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The role of decomposer communities in managing surface 
fuels: a neglected ecosystem service 
H. GibbA,*, J. J. GrubbA, O. DeckerA , N. MurphyA , A. E. FranksA and J. L. WoodA  

ABSTRACT 

Surface fuel loads are a key driver of forest fires and the target of hazard reduction burns to 
reduce fire risk. However, the role of biota in decomposition, or feedbacks between fire and 
decomposer communities are rarely considered. We review the evidence that decomposer 
organisms play an important role in surface fuel regulation and how this role is affected by fire. 
First, we outline the contribution of decomposer organisms to the breakdown of surface fuels. 
Next, we consider the three distinct phases through which fire regulates decomposer communi
ties and how this may affect decomposition and future fire regimes. Finally, we consider 
interactions between global change and decomposer–fire feedbacks and the implications for 
fire management. Evidence indicates that decomposer organisms are important in regulating 
surface fuels and we propose that the biological basis and dynamic nature of fuel load control 
require greater attention. This includes better understanding of functional redundancy among 
decomposer organisms, the impacts of global change on the biota that drive decomposition and 
the factors that limit decomposer persistence and recolonisation following fires. By filling these 
knowledge gaps, we will be better armed to conserve and manage these functionally critical taxa 
in fire-prone ecosystems in a changing world.  

Keywords: biodiversity, climate change, dead wood, decomposition, ecosystems, fuel, inver
tebrates, leaf litter. 

Introduction 

Ninety gigatons of terrestrial plant biomass, amounting to 90% of annual production, 
enters the global pool of dead organic matter each year (Cebrian 1999). The biomass is 
transformed into inorganic forms via complex decomposition steps or exits the pool 
through consumption by fire. While biological decomposition transforms organic mate
rial into microbial mass or stable humic substances, dead organic material consumed by 
fire is mostly lost to the air as carbon dioxide and methane (Schimmel and Granstrom 
1996; Aerts 1997; Miyanishi and Johnson 2002; Van Wagtendonk 2006). Fire is a 
necessary process in many ecosystems, shaping the distribution of biomes and maintain
ing the structure and function of fire-prone communities (Bradstock et al. 2002; Bond and 
Keeley 2005; Bowman et al. 2009). Fires generally start with the ignition of dead organic 
matter in the surface layer. These surface fuels include fine fuels such as leaves, twigs and 
bark lying on the ground (Hines et al. 2010), as well as fallen branches and shorter 
vegetation (Scott and Reinhardt 2001). Across many ecosystems, the spread of fire is 
driven primarily by the fine fuel component of surface fuels (as well as weather and 
topography) (Raison et al. 1983; Catchpole 2002). 

While the role of biodiversity in fire regimes is increasingly acknowledged, recent 
work focuses on vegetation (Duff et al. 2017), largely ignoring the role of other biota. Fire 
not only consumes surface fuels, but also disrupts communities of organisms that 
decompose those fuels. Invertebrates and microbes are the key players in the decompo
sition of surface fuels in many ecosystems, yet their role in decomposition is not well 
studied in the context of fire (Brennan et al. 2009; Buckingham et al. 2015) and 
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invertebrate decomposers were considered only briefly in a 
recent review of animals as agents of fire (Foster et al. 
2020). We propose that decomposer-driven changes in the 
fire-available fuel have the potential to alter fire frequency, 
extent and severity, thus creating a feedback cycle among 
decomposers, surface fuels and fire (Fig. 1). For example, 
increased fire frequency creates hotter and drier climates, 
which inhibits litter consumption by decomposer organisms, 
therefore increasing fuel loads (Hernández and Hobbie 
2008; Brennan et al. 2009; Toberman et al. 2014). 
Further, changes in fire regimes due to global change are 
likely to have significant impacts on the decomposer species 
that evolved with natural fire regimes. Despite the potential 
importance of these feedbacks and the significant economic 
cost of attempts to control fire, little is understood of the 
ability of ecosystems to regulate litter and dead wood build- 
up naturally through the biodiversity of decomposer 
organisms. 

Decomposition is primarily a biological process, driven 
by decomposer organisms, which are affected by the same 
anthropogenic perturbations (e.g. climate change and habi
tat fragmentation) that control the persistence of any spe
cies. Accurate predictions of fuel loads and their trajectories 
through time must therefore incorporate an understanding 
of the biological nature of decomposition, particularly in 
wetter ecosystems, where biological decomposition is 
more important (García-Palacios et al. 2013). Here, we 
review the contribution of decomposer biodiversity to regu
lating surface fuel dynamics across biomes and consider 
how decomposer biodiversity and the function of decompo
sition are influenced in three distinct temporal phases: (1) 
during the fire; (2) the immediate post-fire environment 
(both considered first-order effects); and (3) the long-term 
regenerated environment (second-order effects). We argue 
that feedbacks between decomposer biodiversity and fuel 
loads have the potential to affect the flammability of 
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Fig. 1. Feedbacks among fire, decomposers, litter and vegetation throughout the fire cycle. Fires consume 
surface fuels (leaf litter, bark and woody debris), decomposers (invertebrates, fungi and bacteria associated with 
surface fuels) and live vegetation and alter the microclimate for biota. The surface fuels consumed by fire also act 
as habitat and food for decomposers. Decomposers affect vegetation through nutrient cycling, while vegetation 
alters the microclimates available for decomposers and the quality of litter. Vegetation produces surface fuels 
(senescence), but fuels may also inhibit colonisation by plants. Live vegetation also acts as a fuel when fires are hot 
enough. Throughout the fire cycle, decomposer communities and their interactions (represented by the black 
curved arrow) change in response to fire, resources and opportunities for recolonisation, eventually returning to 
a state similar to that prior to the fire.    
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environments, but that gaps in knowledge prevent us from 
determining the importance of this effect. Further, we con
sider the potential impacts of anthropogenic change on the 
complex relationship between fire, fuels and decomposer 
organisms. We conclude by considering how fire manage
ment programs might better conserve the function of 
decomposition, thereby allowing biodiversity to better reg
ulate the accumulation of fuels. 

Decomposer organisms and their ecosystem 
service 

At a global scale, the decomposition of surface fuels is driven 
by a range of factors, with climate, litter quality and the 
soil and litter biota critical in regulating decomposition 
(Coûteaux et al. 1995; Zhang et al. 2008; García-Palacios 
et al. 2013). The impacts of soil biota on decomposition are 
regulated by climate and litter quality and therefore differ 
substantially among biomes (García-Palacios et al. 2013). 
The effect of soil fauna exclusion is most pronounced in 
wetter climates (González and Seastedt 2001) and a meta- 
analysis suggested that unexplained variation in large-scale 
decomposition models could be reduced by including biome- 
specific fauna effects on litter decomposition (García-Palacios 
et al. 2013). 

Both invertebrates and microbes are important in litter 
decomposition. Invertebrates are directly responsible for an 
average of 37% of litter loss and up to 20% of wood loss on 
the forest floor annually across the globe (García-Palacios 
et al. 2013; Ulyshen 2016). Leaf litter decomposes consider
ably faster than woody debris (Gessner et al. 2010) and most 
studies examining the role of decomposers have focused on 
litter, with few examining woody debris (see Kampichler 
and Bruckner 2009; García-Palacios et al. 2013; Ulyshen and 
Wagner 2013). However, the breakdown of wood often 
requires specialised invertebrate species, which are linked 
to specific tree traits (Cornwell et al. 2009; Weedon et al. 
2009; Zuo et al. 2016; Dossa et al. 2018). Functionally, 
although there is overlap in roles, invertebrate detritivores 
can be classified in three general ways: bioturbators that 
ingest and mix organic matter in the soil (e.g. earthworms 
and termites), shredders that physically fragment organic 
matter including transforming it into faeces (e.g. macroin
vertebrates, including amphipods, woodlice, millipedes, dip
teran larvae and saproxylic beetles) and grazers that 
consume microbes on detritus (e.g. microinvertebrates, 
including nematodes, mites and springtails) (Anderson 
1988; David 2014; Hoang et al. 2017; Joly et al. 2018;  
McCary and Schmitz 2021). Bioturbation accelerates decom
position by transporting organic matter to a moister envir
onment and bringing it into closer contact with other 
decomposers (Ashton and Bassett 1997; Lavelle et al. 2006;  
Coulis et al. 2016). In addition, it affects soil structure in 
numerous ways, including creating and degrading soil aggre
gates and pore formation, which increases decomposition by 

improving soil hydraulic properties and creating habitat 
space for smaller decomposers, especially microarthropods 
(Lavelle 1997; Lavelle et al. 2006; Hoang et al. 2017). Recent 
work shows that millipede, isopod and snail faeces improve 
decomposition rates relative to intact litter (Joly et al. 2020). 
This is likely driven by increasing organic matter lability 
and consequent leaching, rather than enhanced microbial 
activity, which is often lower in faeces (after an initial 
increase) (Joly et al. 2020). In Mediterranean shrubland, 
burial of millipede faeces led to further improvements of 
decomposition rates, suggesting possible synergistic effects 
with bioturbation (Coulis et al. 2016). Assimilation of 
organic matter consumed by invertebrates ranges from 
<10% (e.g. some millipedes) to >50% (e.g. some isopods, 
dipteran larvae), indicating that some taxa are capable of 
direct litter mineralisation (Dangerfield 1998; David 2014;  
Abd El-Wakeil 2015; Frouz 2018). Microarthropods, domi
nated by Collembola and Acari (springtails and mites), 
contribute to decomposition by moving organic material, 
which impacts soil aggregation and creates microbial hot
spots (Chamberlain et al. 2006; Maaß et al. 2015; Soong 
and Nielsen 2016). 

Although decomposition is often facilitated by inverte
brates, the remaining 70–80% of annual decomposition is 
generally performed by the soil microbiota, which break 
down recalcitrant compounds such as cellulose and lignin. 
For example, fungi from the Agaricomycetes are the only 
organisms that produce enzymes capable of substantial lignin 
degradation, making them keystone taxa in the decomposition 
of woody debris (Floudas et al. 2012). Bacteria also contribute 
to wood and leaf litter decomposition and are capable of 
producing enzymes for cellobiose, pectin and even lignin 
degradation (Schink et al. 1981; Brown and Chang 2014;  
Lladó et al. 2016). While bacteria may not be as proficient 
at wood decay as fungi, anaerobic taxa such as Acetivibrio, 
Clostridium and Ruminococcus are primarily responsible for 
cellulose decomposition in anaerobic ecosystems such as peat
lands (Boer et al. 2005). Bacterial nitrogen fixation (N- 
fixation) is known to occur in decaying wood and may assist 
in stimulating the decomposition process by replenishing 
nitrogen in a system that naturally has a high C:N ratio 
(Johnston et al. 2016; Bani et al. 2018). N-fixing bacteria 
from the order Rhizobiales, Rhodocyclales, Pseudomonadales, 
Rhodospirillales, Sphingomonadales and Burkholderiales 
have all been associated with decaying wood. Litter decom
position studies focusing on bacterial communities have 
revealed clear successional patterns. In general, leaf surface 
(phyllosphere) bacteria are present in the first stage of the 
decomposition but are rapidly replaced with taxa producing 
proteolytic and cellulolytic enzymes. In the later phase, the 
most common bacterial taxa are Bradyzhorium, Streptomyces 
and Burkholderia, the latter of which is strongly associated 
with the presence of fungi and can utilise fungal hyphae as 
migratory routes (Johnston et al. 2016; Purahong et al. 2016;  
Tláskal et al. 2016; Bani et al. 2018). 
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Interactions among species affect decomposition rates 
(Gessner et al. 2010). For example, the joint effects of 
woodlice (Isopoda) and earthworms (Annelida) are stronger 
than the sum of single-species effects on alder litter, but 
weaker on oak litter (Zimmer et al. 2005). Decomposition 
can also be enhanced by multi-trophic interactions (Hedlund 
and Öhrn 2000) and altered by litter disturbance or preda
tion by vertebrates (Wyman 1998; Nugent et al. 2014) or 
herbivory by invertebrates prior to leaf fall (Kay et al. 2008). 
Although microbes are responsible for the majority of 
decomposition (by mass), their function is mediated by 
invertebrate decomposers (Lavelle et al. 1995): microbial 
breakdown is governed by accessibility, which is often 
enhanced by the action of litter-dwelling invertebrates, 
which mix the litter and shred and bore into plant matter, 
increasing the surface area available to bacteria and fungi 
(Beare et al. 1995; Wolters 2000; Dungait et al. 2012). 
Invertebrate detritivores may directly consume microbes 
and commonly have a symbiotic microbe community to 
assist in digestion of dead plant material (Zimmer and 
Topp 1998; Ulyshen 2016). The preferential grazing of soil 
fungi by litter-dwelling insects has been shown to alter 
fungal community competition dynamics, increasing fungal 
diversity (Crowther et al. 2013). Further, invertebrates are 
likely to be vectors for bacterial and fungal detritivores, but 
these phoretic relationships are poorly understood (but see  
Persson et al. 2011; Aylward et al. 2015; Jacobsen et al. 
2017). This is particularly relevant in the context of recolo
nisation following disturbances, where insect-mediated 
transport has the potential to accelerate the recovery of 
microbe-driven decomposition. 

Interactions among microbes may also be critical in the 
decomposition process: fungi facilitate bacterial penetration 
into leaves and wood (Boer et al. 2005), while wood decay 
proceeds at a greater rate when fungi are associated with 
N-fixing bacteria than when they are not (Blanchette and 
Shaw 1978; Hoppe et al. 2014). Bacteria enhance decompo
sition rates by consuming fungal decomposition products, 
thus stimulating fungi to upregulate their own production of 
degradative enzymes (Boer et al. 2005; Christofides et al. 
2019). Alternatively, bacteria capable of lysing fungal 
hyphae, either to consume as a food source (mycophagy) 
or to avoid direct competition for cellulose, may reduce 
rates of wood decay (Tolonen et al. 2015). The variety of 
potential interactions among decomposer organisms serves 
to highlight the complexity of the community that drives 
decomposition. 

Given their significant diversity, the most feasible 
approach to understanding decomposer communities and 
variation in their rates of decomposition may be trait-based 
because this allows us to understand the broader patterns 
despite limited knowledge of the biology of individual spe
cies (McCary and Schmitz 2021). This may be a particularly 
pertinent approach for microbial decomposers, for which 
the ability to link genes with function is progressing rapidly 

(e.g. Langille et al. 2013). For example, genes encoding 
degradative enzymes and bacterial N-fixation are potential 
targets for studying decomposer–fire–climate interactions. 
For invertebrates, dispersal traits have been linked with 
recolonisation following fire (Langlands et al. 2011;  
Buckingham et al. 2019). Fewer studies have attempted to 
link invertebrate decomposer traits with decomposition, but 
the feeding traits of detritivores covary with the palatability 
traits of leaf litter (Brousseau et al. 2019; Raymond-Léonard 
et al. 2019) and determine their impact on decomposition 
(e.g. detritus shredders, bioturbators and detritus grazers 
increase decomposition by 28, 22 and 15%, respectively,  
McCary and Schmitz 2021). Further, trait dissimilarity within 
detritivore assemblages is positively correlated with decom
position rate as more dissimilar species are more likely to 
have complementary (rather than redundant) effects on 
decomposition (Heemsbergen et al. 2004). 

Effects of fire on decomposer composition across 
ecosystems 

Fire-prone ecosystems cover a spectrum from fuel-limited to 
climate-limited ecosystems (Agee 1993; Noss et al. 2006;  
Pausas and Paula 2012; Steel et al. 2015). In fuel-limited 
ecosystems, frequent fires consume mostly live and recently 
dead herbaceous vegetation and litter, where flaming and 
residence times are short, there is little organic soil and 
minimal soil heating and most regrowth occurs through 
resprouting. In contrast, in climate-limited ecosystems, 
fire-return intervals and succession periods are longer, 
with greater fuel loads (including duff) accumulating. 
Across this spectrum, the characteristics of fire range from 
high frequency and low severity to low frequency and high 
severity, resulting in different interactions between fire and 
the decomposer community, depending on the ecosystem. 
Many species are adapted to natural fire regimes (Gill 1975), 
resulting in a cyclical change in species communities. Fire 
impacts decomposer communities through both physical 
and chemical changes to habitats and substrates, in three 
distinct temporal phases: (1) during the fire (first-order); 
(2) the immediate post-fire environment (also first-order); 
and (3) the longer-term regenerated environment (second- 
order) (Fig. 1). The extent of the changes to biodiversity 
wrought by a single fire and length of each of these phases 
vary among biomes. 

First-order effects – during the fire 
The immediate effect of fire on decomposer communities 

depends mainly on severity and duration (DeBano et al. 
1998). Heating during fire causes the loss of nutrients and 
carbon via volatilisation and combustion of litter and soil 
organic matter, which may have long-term impacts on the 
ecosystem. The direct and immediate impacts of fire on soil- 
and ground-dwelling organisms vary among ecosystems. 
Radiation provides enough heat to combust surface fuels 
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and often kills organisms in the upper soil layer (Wikars and 
Schimmel 2001). Soil temperature during a fire depends on 
soil moisture (lower in moister soils; Burrows 1999; Busse 
et al. 2005), fuel load and soil composition, including rock 
and moisture content (e.g. Bradstock and Auld 1995; Stoof 
et al. 2011). High soil temperatures may be short-lived and 
heat intensity declines with depth, but heat penetration 
varies among ecosystems (Humphreys and Lambert 1965;  
Raison et al. 1986; Miranda et al. 1993; Schimmel and 
Granstrom 1996; Yoshikawa et al. 2002; Carrington 2010;  
Wanthongchai et al. 2011; Cawson et al. 2016). For exam
ple, soil temperatures in cerrado fires in central Brazil do not 
exceed 38°C below 2-cm depth (Miranda et al. 1993), 
whereas they may reach up to 80°C at 15-cm depth in jarrah 
forests in western Australia (Burrows 1999). Depths of 
2–10 cm are generally sufficient to avoid lethal tempera
tures (of 30–60°C) for most invertebrates (Hoffmann et al. 
2013; Grubb 2019), suggesting in situ survival is possible. 
Individuals buried deeper in the soil may stand a very good 
chance of survival: for example, Thom et al. (2015) showed 
that butterfly pupae buried deeper than 1.75 cm, where soil 
temperatures remained ~40°C or lower, had a 50% chance 
of survival, even where surface temperatures reach 500°C. 
Further, short heating residence times in fuel-limited savan
nas and woodlands may have little direct effect on microbes 
(Hansen et al. 2019) or the abundance and diversity of soil 
biota (Oliver et al. 2015; Semenova‐Nelsen et al. 2019;  
Hopkins et al. 2020). 

The quality of surface fuels also impacts the survivorship 
of soil organisms: for example, coarser fuels (e.g. charcoal) 
can increase the duration for which peak temperatures are 
held within the soil by up to 10 min, which is long enough to 
sterilise spores even of pyrophilous fungi (Bruns et al. 2020). 
In shrubland, fire experiments show that soil temperatures 
can be lowest where fuel loads are highest, probably owing 
to greater upwards heat transfer and decreased flame resi
dence time (Stoof et al. 2013). While communities of soil 
biota may thus suffer a decrease in diversity and biomass 
during the fire, the impact of fire is spatially heterogeneous 
(Tangney et al. 2018), and variable among ecosystems 
(DeBano et al. 1998; Neary et al. 1999; Certini 2005;  
Pressler et al. 2019). 

The mechanisms through which decomposer organisms 
survive fire in situ have received little attention. For inver
tebrates and microbes, avoidance usually involves escape to 
or existence deep in the soil or in unburnt refuges in less 
severe fires (e.g. in Xanthorrhoea, Brennan et al. 2011; 
under soil, Dell et al. 2017; or up trees, Sensenig et al. 
2017). Survival may be enhanced by extreme temperature 
tolerance (Kassen 2002) and morphological and behavioural 
adaptations that allow escape underground. Further, plant 
endophytic microbial communities can be aerosolised 
during the combustion and burning of vegetation, which 
may assist in their survival, dispersal and reestablishment 
(Moore et al. 2021). 

The presence of invertebrate species with limited disper
sal capacities after severe fire likely results from in situ 
survival in burrows or other refuges (e.g. ground-nesting 
bees, Love and Cane 2016; amphipods, Menz et al. 2016). 
Low-severity fires can even increase microbial activity in the 
top 0–10 cm of soil in the short term, owing to warming 
effects (Bogorodskaya et al. 2010). In Mediterranean eco
systems of south-eastern Australia, amphipods burrow dee
per in the soil to avoid desiccation in hotter months (Friend 
and Richardson 1977; Menz et al. 2016), potentially enhan
cing survival at the time of year that wildfires occur, but not 
necessarily protecting against hazard reduction burns in 
cooler times of year. The recovery of the detritivore com
munity from fire is critical for the resumption of their 
important role in reducing subsequent fuel loads, so we 
would benefit from a better understanding of the potential 
for populations to survive fires in situ and how it varies with 
ecosystem, fire severity and season. 

First-order effects – immediate post-fire 
environment 

Most studies of the impacts of fire on biodiversity in 
general focus on the period between the fire event and re- 
establishment or resprouting of the vegetation, which can 
occur within a fraction of the burning season (e.g. Eva and 
Lambin 1998; Trigg and Flasse 2000) or take decades 
(Haslem et al. 2011; Dafni et al. 2012; Bright et al. 2019), 
depending on the ecosystem. Burning causes distinct shifts in 
community composition for both microbes and invertebrates 
(Vilariño and Arines 1991; Baar et al. 1999; York 2000;  
Simard et al. 2001; New et al. 2010). A recent meta- 
analysis of 131 studies across a range of biomes found that, 
while fire decreases diversity of key taxa, impacts on abun
dance may differ among organisms: fire reduced micro
organism abundance by up to 96% (bacteria were more 
resistant than fungi) and nematode abundance by 88%, but 
had no effect on soil mesofauna abundance (Pressler et al. 
2019). Interestingly, prescribed fires had a more significant 
impact in the subsoil than wildfires, but the opposite was true 
for the surface soil fauna. Further, prescribed fire impacts 
depended on ecosystem types: for example, fire reduced 
arthropod richness more in grasslands than in forests, proba
bly because vertical movement in the soil is more limited in 
grasslands (Pressler et al. 2019). Surprisingly, Pressler et al. 
(2019) were unable to detect a signal of time since fire, in 
contrast to studies that focussed on invertebrates (e.g. Barratt 
et al. 2006; Huebner et al. 2012; Oliver et al. 2012). 

The community of decomposers present in the immediate 
post-fire environment includes species that survived the fire 
in situ and those that dispersed from outside or from refuges 
inside the fire perimeter following the fire (Robinson et al. 
2013), including some fire-favoured or even pyrophilic spe
cies (Schütz et al. 1999; Gibb et al. 2006; Johansson et al. 
2011; Egidi et al. 2016; Eliott et al. 2019). In climate-limited 
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ecosystems (those where fires are severe and infrequent), 
these organisms face a very different environment from that 
experienced prior to the fire. Following fire, the soil biogeo
chemistry and organic habitat may be severely altered 
(Baird et al. 1999; González-Pérez et al. 2004; Dove et al. 
2020; Pellegrini et al. 2020). Leaf fall may initially increase 
as scorched foliage falls, rapidly renewing habitat structure 
(although resource quality may differ) (Springett 1979); 
alternatively, all foliage may be consumed by canopy fires 
(Cruz et al. 2012). In high-severity fires in forests, the 
destruction of the canopy results in microclimate changes 
such as increased soil temperatures and decreased soil mois
ture and humidity (Neary et al. 1999). In such ecosystems, 
species persisting after the fire are expected to be more 
generalised and tolerant of a broader range of temperatures 
and soil moistures than those that existed prior to the fire 
(Kassen 2002). However, there is little evidence that a single 
fire event causes strong selection for greater physiological 
tolerance of variable temperatures or low humidity within 
species in fire-prone forests (Grubb 2019), and fire regime 
may be more critical than time since fire in selection for fire- 
tolerant phenotypes. 

In addition to changes in microclimate, severe fire also 
causes far-reaching changes in the nutrient balance, marked 
changes in hydrothermal conditions and a loss of micro
habitat heterogeneity (Butler et al. 2019). These factors 
act as filters that determine the development of post-fire 
soil communities of microorganisms and invertebrates, 
which, in climate-limited ecosystems, can be drastically 
different from the pre-fire community (Certini 2005). 
Reestablishment of the microbial community after fire 
may be hampered in such ecosystems by the reduction of 
labile forms of organic matter, and changes to soil carbon 
and soil chemical properties. For example, the combustion 
of wood and litter has been shown to form recalcitrant 
carbon molecules enriched in aromatic structures that 
inhibit microbial saprotrophic growth (Kim et al. 2003). 
Soil N can also be sequestered into recalcitrant carbon 
compounds, following burning, depleting the soil of readily 
accessible N and C reserves, which may contribute to 
reduced decomposition rates (Mastrolonardo et al. 2014). 
Understanding soil community recovery post burning may 
assist in understanding decomposition rates in other habit 
strata during later stages of succession. For example, while 
woody debris has a community distinct from that of soils, 
the soil community is highly predictive of the community in 
a given piece of woody detritus, suggesting decomposer 
communities are recruited from the surrounding soil (Sun 
et al. 2014). 

Fire-driven shifts in species functional traits also have the 
potential to alter decomposition rates. For example, fire sever
ity changes in the post-fire size distribution of invertebrate 
detritivores (Buckingham et al. 2015; Podgaiski et al. 2018) 
might affect microbial decomposition by altering the size of 
litter fragments; and, in grassy ecosystems, fire decreases the 

prevalence of microbial functional traits related to carbon 
degradation, which may lead to increased stabilisation of 
recalcitrant C during the post-fire recovery of the community 
(Yang et al. 2020). 

Second-order fire effects – mid-long-term habitat 
regeneration 

The post-fire habitat proceeds through a succession, as 
the biota recolonise and re-establish and species are filtered 
by the changing environment (Sasal et al. 2010; Huebner 
et al. 2012; Gongalsky and Persson 2013; Haslem et al. 
2016; Auclerc et al. 2019). In many fire-prone ecosystems, 
this return to a pre-fire-like state may be rapid, but in others, 
habitats may continue to regenerate for decades or even 
centuries (Haslem et al. 2011; Dafni et al. 2012; Bright 
et al. 2019). Further, depending on the potential for multi
ple stable states and the fire interval, the ecosystem may not 
converge on the pre-fire state (Beckage and Ellingwood 
2008; Wood and Bowman 2012; Auclerc et al. 2019). 

Different inter-fire intervals (or fire frequencies) are asso
ciated with differences in the way in which species are 
filtered through their physiological tolerance, behaviour 
and dispersal ability: ecosystems with rapid fire cycles sup
port species that survive the fire or are able to rapidly 
disperse and re-establish, while those with slower fire cycles 
support an ongoing succession that may eventually include 
poor dispersers and fire-intolerant decomposer species 
(Force 1981; Holliday 1991; Siemann et al. 1997;  
Malmström 2012). For species unable to survive the fire 
in situ, dispersal ability is critical to persistence at a land
scape scale (Andersen and Müller 2000; Thomas 2000;  
Whelan et al. 2002; Schmuki et al. 2006). The presence of 
a mosaic of patches of differing time since fire (pyrodiver
sity, Parr and Andersen 2006) may provide a colonisation 
source for species unable to persist during the fire. The 
interaction between dispersal ability, distance from source 
populations and the inter-fire interval is thus critical in 
determining persistence in the landscape (Arnold et al. 
2017): low dispersal ability can increase the time for a 
species to recolonise when inter-fire intervals are long or 
prevent recolonisation altogether when inter-fire intervals 
are short (Pippin and Nichols 1996; Panzer 2002; Whelan 
et al. 2002; Schmuki et al. 2006). While decreased inter-fire 
intervals might be expected to select for a spectrum of traits 
that protect species from fire (avoidance behaviours, toler
ance and dispersal), fires of increased severity and extent 
are likely to favour an assemblage dominated by high- 
dispersal generalist species, which could lead to functional 
homogenisation of the decomposer community at larger 
scales (e.g. Clavel et al. 2011; Malmström 2012). Species 
with traits similar to those of the pre-fire ecosystem are 
expected to thrive as time since fire increases, but the actual 
species composition may differ from the pre-fire 
composition, depending on species’ ability to recolonise or 
survive the fire. For example, Korobushkin et al. (2017) and  
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Moretti et al. (2006) showed that less-mobile invertebrates 
suffered the greatest declines and recovered poorly 5 years 
after fire. 

Fire-induced changes in soils may be long-lived in some 
ecosystems. For example, in coniferous forest, reductions in 
microbial N/organic N ratios remained 12 years after con
trolled burns, particularly in the surface layer (0–5 cm) 
(Fritze et al. 1993; Prieto-Fernández et al. 1998). 
However, organic carbon has been shown to increase or 
remain unchanged in most pine-dominated communities, 
where fire intervals are short (McKee 1982; Godwin et al. 
2017; Pellegrini et al. 2018). Shorter inter-fire intervals may 
also increase the temperature and reduce the moisture of 
soils, which can reduce decomposition rates (Silveira et al. 
2009). The result is that decreased inter-fire intervals are 
associated with distinct decomposer communities (e.g. 
fungi, Oliver et al. 2015) and declines in decomposition 
rates across a range of ecosystems (e.g. temperate forests,  
Brennan et al. 2009; subtropical sclerophyll forests, Butler 
et al. 2019; pine savannas, Semenova‐Nelsen et al. 2019;  
Hopkins et al. 2020). However, the impacts on one taxon 
may be compensated for by another (e.g. invertebrates may 
compensate for reduced microbial litter decomposition,  
Butler et al. 2019). 

Most studies of fire effects on invertebrate and microbe 
assemblages in ecosystems with long fire cycles focus on the 
period prior to vegetation recovery, but it is critical that we 
understand the full cycle of decomposer communities between 
fires. Where inter-fire intervals are shortened by management 
or anthropogenic global change, impacts on decomposer com
munities and decomposition are expected to be greatest in 
ecosystems where fire cycles were historically longest. 

How do fire and decomposition interact? 

Whether dead plant material follows the pathway of biolog
ical decomposition or consumption by fire depends on the 
traits of leaves, the spatial distribution of vegetation, and 
climate, all of which vary among biomes (Cornelissen et al. 
2017; Pausas and Bond 2020). Leaf biochemical traits deter
mine the decomposability of leaves: leaves that are high in 
nitrogen but low in lignin and with a low leaf mass per unit 
area are more decomposable (Cadisch and Giller 1997, 
p. 409; Cornwell et al. 2008) (Fig. 2). Further, plant traits 
(such as leaf and stem size) and eventually their litter 
particle size and shape (particularly curliness) are critical 
in the ignitability and flammability of litter because larger 
leaves produce a less compact and more ventilated litter bed 
that dries more rapidly and is more flammable (Scarff and 
Westoby 2006; Cornwell et al. 2015; Zylstra et al. 2016) 
(Fig. 2). At a larger scale, the continuity of vegetation is 
important in the spread of fire: discontinuous surface fuels 
often cannot support surface fires (Cornelissen et al. 2017). 
Finally, climate affects flammability and decomposition 
through drying – biological decomposition is much slower 

in drier climates, while flammability is higher. The chance 
of ignition is also climate-dependent, although human pop
ulation pressure plays a major role (Ganteaume et al. 2013). 
Decomposition has the greatest potential to limit fire where 
both flammability and decomposability are high and that 
includes biomes such as savannahs and broad-leaved forests 
(Cornelissen et al. 2017) (Fig. 2). 

In the absence of fire, more than half of net primary 
production returns to the soil through decomposition 
(Wardle et al. 2004). The importance of decomposition in 
regulating fire is likely to be most important in ecosystems 
with highly flammable surface fuels, where those fuels are 
also highly decomposable (Cornelissen et al. 2017) (Fig. 2). 
Globally, approximately 60–70% of litter decomposition 
rates are explained by climate and litter quality (Parton 
et al. 2007). However, soil fauna enhance litter decomposi
tion by 35% (globally, García-Palacios et al. 2013), but their 
importance varies with biome. Understanding variation in 
decomposer community contributions and its regulation by 
climate may therefore be critical in reducing unexplained 
variation in large-scale decomposition models (García- 
Palacios et al. 2013). We suggest that understanding how 
fire alters decomposition across different ecosystems may 
similarly provide an important contribution to our ability to 
predict fuel accumulation and manage fire. 

The decomposition of dead plant matter is not well stud
ied in the context of fire. Most litterbag studies suggest that 
prescribed fire reduces decomposition rates relative to 
unburned controls, although the timeframe differs among 
climates and vegetation types (Springett 1976; Raison et al. 
1983, 1986; Monleon and Cromack 1996; Brennan et al. 
2009; Toberman et al. 2014; Köster et al. 2016). However, 
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Fig. 2. Conceptual diagram of the spectrum of flammability and 
decomposability, modified from  Cornelissen et al. (2017) to empha
sise the conditions under which decomposers are most important. 
Flammability is high in both fuel-limited and climate-limited ecosys
tems, but low moisture in fuel-limited systems limits decomposition, 
while fire and decomposers are most likely to compete for fuels 
where fire regimes are climate-limited, i.e. high fuel loads must 
coincide with suitable fire weather.   

H. Gibb et al.                                                                                                                   International Journal of Wildland Fire 

356 



studies have also found no impacts of time since fire or fire 
severity on decomposition (Grigal and McColl 1977; Raison 
et al. 1986; Buckingham et al. 2015; De Long et al. 2016) 
and even increased decomposition following fire (Throop 
et al. 2017; Bryanin et al. 2018), highlighting the context 
dependency of fire impacts on decomposition. Repeated 
fires create different biodiversity dynamics from single-fire 
events, and changes in fire frequency (or inter-fire interval) 
may change the microhabitat and resources for decomposer 
organisms. More frequent fires decrease decomposition rates 
and create hotter and drier microclimates, lower litter qual
ity and C:N ratios, and reduce soil C and N, pointing to 
mechanisms through which litter consumption by decom
poser organisms is affected (Hernández and Hobbie 2008;  
Brennan et al. 2009; Toberman et al. 2014; Cornelissen et al. 
2017; Pellegrini et al. 2018). However, detritivore assem
blages may change following fire without altering decom
position rates (Vasconcelos and Laurance 2005; Buckingham 
et al. 2015). Although this suggests that functional redun
dancy could be high in some ecosystems, most studies indi
cate a strong link between decomposer assemblages and 
decomposition (reviewed in García-Palacios et al. 2013). 

Functional diversity among detritivores, rather than spe
cies richness, drives decomposition rates in laboratory 
experiments (Heemsbergen et al. 2004). Dynamics of 
decomposer recolonisation thus do not necessarily indicate 
rates of functional recovery, particularly if a function is 
largely driven by a small number of functionally important 
species. The relationship between decomposition by inver
tebrates and the traits involved in recolonising an area 
following fire remains an important knowledge gap. 
Function is commonly strongly dictated by phylogeny (e.g.  
Martiny et al. 2013), as are traits associated with recoloni
sation (e.g. thermal tolerance, Sunday et al. 2012), so it is 
likely that different functional groups return to the system at 
different rates. This might reflect availability of their 
resources, for example, scavengers often increase in abun
dance with time since fire (e.g. Driscoll et al. 2020). Where 
inter-fire intervals vary substantially in a landscape or 
change over time, the period for recolonisation of popula
tions may exceed the inter-fire interval. The result could be 
that functional groups within the decomposer community 
are lost, altering rates of decomposition and potentially 
leading to increased fuel accumulation. 

Surface fuel loads are expected to reach an asymptote 
(equilibrium) over time since fire, with a steady state 
achieved where litter fall is offset by decomposition (Olson 
1963; Fensham 1992). However, litter and woody surface 
fuel loads show a range of responses to time since fire, 
remaining constant, peaking, or continuing to increase 
over time depending on the ecosystem (Schimmel and 
Granström 1997; Moritz et al. 2004; Gosper et al. 2013;  
Eskelson and Monleon 2018). Surface fuel loads are often 
predicted using coarse-scale vegetation maps and time- 
since-fire relationships (Tolhurst et al. 2008; Price and 

Gordon 2016). Most models of surface fuel accumulation 
assume constant decomposition rates throughout post-fire 
succession (Olson 1963; Raison et al. 1983; McCarthy et al. 
2001), although the influence of climatic factors on decom
position is sometimes considered (e.g. Miller and Urban 
1999). Inclusion of decomposition as a constant rate in 
models has long been considered a gross simplification, 
with early studies acknowledging the importance of season 
and recent fire history in determining decomposition rate 
(e.g. Fox et al. 1979; Birk and Simpson 1980), but none to 
date tackling the complex issue of decomposer assemblages. 

The assumption of functional redundancy among decom
poser organisms is not supported by laboratory studies (e.g.  
Heemsbergen et al. 2004; Zimmer et al. 2005) and has not 
been addressed in the field. This limits our ability to under
stand spatial and temporal variation in fuel–fire relation
ships. Oversimplification of the biology and function of 
decomposer communities reduces the likelihood that we 
are accurately modelling decomposition (Prescott 2005). It 
is particularly important to get this right if there is a risk 
that some approaches to fire management may threaten the 
very organisms that control fuel loads. 

Feedbacks 

Surface fuel loads depend on decomposition rates, coming to 
an equilibrium when decomposition equals input 
(Minderman 1968). Biological decomposition is slower fol
lowing fire, explaining why litter build-up following fires is 
accentuated, particularly where fires are frequent (Raison 
et al. 1983; Fernandes and Botelho 2003; Litton et al. 2003;  
Yang et al. 2020). This is likely a direct result of the docu
mented negative impacts of fire on the decomposer commu
nity (Pressler et al. 2019) (Fig. 1). Most fire dampening 
provided by hazard-reduction burns lasts no more than 
10 years (Eucalyptus forest and heathland, south-eastern 
Australia, Sackett 1975; Pinus ponderosa, USA, Wagle and 
Eakle 1979; Eucalyptus forest, south-eastern Australia,  
Rawson et al. 1985; shrublands in Western Australia,  
McCaw et al. 1992; heath and open woodland (mallee) in 
southern Australia, Grant and Wouters 1993; Pinus pinaster, 
Spain, Moreira da Silva 1997; shrublands in France, Lambert 
et al. 1999; Pinus ponderosa, Pollet and Omi 2002), and 
effectiveness is highly weather-dependent (Fernandes and 
Botelho 2003). This rapid return to initial fuel loads in 
some ecosystems with historically long inter-fire intervals 
encourages forest managers to reduce the inter-fire interval 
for prescribed burning. However, increased fire frequency (or 
fire interval squeeze) decreases decomposition rates (Brennan 
et al. 2009; Butler et al. 2019; Hopkins et al. 2020), thus 
leading to a greater perceived need for prescribed burning. 

The impact of prescribed burning on soil communities 
may be very different from the impact of the cyclical natural 
fire regimes to which the biota are adapted (Knapp et al. 
2009). In addition to the impacts of increased frequency 
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described above, this may be due to differences in intensity 
or the timing of fires relative to species’ phenology. For 
example, in south-eastern Australia, prescribed burns typi
cally occur in spring or autumn, when soils are moister, 
which is generally when soil communities are more active 
and, therefore more prone to perturbation (Menz et al. 
2016). Further, although moist soils have a reduced heating 
capacity, the lethal temperature needed to kill soil microbes 
is dramatically reduced as soil moisture facilitates more 
effective heat penetration and faster heat distribution: lethal 
temperatures for bacteria are in excess of 200°C for dry soils, 
but considerably lower (50–60°C) in moist soils (DeBano 
1991). However, moist soils can also protect soil biota: in 
grasslands, where fires are short-lived, the high specific heat 
of water can serve to buffer the effects of heating and reduce 
the likelihood of ignition of organic matter in the soil 
(Wells 1979). 

If inter-fire intervals are ‘squeezed’ (Enright et al. 2015) 
such that decomposer assemblages are unable to recover 
within the inter-fire interval, then litter decomposition 
rates will decrease (Springett 1976; Raison et al. 1986;  
Monleon and Cromack 1996; Brennan et al. 2009), which 
may increase the risk of future fires. The recovery of decom
poser assemblages is likely to be dictated not only by fire 
frequency, but also by seasonality, severity and extent, as 

these factors interact with recolonisation and persistence 
traits of species, determining whether an assemblage is 
dominated by superior dispersers or in situ survivors. More 
frequent, severe, or larger-extent fires may compound the 
local loss of decomposer diversity. At a landscape scale, 
source populations may be eliminated. Even if functional 
effects are not immediately obvious, species richness is 
associated with functional diversity in heterogeneous envir
onments (Tylianakis et al. 2008) and over time (Reich et al. 
2012). It is thus likely that the maintenance of decomposer 
assemblages is critical in maintaining function and allowing 
ecosystems to self-regulate litter loads. 

Global change, fire and biological decomposition 

Biological decomposition is performed by biota, so predic
tion of the consequences of global change for decomposition 
requires a better knowledge of how those organisms respond 
to threats such as landscape modification, climate change 
and species invasions. These threats will impact fire 
regimes, altering fire severity, seasonality, extent and fre
quency (Fig. 3) (third-order fire effects). At the same time, 
they will alter species assemblages. Further, changes in fire 
regimes and assemblages of detritivores may act synergisti
cally to complicate outcomes for decomposition. 

Increased extreme weather, ignition
opportunities and warmer
temperatures mean fires will become
more frequent and severe in many
ecosystems.

Vegetation and decomposer
communities will change.
Vegetation biomass may increase,
but decomposition rates will
decline owing to increased C:N ratios
in litter and warmer and (often)
drier climates.

Fragmentation and degradation of
vegetation slow decomposition by
altering microclimates.
Assemblages of plants and
decomposers change.

Fragmentation may increase or decrease
the spread of fire, depending on the
matrix. Fire may be suppressed in some
landscapes but ignition by humans may
become more common.

Invasive plants may be more flammable
than native species. Invasive herbivores
alter flammability through consumption
of vegetation.

Invasive plants may decompose
differently from natives. Invasive
detritivores can increase
decomposition rates, while invasive
predators can consume detritivores.

Impacts  on fire regimes:

Climate
change

Impacts on fire regimes:

Impacts on fire regimes:

Impacts on decomposition:

Impacts  on decomposition:

Impacts  on decomposition:

Invasive
species

Landscape modi fication

Global change impacts on fire and decomposition

Fig. 3. Key predicted impacts of the global change drivers of climate change, landscape modification and 
invasive species on fire regimes and decomposition. Coloured arrows illustrate where global change drivers 
influence fire and/or decomposition and if this occurs through their impacts on decomposer organisms or 
vegetation.    
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Landscape modification 

Landscape modification remains the most significant threat 
to biodiversity (Segan et al. 2016). A range of studies have 
explored the impact of anthropogenic modifications, such as 
habitat fragmentation, on biodiversity. Fragmentation of 
forests results in exposure to warmer and more desiccating 
microclimates, and stronger winds (Malcolm 1998; Briant 
et al. 2010). This leads to changes in plant species composi
tion (sometimes leading to N-poor litter in small fragments) 
(Riutta et al. 2012) and vegetation structure (Didham and 
Lawton 1999). It also decreases rates of litter decomposition 
in small, isolated fragments and at patch edges (Didham 
1998; Martinson and Fagan 2014). Declines in decomposi
tion rates in habitat fragments have been attributed to 
microclimate (drier climates at forest edges decrease decom
position rates) and changes the composition of detritivore 
assemblages (de Souza and Brown 1994; Grove 2002;  
Vasconcelos and Laurance 2005). 

At a landscape-scale, the likelihood of fragments burning 
may differ substantially from the original continuous habi
tat. Increased anthropogenic use of fire in the modified 
matrix acts synergistically with the drier edges and 
decreased decomposition rates of fragmented tropical for
ests to increase the frequency of fire (Laurence and 
Vasconcelos 2004). However, fragmentation of flammable 
habitats can inhibit fire spread at a landscape scale (Duncan 
and Schmalzer 2004). Protection of small urban fragments 
from fire can result in less flammable plant communities and 
fundamental changes in the species composition of litter 
invertebrates (Gibb and Hochuli 2002). Where fragments 
do experience fire, they are less likely to be recolonised by 
dispersal-poor detritivores (Driscoll and Weir 2005;  
Schmuki et al. 2006). The impacts of habitat fragmentation 
on fuel loads may thus be difficult to predict, depending on 
the balance between reduced fire spread and altered fuel 
loads, and any fragmentation impacts on the decomposers. 

Climate change 

Global models show that climate is an important driver of 
litter decomposition (Liski et al. 2003; García-Palacios et al. 
2013), and it is therefore likely that changing climate will 
change decomposition rates. Climate change encompasses a 
variety of changes, including increasing carbon dioxide 
(CO2) and temperature, changes in precipitation, and 
increases in the frequency of extreme weather events 
(IPCC 2012; National Academies of Sciences, Engineering, 
and Medicine 2016), including the extremely hot and dry 
conditions that commonly precede major fires (Hennessy 
et al. 2005; Nolan et al. 2020). Climate change is thus likely 
to alter many elements of fire regimes, including fire extent, 
severity, frequency and seasonality (Fig. 3). As a result, the 
interaction between future climate projections, fuel loads 
and decomposition is likely to be complex. 

An accurate prediction of how the decomposition of fuel 
will respond to changes in climate is dependent not just on 
changes in physical factors, but also shifts in species distribu
tions and changing plant and decomposer communities 
(Castro et al. 2010; Harris et al. 2016; Koltz et al. 2018). 
Whereas warming and increased CO2 may increase decompo
sition rates, studies also predict that under warming condi
tions, plant communities will change (e.g. Davidson and 
Janssens 2006; Scherrer et al. 2017), altering the type of litter 
available to decomposers. Where plant community composi
tion remains unchanged, the nutrient content of fresh litter 
may decline (Manea et al. 2015; Kasurinen et al. 2017), thus 
altering the quality of litter (De Long et al. 2016). Further, 
interactions between invertebrates and microbes change with 
temperature and soil moisture (Coulis et al. 2013; A’Bear et al. 
2014) and the synergistic impact of these changes on decom
position is likely to differ among ecosystems. 

In a rapidly changing climate, establishment conditions 
are also likely to change with time, such that recovering 
ecosystems may not converge on a pre-fire state. For exam
ple, seasonal increases in soil moisture following fire are 
hypothesised to be critical in facilitating the recovery of soil 
microbial community structure and function to a pre-burnt 
state (D’Ascoli et al. 2005; Prendergast-Miller et al. 2017). 
This suggests that any changes in fire seasonality may alter 
the direction of community recovery. The same is likely to 
be true of climate-limited changes in fire frequency, severity 
and extent. 

Species invasions 

Invasive species may enhance or inhibit fire, depending on 
the species and ecosystem. Exotic plants can alter ecosystem 
flammability (D’Antonio and Vitousek 1992; Mack and 
D’Antonio 1998; Brooks et al. 2004; Rothstein et al. 2004;  
Arthur et al. 2012), for example, buffelgrass (Cenchrus 
ciliaris) invasions increase fuel loads and burn severity 
(Miller et al. 2010). Litter of invasive species may also 
decompose more rapidly than native litter (Jo et al. 2016): 
many successful invaders possess traits, such as limited 
investment in permanent structures, that are also associated 
with rapid decomposition (Van Kleunen et al. 2010). 
Although decomposers are rarely species-specific, they are 
often adapted to particular plant traits (Kembel and Mueller 
2014), such that plant invasions result in changed decom
poser assemblages (Cameron and Spencer 1989). Invasive 
plant species may also alter decomposition through their 
impact on microclimates, since decomposition rates depend 
on temperature and moisture (Vallés et al. 2011; Watling 
et al. 2011). Alternatively, they may affect decomposition 
indirectly, by altering habitat suitability for decomposer 
species (Gratton and Denno 2005; Foster et al. 2021). 

Invasive predators may dramatically alter ecosystems 
through their impacts on detritivores. For example, exotic 
crazy ants (Anoplolepis gracilipes) on Christmas Island 
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caused dramatic increases in forest floor litter loads through 
predation on native red crabs, a key litter consumer 
(O’Dowd et al. 2003). Invasive decomposers also affect 
fuel loads: invasive earthworms are important litter decom
posers in the USA and are therefore likely to inhibit fire. 
However, they live in the litter layer, so are more negatively 
affected by fire than are native earthworms, which tend to 
be soil-living (Callaham et al. 2003; Ikeda et al. 2015). In 
contrast, high abundances of invasive detritivores, such as 
bark beetles, can increase tree death following fire (Houston 
1981; Goldammer and Penafiel 1990), thus increasing fuel 
for future fires. The feedbacks among species invasion, 
decomposition and fire are poorly understood, but are 
clearly important in understanding fire risk in a changing 
world. 

Management implications 

Within those fire-prone forests, fire management occurs 
largely through hazard reduction burns aimed at reducing 
fine surface fuels, which are the critical habitat of detriti
vores that naturally undertake biological fuel reduction. The 
appropriateness of this approach may depend on where on 
the spectrum of climate-limited to fuel-limited an ecosystem 
belongs and a one-size fits all approach may lead to negative 
outcomes in some ecosystems. Inappropriate fire manage
ment, i.e. management that leads to population extinctions 
(Kelly et al. 2015), may lead to a negative feedback loop 
(Fig. 1). In that case, fire would cause declines in detritivore 
assemblages, leading to a reduction in litter decomposition, 
which would be expected to accelerate the accumulation of 
flammable fuel. This could lead to a requirement for more 
frequent managed burns, but increased fire frequency is 
associated with greater loss of biodiversity and function 
(Hernández and Hobbie 2008; Brennan et al. 2009;  
Toberman et al. 2014). It is therefore critical that fire man
agers recognise that surface fuel loads are controlled by 
organisms and that these organisms and their interactions 
must be better understood if we are to rebuild diverse and 
functionally intact decomposer communities and retain the 
function of decomposition following fire. Active monitoring 
of not just surface fuels, but also decomposition rates and 
litter fall would provide the detailed information required to 
better model this ecosystem service. 

Conservation of functionally intact decomposer commu
nities will be achieved through attention to in situ condi
tions during and after prescribed burns, burn season and the 
scale and heterogeneity of those burns, and proximity to 
refuges or other potential colonisation sources in the land
scape. Like most species, detritivores have evolved with a 
natural fire regime. Conflicts between frequent hazard 
reduction and conservation will be low if there is a history 
of frequent low-intensity surface fires, but high if the natural 
fire regime consists of infrequent high-intensity fires 
(Fernandes and Botelho 2003). Managers may be able to 

alter the intensity, frequency, seasonality and extent of 
prescribed fires to mimic natural fires, but mimicking 
high-intensity, large-extent fires may not be desirable if 
the aim of prescribed burning is to minimise damage to 
human populations and infrastructure. 

In addition to difficulties in mimicking ‘natural’ fire 
regimes, today’s unmanaged fires may differ considerably 
from those of the recent past. A range of anthropogenic 
factors functioning at larger scales than most fire manage
ment operations conspire to alter fire regimes. These include 
climate change, anthropogenic alteration of landscape struc
ture and composition and changes in the role of people in 
starting and managing fires, for example, the loss of indige
nous fire management, long-term fire suppression or 
increases in accidental or intentional arson (Bradstock 
2010; Ganteaume et al. 2013). Some of the same factors 
may also limit the ability of species to respond, e.g. temper
ature affects invertebrate development rates and willingness 
to fly (Bale et al. 2002; Abram et al. 2017), while habitat 
degradation and fragmentation drive species loss and limit 
sources for recolonisation (Didham et al. 1996). Of these 
factors, landscape structure offers the greatest opportunity 
for manipulation at a local scale, for example by regulating 
burn heterogeneity (Kral et al. 2017). However, manage
ment must be based on sound knowledge of the dispersal or 
in situ survival capacities of decomposers across functional 
groups. It should also be tailored to the ecosystem, consid
ering landscape structure, the position on the climate- and 
fuel-limited spectrum and traits of the biota. 

Additionally, active management of the decomposer com
munities could provide an avenue for overcoming some of the 
negative feedbacks associated with increasing fire size, sever
ity and frequency and its interactions with global change. This 
could involve preserving small-scale litter refuges during man
agement burns (e.g. Holland et al. 2017), enabling recolonisa
tion to occur over much smaller spatial scales, or addition of 
cellulose into severely burnt soils to favour the development 
of fungal mycelium and increase microbial C (Fritze et al. 
1993). Alternatively, following extreme fires, active litter 
transplants or targeted transplants of key decomposers to 
rapidly restore both the invertebrate and microbial compo
nents of decomposer communities and their critical ecosystem 
processes could be used the way that faecal transplants are 
used for human health or soil transplants for agricultural 
health (Contos et al. 2021). Similar treatments following 
hazard reduction burns might assist in lengthening their effec
tiveness, but these potential solutions remain untested. 

Synthesis 

Decomposer organisms are important in regulating surface 
fuels in many ecosystems and fuel loads drive fire. 
Feedbacks among fire, fuel and decomposer organisms are 
likely to be important in determining fire regimes (Fig. 1) 
and how they will respond to global change and should be 
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incorporated into management. However, key questions 
regarding the relationship between fire, fuel and decompo
sers remain unanswered (Table 1). For example, data on the 
importance of decomposer organisms and changes in 
decomposition rates following fire are currently insufficient 
to incorporate into models predicting fire risk or spread. In 
addition to their important functional roles in nutrient 
cycling and in terrestrial food webs, decomposer organisms 
present a significant portion of the biodiversity supporting 
and supported by the surface fuel layer. Efforts can and 
should be made to conserve and manage these functionally 
critical taxa in fire-prone ecosystems, particularly those with 
historically long inter-fire intervals. 

Supplementary material 

Supplementary material is available online. 
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