wildfire spread between municipalities.

Hazard Stockdale

et al. (2019b)

Alberta, Canada Quantified spatial patterns in wildfire hazard as the product of fire likelihood and fire intensity to

evaluate different firemitigation strategies onwoodland caribou (Rangifer tarandus caribou) habitat.

Risk Ager et al.

(2007)

Oregon, USA Calculated reductions in expected wildfire-caused habitat loss for northern spotted owl

(Strix occidentalis caurina) under proposed fuel treatment scenarios.
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modelling. Despite improvements in data availability and quality,
it remains the responsibility of the modeller to assess potential

data biases and consider how these may affect BP outputs (Scott
et al. 2013; Short 2015) (Box 1).

Input building is typically themost time-consuming aspect of
a BP project, and its importance cannot be overemphasised

given the sensitivity of BP outputs to the model inputs (Parisien
et al. 2010; Parisien et al. 2011; Parks et al. 2011). Although BP
models are data heavy, a wealth of data are usually available to

users, although some might require substantial manipulation
(e.g. converting vegetation characteristics to fuel types).
Whereas obtaining all of the aforementioned input data is ideal,

some inputs can be simplified and still yield informative outputs,
insofar as these abstractions are sensible and their limitations are
recognised (Parisien et al. 2013).Where the proper data do exist,
the readiness with which inputs can be manipulated makes the

BP approach particularly well equipped for scenario building.
The user can modify almost any factor driving the ignition and
spread of wildfires (Erni et al. 2018). Although some scenarios

are fairly straightforward to develop – the effects of fuel
treatments can be assessed by reclassifying some patches of
fuels to different fuel types – others are based on several

assumptions and data modifications, as is often the case in
retrospective analyses (Stockdale et al. 2019a) or future projec-
tions (Thompson and Calkin 2011).

Processing

Multiple platforms have been developed for BP modelling, such
as the commonly used FlamMap (Finney 2006) andFSim (Finney

et al. 2011b) in the USA, and Burn-P3 in Canada (Parisien et al.

2005). Other approaches, such as BurnPro (Davis and Miller
2004), a modified use of Landis (Yang et al. 2008) and batch

processes of deterministic fire growth models (e.g. Carmel et al.
2009) have also been used to compute BP. Despite some rela-
tively minor differences among the different models, they share a
conceptually similar approach: they produce estimates of fire

likelihood and potential fire behaviour for a snapshot in time (e.g.
a particular fire year) rather than across a temporally varying
horizon. This simplification means that BP models do not ‘grow’

vegetation, nor does vegetation respond to the fires that occur.
Instead, the complexity of BP models lies in the degree of detail
used to model fire ignitions and spread processes (Finney 2005).

Specifically, BP models use deterministic fire spread to model
spatially explicit fire growth, incorporating both effects of
topography and heterogeneous fuels, and the spatial and temporal
stochasticity in ignitions and weather. Although the different

modelling platforms adopt various methods for calculating fire
spread (by virtue of using their respective country’s fire behaviour
prediction systems), all incorporate stochasticity to derive

location-based estimates of fire likelihood and behaviour.

Outputs

There are four categories of outputs from BP models: (1)
ignition points; (2) the associated fire perimeters; (3) BPmaps;
and (4) fire behaviour maps. The first one, ignition points, is

fundamentally simple, yet might exhibit spatial patterns sur-
prisingly different from the corresponding inputs. For exam-
ple, ignitions are typically simulated using frequency
probability grids, and yet the spatio-temporal output patterns

will almost certainly differ from the inputs because some fuels

Box 1. Calibration and validation of burn probability (BP) outputs

Model calibration is a necessary aspect of every BP project (Scott et al. 2013). Calibration of BP outputs is typically done in a

heuristic and iterative manner by adjusting the inputs of the model and assessing its outputs through comparison of actual and
simulated fires (cf. Salis et al. 2013; Alcasena et al. 2016). A common model output used for calibration is the size of fires,
whereby the fire size distribution of the simulated wildfires is compared with the historical (i.e. observed) distribution. Other

factors that may be considered include the shape of wildfires, where they occur or their fire behaviour. While some users try to
create a perfect match between the simulated and historical distributions, this presumes that the data used to generate fire
parameter inputs (size, number, location) accurately reflect what we expect the near-term future fire environment to be. What is

most important is that model inputs reflect realistic expectations of future fire activity. Calibration is easiest where a large number
of historical wildfires have been recorded, but this may not be the case in areas with little fire activity or where historical fire data
are sparse (Parisien et al. 2013; Short 2015), or where fire-regime parameters have shifted markedly owing to climate change or

other factors. Model outputs for data-sparse areas, therefore, rely on expert assessment or any other relevant information –
quantitative or not – about potential ignitions and fire spread. In short, there is no standard recipe for BPmodel calibration: the type
and degree of calibration will vary according to the purpose of the project, as well as the specific aspects of the study area.

Whereas the calibration of BP model outputs is fairly straightforward, validation or measuring of predictive accuracy can be
challenging, if not impossible in some cases. Simply put, there is no infallible way to assess BP model accuracy. While it is

tempting to compare a BPmapwith recent patterns of wildfire occurrence as a way to evaluate the BPmap’s accuracy (cf. Parisien
et al. 2005; Paz et al. 2011; Wu et al. 2013), this approach is somewhat misguided. This is especially true if: (1) poor data quality
limits the reliability of the outputs; (2) data quantity (i.e. the number of years) is insufficient for a proper evaluation; (3) the BP
estimates vary through time because of land-cover changes (i.e. owing to natural or anthropogenic disturbance); and (4) if

subsequent real-world fire activity has occurred under conditions unrepresentative of the modelled environment (e.g. comparing
real-world wildfires under heavy fire suppression with BP estimates produced for free-burning wildfires). Users should not
dismiss the importance of presenting their BP modelling projects and outputs to local fire behaviour analysts and land managers

who have an in-depth knowledge of the area; this may, in fact, be one of the best forms of validation, albeit a qualitative one.

Burn probability model applications Int. J. Wildland Fire 917



are more ‘ignitable’ than others. Individual simulated fire
perimeters are used in calculations of fire size, whereas the
collection of perimeters are compiled to produce BP maps and

fire behaviour maps. Burn probability maps are computed
pixel-wise as the number of times each pixel burned divided by
the total number of iterations. Fire behaviour maps summarise

the values of fire-behaviour variables, such as the rate of
spread, fire intensity and fuel consumption, in each pixel (e.g.
mean, median, 90th percentile) (Scott et al. 2013). Fire

behaviour calculated in this fashionmight yield highly variable
values among fires as a result of the variability in weather,
landscape position and direction of spread; for example, a
given location on the shore of a large lake will burn much more

intensely by a frontal fire heading towards the lake than by a
flanking fire that wraps around the lake. Although the most
commonly used metric of fire behaviour is fire intensity or a

transformation of this measure that approximates flame length
or scorch height (Byram 1959; Alexander 1982), other avail-
able metrics will likely be more frequently used in the future.

The forest crown fraction burned could, for instance, be map-
ped around communities to provide an indication of potential
exposure to spotting from adjacent fuels. Also, measures of

fuel consumption (surface and crown) from simulated fires
could be used for potential fire emissions calculations (cf.
Amiro et al. 2001).

Burn probability models differ with respect to their inputs

andmodelling processes, and these differences greatly affect the
interpretation of outputs. Models like FSim or Burn-P3, which
useMonteCarlomethods to simulate the ignition and spread of a

large number of wildfires under variable daily weather condi-
tions, produce a wide range of wildfire sizes and shapes that can
occur on the landscape (including the largest possible wildfires),

from which an annual BP can be calculated. In contrast,
approaches like FlamMap and its command-line version,
Randig, use a single constant condition of weather and fuel
moistures to produce ‘conditional’ BP and fire-behaviour esti-

mates (Finney 2005); that is, estimates are conditional upon
wildfires occurring under these constant weather conditions.
Whereas the first set of models may be used for a greater range

of applications and offers more control on processes driving
ignition and spread, the latter (FlamMap) is simpler and therefore
less prone to uncertainty, and is less computationally intensive.

The diverse uses and the limitations of different approaches to BP
modelling are discussed in Scott et al. (2013). The examples
provided in the analysis section below are produced using

Burn-P3. In this case, BP denotes an annual probability; however,
many studies use FlamMap to produce conditional BP and fire
behaviour (e.g. Ager et al. 2007, 2010a; Mallinis et al. 2016).

Analysis

Analysis, in the context of this paper, describes the specific
application of BP outputs and, as such, is directly linked to

the purpose and goal of the user (Fig. 1). We categorised
the numerous potential uses of BP outputs into three broad
classes: (1) direct examination; (2) neighbourhood processes;

and (3) hazard and risk. Additionally, a conceptually different
class was considered to describe situations where BP model
outputs were integrated into, or used in conjunction with, other
models or modelling platforms (i.e. ‘secondary models’). To

illustrate several applications of BPmodels for a real landscape,
we performed a suite of analyses using the Burn-P3 model
(Parisien et al. 2005) on the landscape surrounding Fort Good

Hope, Northwest Territories, Canada. This small town
(population 570) is located in the northern boreal forest
(66815 031 00N 128837043 00W), in a landscape composed of a mix

of coniferous forest (high flammability), deciduous forests (low
flammability) and grassland–shrubland (high flammability in
the springtime (April and May), low in the summer). The area

has a typical boreal fire regime, which is dominated (in terms of
area burned) by large and intense wildfires and can be largely
considered as ‘natural’, given the low (,5%) proportion of
human ignitions andminimal human alteration of the vegetation

cover. The modelling was performed over a 50-km radius
around the town (in addition to a 20-kmbuffer area), and broadly
followed the methods used by Parisien et al. (2011) for Wood

Buffalo National Park, located south of Fort Good Hope. Given
the illustrative purpose of this modelling exercise, we made
some simplifications to the modelling; for instance, ignitions

were spatially random. Other inputs retain some degree of
realism, however, by being derived from historical wildfire data,
fuels and weather. In addition, model outputs were calibrated by

comparing the size and shape of simulated wildfires with those
of the historical database. Below, we discuss each of our broad
categories of analyses and describe how they could be applied to
the landscape surrounding Fort Good Hope.

Direct examination

Direct examination is the most straightforward type of analysis

of BP outputs, given that it requires minimal or no further pro-
cessing. These analyses can be as elementary as visual assess-
ment of outputs to determine which areas are most prone to fire,

or they can be somewhat more involved, requiring calculations
to compare BP or fire-behaviour patterns. For instance, simple
calculations can be used to summarise BP outputs within
polygons to provide ‘polygon-based’ metrics that describe and

facilitate comparison of fire behaviour across land designations
or other spatially explicit areas of interest (Thompson et al.

2013). Polygon-based summaries of BP, fire intensity and other

metrics derived from simulated fire perimeters havemostly been
used to assess watershed fire exposure, examining how these
metrics differ among watersheds to prioritise mitigation efforts

(Scott et al. 2012b). Direct examination of outputs is also used in
alternate states analyses, in which BP model inputs are manip-
ulated so that the effect or sensitivity on model outputs can be

evaluated. Outputs resulting from these alternate model inputs
are either directly compared using side-by-side maps (Furlaud
et al. 2018; Salis et al. 2018), or evaluated by way of a ‘differ-
ence’ map that highlights the degree of change in BP or fire

behaviour between the baseline and an alternate state (Ager
et al. 2010b; Lozano et al. 2017).

We demonstrate direct examination of BP outputs, looking

first at a subset of fire perimeters, ignition points andmaps of BP
and fire intensity in the context of the town of Fort Good Hope
(Fig. 2a). The immediate vicinity of the town is subject to

moderate-to-high BP and intensity, in comparison with the rest
of the landscape. A subset of BP model outputs summarised by
polygons is then displayed for ecoregions (modified slightly for
illustrative purposes) within the study area (Fig. 2b), with
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descriptions of each metric provided in Table 2. Using these
polygon-based summaries, we can quickly identify ecoregional

differences in fire likelihood and behaviour; for instance,
despite its small size, Region D has the highest BP, intensity
and likelihood of producing large fires (Fig. 2b). We then

illustrate an alternate states assessment involving a fuel

management scenario (Fig. 2c). In this example, baseline fuels
receive fuel treatments of different types (i.e. thinning, pre-

scribed burns, harvest) in close proximity to the townsite. The
ratio of baseline to treated BP values shows that the fuel
treatments did effectively decrease the likelihood of burning

in the vicinity of the town (Fig. 2c).

(a)
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(c) Baseline fuels Fuel treatments
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Fig. 2. Illustrations of different analyses within the direct examination classification. Users can (a) look at outputs alone

or (b) use polygon-based summaries, as defined in Table 2, to compare these outputs between regions of interest. Users can

alsomodify the baseline fuel grid with fuel treatments (c), and represent the resulting change to burn probability as the ratio

of baseline scenario outputs over fuel treatment scenario outputs. High ratios represent a large decrease in fire probability

as a result of the treatment. BP, burn probability; AB, area burned.
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Neighbourhood processes

Neighbourhood process analyses tell us about where fires are
coming from relative to a given location of concern. These

analyses help to examine patterns of fire ignitions and subsequent
spread to or between given locations or other relevant land des-
ignations or jurisdictional boundaries. Managers might be

interested in delineating the spatial extent of a ‘fireshed’ – the
area within which ignitions can start and fires could burn into a
particular location. This analysis can be accomplished by iden-

tifying ignition points and fire perimeter extents of all fires that
make contact with that given location (Thompson et al. 2013).
Firesheds can provide important insights for guiding policy
decisions, such as quantifying the risk to WUI communities if

fires igniting in designated areas are allowed to burn unsup-
pressed (Scott et al. 2012a). The ‘source–sink’ ratio is a metric
developed by Ager et al. (2012) that describes each pixel’s pro-

pensity for producing or receiving fire, and is the ratio of a pixel’s
wildfire contribution to the surrounding landscape (i.e. fires
produced by ignitions fromwithin that pixel, orwithin a specified

neighbourhood of the pixel) relative to the frequency with which
it is burned by fires that originated elsewhere. ‘Risk transmission’
quantifies the amount of fire, or in some applications the expected
loss, in a given area (e.g. ecoregion, jurisdiction) caused by fires

that spread from ignitions in another (often neighbouring) area
(Ager et al. 2014). Comparing the magnitude of incoming with
outgoing fire can identify where suppression resources or fire

mitigation activities are best allocated, what agencies are
responsible for initiating those activities (based on which has
jurisdiction in areas where fires are originating) and the char-

acteristics that make certain designations more prone to fire than
others (Haas et al. 2015; Ager et al. 2016).

Using the Fort Good Hope area as an example, we illustrate

how BPmodel outputs can be used to analyse firesheds, source–
sink ratios and risk transmission metrics (Fig. 3). First, we
delineate a fireshed (Fig. 3a) by identifying all simulated fires
with perimeters intersecting the town boundary, and bymapping

the spatial extent of these fire perimeters (or alternatively the
extent of their associated ignition points). Note that no wildfires
reaching the townsite originated from the other side of the river.

Although this river, the McKenzie, is one of the largest in the
world, there have been instances when wildfire has crossed the
river due to spotting.We then calculate source–sink ratios across

the study landscape (Fig. 3b) by creating a raster of fire size (FS),
which represents the area burned from each ignition point.
Given that not all pixels contain ignitions and some pixels
contain many, a moving-window analysis is used to create a

smooth FS surface. The source–sink ratio (SSR; Ager et al.
2012) is then calculated as:

SSR ¼ logðFS=BPÞ ½1�

In this example, the area surrounding the townsite appears to

be a net ‘sink’ for fires, meaning the area does not generatemany
large fires but does have relatively high BP, chiefly as a result
of large fires burning into the area from the ‘sources’ to the

south-west (Fig. 3b). We then assess how fires spread between
the modified ecoregions introduced in Fig. 2 by calculating risk
transmission (Fig. 3c). In this example, we determine the
average area burned in one region owing to fires that originate

from ignition points in another region. Fires igniting within and
burning out of Region B into Regions A and C are shown to
illustrate the concept. The magnitude of risk transmission

between regions, as represented by the ratio of arrow sizes in
Fig. 3c, provides insights into where fires affecting a region
originate. For example, despite its small size, Region D trans-

mits the largest average area burned per ignition to Region C;
if managers wished to mitigate risk transmission to Region C,
fuel treatments near the border between these two regions would

likely be effective (Oliveira et al. 2016).

Hazard and risk

Fire hazard and wildland fire risk, although considered together
here, are distinct. Fire hazard, as traditionally used in BP
modelling analyses, combines fire probability and a quantitative

assessment of fire behaviour, such as fire intensity (Scott et al.
2013), which has been related to both fire-suppression capa-
bilities (Hirsch et al. 1998) and fire severity (de Groot et al.
2007).Wildland fire risk is the product of fire likelihood (or BP)

and the potential impacts of wildfire (negative or positive)
(Finney 2005). The ‘impacts’ part of the equation depends on the
user’s purpose and the nature of the values at risk; ‘risk’ can take

on a variety of incarnations (Hardy 2005). Impacts to HVRAs
might be highly variable or difficult to measure, which, as such,
often means that expert judgement is required to estimate the

response of each HVRA to fire (Thompson and Calkin 2011).
Change to HVRAs, as described by the impact component of
the risk equation, can be measured according to any valuation
system, and have proven useful when assessing wildfire impacts

such as expected financial losses (Alcasena et al. 2017),
ecological habitat change (Ager et al. 2007) or carbon
emissions (Chiono et al. 2017). Because impacts can vary

according to the magnitude of the fire behaviour, risk is often

Table 2. Description of polygon-based burn probability (BP) summarisation metrics used in Fig. 2b as defined in Thompson et al. (2013) and Scott

and Thompson (2015)

Metric Description

Mean burn probability Average BP value of all pixels within the ecoregion.

Mean fire intensity Average fire intensity (in kWm�1) of all pixels within the ecoregion.

Probability of large fires Percentage of fire iterations igniting within each ecoregion that grow larger than a given threshold (10 000 ha).

Mean ignition area burned Average area burned within each ecoregion by fires igniting within that ecoregion; calculated by dividing the total area

burned by the number of ignitions. Describes the size that fires igniting within any ecoregion are likely to grow.
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framed as being conditional on a specific value or classification
of fire behaviour (e.g. low, moderate or high fire intensity)

(Finney 2005).

To demonstrate how fire hazard can be applied in Fort Good
Hope, we mapped integrated values of fire likelihood and

intensity following the method of Stockdale et al. (2019b), who
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Fig. 3. Different applications of burn probability modelling for neighbourhood process analyses. (a) Firesheds are

calculated from all fire perimeters intersecting Fort GoodHope and can be combinedwith ignition locations or dissolved to

show the fireshed extent. (b) Source–sink ratios are the ratios of fire size produced by ignitions fromwithin a pixel to burn

probability. High source–sink ratios describe locations from which large fires are more likely to be transmitted, as

compared with the likelihood of their burning from fires igniting elsewhere. (c) Risk transmission quantifies how fire is

transmitted between regions. Fires ignitingwithin and burning out of RegionB intoRegionsA andC are shown to illustrate

the concept. The average area burned per ignition in each region is calculated for transmitted fires and can be used to

illustrate the scale of risk transmission between regions. The size of arrows between regions is proportional to the average

area burned by fires transmitted between them.
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partitioned BP and intensity into four categories and mapped

hazard as the composite of those classes (Fig. 4a). The area
surrounding the townsite exhibits a low-to-moderate BP, but if a
wildfire were to occur, it would likely burn at a high intensity

(Fig. 4a). This information can be used by managers to gauge
their tolerance to wildfire events and to guide mitigation efforts.
With respect to wildland fire risk, we developed an illustrative
example of risk to the habitat of a species of conservation concern

in Canada: the boreal woodland caribou (Rangifer tarandus

caribou) (Fig. 4b). We first define the potential impacts of
wildfire on caribou by creating a habitat suitability model, based

broadly on the framework devised by Whitman et al. (2017),
where habitat suitability consists of the combination of availabil-
ity of nutritional resources and potential for predation loss based

on vegetation types and stand age. In this case, habitat suitability
within a 500-m buffer of linear features was reduced to account

for increased risk of predation by themainpredator of the caribou,

the grey wolf (Canis lupus) (James and Stuart-Smith 2000). We
then multiplied habitat suitability and BP to arrive at a simplified
expression of risk to caribou. In our example, areas of higher

habitat quality were typically found in continuous conifer forests
and lichen woodlands. In our landscape, these vegetation types
also tend to be prone to wildfire, suggesting that higher-quality
caribou habitat within the Fort Good hope study region is

generally at greater risk of impact from wildfire than areas less
suitable to caribou.

Integration with secondary models

As a result of their inherent flexibility, BP model outputs have
been integrated into other modelling frameworks and combined

with those of other models. For instance, Lozano et al. (2017)
used general circulation model data of projected climate as the
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Fig. 4. Examples of how hazard and risk can be calculated. (a) Hazard combines the likelihood of burning with intensity

and is here represented in a map that categorises hazard by the contributions of each of these sub-components. (b) Risk is

demonstrated simplistically as a caribou management scenario, in which burn probability is combined with the potential

for impact on caribou, on the basis of habitat suitability. Calculations of habitat suitability are based on Whitman et al.

(2017); habitat suitability was reduced within a 500-m proximity to linear features to account for higher predation

likelihood. Areas of higher risk represent both higher fire likelihood and potential impacts to caribou.
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weather input to a BP model to study how fire behaviour (i.e.
intensity, size) and BP might change in the future. Combining
external models with BPmodels is not limited to a single-model

coupling; Stralberg et al. (2018) merged statistical models of
future fire potential and future vegetation with BP models to
examine how wildfire might catalyse vegetation transitions

under future climates. A similar framework was used in a
wildlife management application to assess temporal projections
of climate and wildfire-mediated changes to caribou habitat

quality (Barber et al. 2018). The scope of the problems to which
BP and coupled secondary models have been applied is broad,
encompassing numerous practical forest management applica-
tions such as the spatial optimisation of fuel treatments to protect

WUI communities (Bar Massada et al. 2011), the appraisal of
the financial consequences of alternate fire management deci-
sions (Thompson et al. 2015; Thompson et al. 2017) and the

integration of timber harvest planning with fire mitigation
activities (Acuna et al. 2010).

Future directions

An area of potential improvement to BPmodelling is to increase

the computational efficiency of the models. In spite of the
increased availability of high-performance computers, simula-
tions can still take days or weeks to run. In Canada, the Burn-P3
model is primarily run on personal computers because it has

not yet been adapted for cloud-based or supercomputing
resources. Other models, such as FlamMap, have ‘internally’
enhanced computation capabilities based upon a modified fire-

spread algorithm, but are still not optimised for distributed (e.g.
cloud) computing (Finney 2002). Perhaps a more daunting
challenge for BPmodels are the limitations of the fire behaviour

prediction models upon which they are based. The Canadian
system, for instance, is known to perform well where vegetation
corresponds with a fuel type from the Fire Behaviour Prediction
System, but there are many vegetation types that are poorly, if at

all, represented (Parisien et al. 2013). The current operational
system in the USA is limited in that it considers only surface fire
spread (Rothermel 1972); however, modifications have been

made to incorporate crown-fire modelling from models created
for Canadian forests and other sources in two distinct methods
(Finney 1998; Scott and Reinhardt 2001). Another limitation to

BP models is the lack of long-range spotting and breaching of
non-fuels in some modelling platforms. Many US models (e.g.
FlamMap, FSim) incorporate spotting, although this feature has

not been thoroughly tested in the field. In Canada, this feature
does not exist. The omission of spotting undoubtedly leads to
underestimates in fire probability, for example, on the lee side of
large fuelbreaks (e.g. rivers, lakes). Although there are creative

ways to circumvent such issues, such as making fuelbreaks
partially flammable, shortcomings persist.

Because the technology for improving BP model perfor-

mance is becoming more available and more affordable, many
of the BP models may soon be revamped. The ability to access a
BP model online and run it as a ‘software as a service’, rather

than installing it on personal computers, represents an attractive
and readily attainable avenue for BP models. In addition to
modernising the look and feel of BP model interfaces, optimis-
ing processes by using cloud resources would greatly reduce run

times and relieve the computing burden on local workstations.
Maximising BP models’ resources would inevitably open new
doors in terms of applications. For example, it would be possible

to produce BP and fire-behaviour maps for time periods other
than the usual annual (once a season) period, such as weekly, or
even daily. The next generation of BP model would still be used

in its classic context to inform long-term problems, but also
provide a finer temporal resolution of likelihood of burning as it
changes throughout the season. This information would com-

plement the existing suite of products that currently support fire-
management operations, like FSPro (USA) and PFAS (Canada),
methods which were developed for assessing the spread poten-
tial of single fires as they are burning (Anderson 2010; Finney

et al. 2011a). By considering a large number of potential
ignition locations, a daily BP model output could, for instance,
assess the fire likelihood in areas where ignitions are yet to be

detected. Numerous other possibilities exist for redevelopingBP
models and integrating themwith other dynamicmodels, such as
vegetation growth, insect epidemic spread and forest harvesting,

among others.

List of published studies using the burn probability method

To demonstrate further the wide range of potential applications
of BP models, we compiled a list of published literature on the
topic of BP modelling (as defined in this paper) and categorised

it by application types (see Supplementary Material available
online). The list includes only those articles and reports from the
published literature that were indexed in reference databases,

and was developed through an online reference search and by
cross-referencing citations of articles. Because some studies
included multiple analyses, a single reference may appear in

multiple categories. The list is meant to be a useful reference for
users seeking more detailed information on BP applications and
methodology.

Conclusion

Although the BP approach has remained largely unchanged (at
least in concept) since its inception two decades ago, the number

of ways in which it has been used has greatly increased. Indeed,
an array of applications has contributed to our enhanced
knowledge of wildland fire science and has added rigour to

wildland fire management and planning. Concomitant
improvements in our understanding of wildland fire and tech-
nological advances have caused BP models to be used for far

more purposes than their initial single-use aim of mapping
wildfire likelihood. Furthermore, the flexible nature of BP
modelling allows the user to investigate innumerable scenarios
to determine what their effect would be on wildfire risk, which

can assist land managers and wildland fire risk analysts in
making real-world decisions that can potentially reduce the
impact of wildfires. The BP approach does remain fairly spe-

cialised in scope; for example, these models are not designed or
intended for the explicit evaluation of fire-vegetation feedbacks.
The strength of BPmodels lies in their ability tomodelmany fire

ignitions and fire spread in great detail. Due to the approach’s
intrinsic modularity, the manner in which inputs are integrated
and processed (e.g. seasonal patterns of ignitions, how weather
drives spread) can continually be refined. Moreover, BP models
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can welcome outputs from other models as inputs and, con-
versely, its own outputs can be readily integrated or combined
with other modelling platforms. The functionality and uses of

the BP approach will continue to evolve and expand due to
advances in computing power, thereby offering new possibili-
ties by eliminating past computation constraints.
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