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ABSTRACT 

Background. We compared estimates of Fire Radiative Power (FRP) from sensors onboard 
geostationary Himawari-8 (BRIGHT_AHI) and polar-orbiting TERRA/AQUA (MOD14/MYD14) 
satellites during the 2019/2020 Black Summer Fires in South-Eastern Australia. Aim/methods. 
Analysis was performed on a pixel, bioregion, and wildfire event basis to assess the utility of the 
new BRIGHT_AHI FRP product. Key results. Results show a high agreement between the 
products (r = 0.74, P < 0.01) on a pixel level, with BRIGHT_AHI generally underestimating FRP 
compared to MOD14/MYD14. Regional spatiotemporal trends were captured in more detail by 
BRIGHT_AHI due to its higher temporal resolution, with MOD14/MYD14 systematically under
estimating the total and sub-diurnal FRP values. Nevertheless, both datasets captured similar fire 
ignition and spread patterns for the study region. On the event level, the correlation between the 
datasets was moderate (r = 0.49, r = 0.67), when considering different temporal constraints for 
hotspot matching. Conclusions. The results of this study indicate that BRIGHT_AHI approx
imates the well-established MOD14/MYD14 product during concurrent observations, while 
revealing additional temporal information for FRP trends. Implications. This gives confidence 
in the reliability of BRIGHT_AHI FRP estimates, opening the way for a denser observation record 
(10-min intervals) that will provide new opportunities for fire activity reporting, some of which 
are presented here.  

Keywords: Black Summer Fires, BRIGHT, fire intensity, Fire Radiative Power, geostationary, 
Himawari-8, intercomparison, MOD14/MYD14, MODIS. 

Introduction 

During the 2019–2020 southern hemisphere summer, south-eastern Australia experi
enced prolonged drought, dry fuel accumulation, and extremely high temperatures 
creating fire-favouring conditions (Fryirs et al. 2021). Multiple fires ignited across 
south-eastern Australia, eventually leading to major fires that were collectively termed 
the Black Summer Fires, burning almost 12.6 million ha of land, including 8 million ha of 
natural vegetation (Wintle et al. 2020; Godfree et al. 2021). Despite the long history of 
extreme wildfires in Australia, the Black Summer Fires were devastating for the already 
stressed ecosystems and unparalleled in terms of intensity, spatial and temporal scales 
(Wintle et al. 2020). It is estimated that 76 plant families were affected by the fires, while 
498 out of the 816 vascular plant species lost more than 75% of the area they occupy 
(Godfree et al. 2021). In addition, 33 human lives were lost, thousands of houses burned 
down, while over 1 billion animals were estimated to have been killed (Filkov 
et al. 2020). 

Satellite earth observations allow wildfires to be observed and studied through their 
various stages; from ignition to impact on the landscape. The orbital characteristics of 
satellite sensors influence how often, and with what level of detail, fire activity can be 
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observed and recorded. Most commonly used datasets are 
captured by polar-orbiting satellites in a Low Earth Orbit 
(LEO), which allows them to revisit almost any spot on the 
earth’s surface from two times a day (e.g. TERRA/MODIS) to 
a few times a month (e.g. Sentinel-2 MSI). Recently, data 
from satellites on a Geostationary Orbit (GEO) are also being 
used as they offer multiple observations per hour but for a 
constant area, that often corresponds to a full-disk view of 
the earth (e.g. Himawari-8/AHI). Fire hotspot detection and 
identification (Wickramasinghe et al. 2020; Engel et al. 
2021a; Giglio et al. 2021), fire intensity estimation 
(CB Engel, SD Jones, KJ Reinke unpubl. data; Xu et al. 2017, 
2021), burned area estimation (Giglio et al. 2018; Roy et al. 
2019), and fire severity assessment metrics (Gibson et al. 
2020) are among the applications that highlight the impor
tance and opportunities that these observations offer. 

Fire activity and hotspot detection capabilities using GEO 
and LEO satellites have been studied through LEO-vs-LEO 
(Fu et al. 2020) and LEO-vs-GEO product intercomparisons 
(Engel et al. 2021b), comparing errors of omission and 
commission and FRP retrieval capabilities. Generally, 
MOD14/MYD14 have been shown to detect more fire hot
spots than GEO satellite products when given the same 
observation opportunities (e.g. clear line-of-sight, appropri
ate satellite and sensor location over the fire), and especially 
when these fires are burning with low intensity (Xu et al. 
2017, 2021; Engel et al. 2021b). When products that imple
ment the Fire Thermal Anomaly (FTA) algorithm (Wooster 
et al. 2015) derived from the GOES-16 geostationary satel
lite over the Americas are compared to MOD14/MYD14 (Xu 
et al. 2021), they report 68% omission and 12% commis
sions errors. The omission error is mainly attributed to 
undetected low-intensity fires which, when excluded from 
the assessment, reduce the omission error to 37% (Xu et al. 
2021). Similarly, the adapted FTA algorithm product for 
Himawari-8’s Advanced Himawari Imager (AHI) reported 
a 66% omission error and an 8% commission error in com
parison to MOD14/MYD14, across East Asia and Australia 
and different land covers for June 2015 (Xu et al. 2017). 

A recently developed algorithm for the AHI data, the 
Biogeographical Region and Individual Geostationary 
HHMMSS Threshold (BRIGHT) (Engel et al. 2021b), uses a 
different approach to fire detection compared to FTA. Its 
latest version has slightly reduced omission and commission 
errors for Australia, reporting 54 and 5% respectively, when 
compared to MOD14/MYD14 from April 2019 to March 
2020 (Engel et al. 2021a). This error is again attributed to 
lower intensity fires being missed due to the lower spatial 
resolution of the GEO products, but differs from previous 
studies as the study period was considerably longer, captur
ing an entire year of observations across the whole of 
Australia. Engel et al. (2021a) also showed that the agree
ment between the two datasets in terms of probability of fire 
detection increases with increasing minimum fire intensity 
throughout a fire event. 

One particularly important element of attributing and 
measuring fire intensity and activity is Fire Radiative 
Power (FRP). This corresponds to the upwelling energy 
emitted by a fire and is used to inform combustion com
pleteness, burning biomass emissions, severity, and impact 
of wildfire (Wooster et al. 2003, 2005; Freeborn et al. 
2014b; Li et al. 2019; Shen et al. 2021). A detailed diurnal 
estimation of FRP can be integrated to compute the Fire 
Radiative Energy (FRE) of a fire and alongside other satellite 
sensor derived variables (e.g. Aerosol Optical Depth) used to 
make an alternative biome specific emission estimation 
without the need of certain assumptions and hard to acquire 
variables, such as fuel density and consumption rates 
(Ichoku and Kaufman 2005; Ichoku and Ellison 2014;  
Nguyen and Wooster 2020). Xu et al. (2017) compared 
GEO FRP estimates with established products, such as 
MOD14/MYD14, for different parts of the world and land 
covers. They found that more recent GEO sensors such as 
H8-AHI can provide FRP estimations more reliably than 
older platforms such as FY-2 and MTSAT. AHI showcased 
an almost perfect correlation with MOD14/MYD14 
(R2 = 0.98) on a per-fire level across East Asia and 
Australia for June 2015, where per-fire refers to a cluster 
of spatially-adjacent and near-simultaneous fire pixels. 

Currently, few studies have moved past the detection 
error comparison and intercompared FRP derived from 
GEO and LEO sensors (e.g. Xu et al. 2017, 2021) . These 
studies compare aggregations of FRP estimations from each 
sensor that correspond to specific fire event/clusters or 0.5° 
grid aggregations. Nevertheless, conclusions from these 
studies are limited as they cover 1 and 2 months respec
tively, while focusing on large-area spatial patterns. 

This study intercompares the BRIGHT_AHI FRP product 
(CB Engel, SD Jones, KJ Reinke unpubl. data) to MOD14/ 
MYD14 during the extreme Black Summer Fires event in 
south-eastern Australia (November 2019–March 2020). The 
two FRP products are compared through different temporal 
and spatial constraints to explore the agreement in concur
rent hotspot FRP estimations (per pixel) and diurnal FRP 
variations in bio-regional and seasonal settings. 

Methods 

Data 

The FRP Level 2 MODIS products (1 km spatial resolution) 
MOD14 from the TERRA and MYD14 from AQUA satellites 
(Thermal Anomalies/Fire) were accessed. MOD14/MYD14 
is included in the latest MODIS data releases and remains 
unchanged between Collection 6 and 6.1. Nevertheless, a 
small percentage of pixels (~0.1%) have changed cloud 
cover status due to improvements in the processing of the 
relevant spectral channels (Giglio et al. 2021). The FRP 
calculation is based on the methodology proposed by  
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Wooster et al. (2003), which utilises the MIR channel 
centred at 4 μm and is heavily dependent on the accurate 
characterisation of the identified hotspot’s background MIR 
radiance (Giglio et al. 2016). In addition to the typical 
image granule format (HDF), NASA’s Fire Energetics and 
Emissions Research (FEER) website offers Collection 6 data 
in tables (ASCII) including the coordinates, timestamp and 
variables for each hotspot (FEER 2021). The FEER data was 
used in this study. 

To reduce known errors in hotspot detection and FRP 
intercomparison, MOD14/MYD14 data were limited to nar
rower than the full scan angle, as this is known to affect the 
detection and retrieval capabilities with the increasing pixel 
size towards the scan edge (Freeborn et al. 2014a; Roberts 
et al. 2015; Xu et al. 2017, 2021; Engel et al. 2021a, 2021b). 
For comparison and consistency with the existing literature 
purposes, MOD14/MYD14 hotspots were filtered to those 
retrieved from pixels with a scan angle between 0 and 30°, 
which results in a maximum increment of the MOD14/ 
MYD14 pixels by 1.7-times compared to their size at nadir. 

BRIGHT_AHI FRP estimations derived from Himawari-8 
imagery were also collected. Himawari-8 sits in a geo
stationary orbit (140.7°E) and through the Advanced 
Himawari Imager (AHI) sensor, provides data for the 

whole disk in 10-min intervals in 16 spectral bands of vary
ing spatial resolutions from 500 m to 2 km IFOV. The 
BRIGHT_AHI hotspot detection algorithm (Engel et al. 
2021a, 2021b) provides FRP estimations at hotspot loca
tions at ~2 km spatial resolution. The same algorithm as 
MOD14/MYD14 (Wooster et al. 2003) is used for this step 
(CB Engel, SD Jones, KJ Reinke unpubl. data), utilising the 
Middle Infrared spectral band from AHI (MIR at 3.9 μm) to 
derive the FRP values at hotspot locations. 

Study area and duration 

The study was conducted across south-eastern Australia, 
specifically along forested areas impacted by the Black 
Summer Fires during Southern Hemisphere summer 
(2019–2020). Nine biogeographical regions (or bioregions) 
as defined by the Interim Biogeographic Regionalisation for 
Australia (IBRA) framework that were affected by the Black 
Summer Fires were selected as the study area for the period 
between 1st November 2019 and 31st March 2020 (Fig. 1). 
IBRA is a commonly used segmentation of the continent into 
regions of similar biophysical characteristics (DAWE 2000). 
The analysis was conducted across multiple spatial scales: 
the entire study area, for each bioregion, for individual 
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Fig. 1. Map of the study area with the different forest cover types ( DAWR 2018) (left) and different biogeographic regions 
( DAWE 2000) (right). The areas that correspond to single fire events in VIC and NSW are highlighted in both maps as derived 
from the methodology described in  Lizundia-Loiola et al. (2020).   
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wildfire events/clusters and on a pixel level. At the bio
region scale, the analysis includes only the NSW North 
Coast, Sydney Basin and South East Corner bioregions as 
they have the highest forest cover and highest fire activity 
according to the two datasets (Table 1). 

Intercomparison of BRIGHT_AHI and MOD14/ 
MYD14 FRP values 

The first level of comparison between BRIGHT_AHI and 
MOD14/MYD14 was performed on the entire study area 
by grouping the hotspots (pixel centroids) using spatial 
and temporal proximity constraints. The bioregion level 
stratification was used to spatially group the hotspots, 
while a temporal separation was implemented using discrete 
calendar months. For each bioregion and calendar month, 
diurnal cycle plots were created using the total number of 
hotspots, along with the averaged and summed (integrated) 
FRP estimations per hour (local time) as an appropriate 
visualisation tool that would uncover the general trends. 

An additional level of fire-hotspot spatial grouping was 
achieved through the spatiotemporal clustering of the 
BRIGHT_AHI fire pixels into superclusters as reported in  
Ramsey et al. (2021) based on the work by Lizundia- 
Loiola et al. (2020). A supercluster refers to a group of 
spatially (within a 3.6 km radius) and temporally (2-h win
dow) connected fire pixel centroids that are assumed to 
represent a single fire event from ignition to suppression. 
The superclusters were used to further intercompare 
BRIGHT_AHI and MOD14/MYD14 using their FRP estimates 
for the spatial extent and duration of specific events. Two 
different approaches were examined, one integrating and 
comparing all hotspots from both datasets in a supercluster’s 
footprint and duration, and a second including only 

concurrent hotspots from both datasets that were observed 
within 10 min of each other. 

Grid alignment between BRIGHT_AHI and 
MOD14/MYD14 

The comparison of two products with different spatial reso
lutions usually requires some grid reprojection for the mea
surements to correspond to the same area and location on 
the earth’s surface. The differences are more prominent 
when the products are derived from sensors with different 
orbits, scan angles and point spread functions. As such, 
MOD14/MYD14 pixels were aggregated to match the 
lower spatial resolution grid of BRIGHT_AHI (~2 km2) and 
from hereon will be referred to as MD14_agg. A modification 
of the superellipse model (also known as Lamé Curve or 
Oval – Gridgeman 1970) was used to define the neighbour
hood of each BRIGHT_AHI pixel centroid, to approximate 
the elongated rectangular pixels of the sensor (1). Any 
concurrent MOD14/MYD14 pixel centroids that were 
located inside the superellipse were summed to provide a 
single aggregated FRP value for the area. The temporal 
threshold used to define concurrent spatiotemporal matches 
between the two datasets was ±10 min. 

The superellipse neighbourhood was given by the 
inequality: 

x x
a h

y y
b h

–
+

+
–
+

1
p p

AHI MOD AHI MOD (1)   

Where x and y are the coordinates of the BRIGHT_AHI 
and MOD14/MYD14 pixel centroids, a and b are the values 
of the major and minor axis of the superellipse that approxi
mate the BRIGHT_AHI pixel axes lengths within the study 
region, and p is the curvature coefficient of the model. The 
p = 1 represents a rhombus, p = 2 represents a normal 
ellipse and p → ∞ approximates a rectangle. The h was 
used as a buffer constant that increased the size of the 
superellipse by half a MOD14/MYD14 pixel to account for 
pixel area (but not centroid) overlap and was set to 
0.005 decimal degrees. 

Intercomparison of BRIGHT_AHI and MD14_agg 
spread patterns and FRP values 

The association of the matched hotspots was examined 
through their correlation using Pearson’s correlation 
coefficient (r), as the two products are estimations of the 
same variable and therefore their relationship is expected to 
be linear. Following the work by Xu et al. (2017, 2021), the 
best-fit linear model that passes through the origin was also 
calculated for the log-transformed data to satisfy the nor
mality assumption of the Ordinary-Least-Squares regression 
(OLS) and be consistent with the literature. In addition, the 
matched hotspots were compared in terms of their location 

Table 1. Size of IBRA Bioregions used in the study area, 
proportion of forest within, and their administrative setting 
(Australian Capital Territory – ACT, New South Wales – NSW, 
Victoria – VIC).      

Bioregion Area 
(sq km) 

Forest 
cover (%) 

State   

Australian Alps 12 330 8.5 NSW, VIC 

Nandewar 27 020 0.9 NSW, QLD 

New England Tablelands 30 022 4.6 NSW, QLD 

NSW North Coast 39 966 9.9 NSW 

NSW South Western 
Slopes 

86 811 0.3 NSW, VIC 

South East Corner 25 320 13.4 NSW, VIC 

South Eastern Highlands 83 760 3.3 NSW, VIC 

South Eastern Queensland 68 421 1.9 QLD 

Sydney Basin 36 296 11.7 NSW   
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and ignition date, which was calculated based on the first 
logged FRP measurement in the time series of the stable 
BRIGHT_AHI pixel centroid location. 

Results 

BRIGHT_AHI vs MOD14/MYD14 

The frequency distribution for the different sensor hotspot 
retrievals (Fig. 2) depicts the temporal coverage difference 
between the two platforms over the diurnal cycle. 
BRIGHT_AHI reports considerably more hotspots per hour 
than MOD14/MYD14 on their concurrent hours, but this 
should be interpreted after considering the temporal resolu
tion (BRIGHT_AHI makes six retrievals per hour versus four 
retrievals per day by MOD14/MYD14) and spatial resolution 
(BRIGHT_AHI’s pixels are two to four times larger than 
MOD14/MYD14) differences. However, BRIGHT_AHI 
detects significantly fewer hotspots per hour between 
06:00 and 19:00 compared to 20:00–05:00 (Fig. 2), which 
roughly corresponds to a day/night difference. 

A clear difference in the number of hotspots between 
BRIGHT_AHI and MOD14/MYD14 products is detected 
(Fig. 3a, b). Integrated FRP values demonstrate a similar 
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trend (Fig. 3c, d), where observations from both sensors are 
available, with a dip in the morning hours and an increase 
from 10:00 to 15:00. Meanwhile, the mean FRP values 
fluctuate with a similar magnitude and trend, peaking 
around 15:00. Finally, an inverse relationship between the 
number of hotspots and their average and integrated FRP is 
evident in the BRIGHT_AHI data, alternating between day 
and night (Fig. 3a, c). 

A further breakdown of the dataset per month and 
bioregion reveals specific temporal patterns. As seen in  
Fig. 4, there is a clear gradient indicating that at the 
beginning of the fire season (November) the majority of 
hotspots were in the northern regions (NSW North Coast). 
A month later most hotspots were in the central region 
(Sydney Basin) and another month later the southern 
region South East Corner had more hotspots than the 
other areas. 

When compared to BRIGHT_AHI, the number of hotspots 
from MOD14/MYD14 is lower with the resultant loss of fire 
activity information. However, a similar trend in hotspot 
spatial-temporal incidence can be seen in the data (Fig. 5). 

Mean MOD14/MYD14 FRP values are underestimated com
pared to BRIGHT_AHI (Fig. 4). 

Fig. 6 replicates the fire season progression (November, 
December 2019, January 2020) and study bioregions pre
sented in Figs 4, 5. As per the trends in hotspot numbers, 
fires became more intense over time and progressed towards 
the south, while their intensity reduced over time in the 
north. An irregular jump of the FRP is observed in South 
East Corner for night-time observations in December 2019. 

MOD14/MYD14 depicts similar spatial and temporal 
trends as BRIGHT_AHI (Fig. 7), but these are smaller in 
magnitude. The night-time peaks measured by 
BRIGHT_AHI during November in NSW North Coast and 
December in Sydney Basin and South East Corner are not 
captured by MOD14/MYD14. 

BRIGHT_AHI vs MOD14/MYD14: fire 
superclusters 

Using the fire superclusters (for derivation see Methods), 
BRIGHT_AHI continues to offer a more complete picture of 
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fire intensity and hotspot numbers (Table 2). As seen in  
Fig. 8, Table 2, the NSW North Coast supercluster as cap
tured by BRIGHT_AHI is consistent with the results from the 
bioregional level analysis (Fig. 4), with a peak of intensity 
between 10:00 and 14:00, unlike MOD14/MYD14 that 
misses the FRP variation. Meanwhile, MOD14/MYD14 suc
cessfully indicates the increase in intensity between 11:00 
and 14:00 for the Sydney Basin supercluster, but with less 
detail than BRIGHT_AHI. The intensity during the South 
East Corner fire supercluster is the highest measured out 
of the three events as observed by BRIGHT_AHI, while 
MOD14/MYD14 failed to capture any data at this loca
tion/time. 

Next, the association of the total FRP per supercluster 
was examined for BRIGHT_AHI and MOD14/MYD14 
(Fig. 9). The correlation between the two datasets is moder
ately positive when all hotspots in a supercluster are inte
grated and compared (r = 0.67, P < 0.01, slope = 1.38), 
with BIRGHT_AHI logging higher total values due to its 
more frequent observations. Meanwhile, the observed cor
relation is lower (r = 0.49, P < 0.01, slope = 1.29) when 

only hotspots that are concurrently observed by both data
sets within 10 min of each other are integrated, and the bias 
towards BRIGHT_AHI FRP is reduced. 

BRIGHT_AHI vs MD14_agg 

Over 90 000 concurrent hotspots, between BRIGHT_AHI and 
MD14_agg, were identified for the nine bioregions used in 
this study. A strong positive correlation between the FRP 
products (r = 0.74, Fig. 10) was observed, while the linear 
model, passing through the origin and applied to the log- 
transformed data, was fitted with a slope of 0.87. Despite 
the strong correlation, BRIGHT_AHI still underestimates the 
FRP values and saturates at around 950 MW. 

Fig. 11 illustrates the spatiotemporal progression of the 
fire for BRIGHT_AHI and MD14_agg in the form of a 2D 
histogram. The plots show that fires spread from North to 
South and from East to West (length of artefacts along the 
y-axis). Most of the distance was covered during the last 
week of December and the first week of January, where fire 
ignitions peaked through 2° of latitude and 2.5° of longitude. 
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Fig. 5. Aggregated diurnal cycles of Mean FRP from MOD14/MYD14 (red dots) over the number of hotspots (blue bars) 
between November 2019 and January 2020 for the three analysed bioregions which follow a north to south latitudinal gradient 
(NSW North Coast – top row; Sydney Basin – middle row; South East Corner – bottom row). From left to right the progression 
depicts the temporal change (November to January), while from top to bottom spatial change (bioregions from north to south).   

K. Chatzopoulos-Vouzoglanis et al.                                                                                         International Journal of Wildland Fire 

578 



From beginning to end, December had the largest number of 
ignitions (length of artefacts along the x-axis), especially 
along the 150° meridian, which correspond to the Sydney 
Basin IBRA region of the study area. 

On a bioregion level, the two datasets remain positively 
correlated with values ranging from 0.69 to 0.86 as reported 
in Table 3. Pearson’s r is higher in NSW North Coast and Sydney 
Basin, and slightly lower in the South East Corner bioregion, 
compared to the overall correlation (r = 0.74, P < 0.01). 

Discussion 

Fire Radiative Power estimations from LEO (MOD14/ 
MYD14) and GEO (BRIGHT_AHI) sensors were compared 
using different spatial and temporal constraints at three 
spatial aggregations. General agreement between FRP esti
mates was observed for bioregion (first level) and fire event 
(second level) stratifications of the data, with BRIGHT_AHI 
providing more detailed diurnal information due to its 

higher temporal resolution. Meanwhile, a high agreement 
was shown in the fire spread patterns captured by each 
sensor and detection algorithm. A strong positive correlation 
was also shown in concurrently observed fire hotspots by 
both datasets, which is significant, given the sensor and 
orbit differences (third level). This overall agreement is 
supportive of the legitimacy of BRIGHT_AHI detections 
and the utility of AHI to derive measures of FRP when 
compared to a higher spatial resolution product. 

BRIGHT_AHI and MOD14/MYD14 were first compared 
according to month and bioregion. BRIGHT_AHI showed 
clear advantages over MOD14/MYD14 in the diurnal cycle 
analysis, where the former’s high temporal resolution 
allowed for temporal patterns to be captured in detail 
while fewer insights were able to be extracted from the 
latter (e.g. Fig. 3). This is to be expected as Himawari-8’s 
AHI has 144 opportunities per day to capture the earth’s 
surface compared to the four of the MODIS satellite pair. 
Nevertheless, a significant difference in the number of hot
spots between day and night-time was documented for 
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Fig. 6. Aggregated diurnal cycles of Integrated FRP from Himawari-8 (red line with dots) over the number of hotspots (blue 
bars) between November 2019 and January 2020 for the three analysed bioregions which follow a north to south latitudinal 
gradient (NSW North Coast – top row; Sydney Basin – middle row; South East Corner – bottom row). From left to right the 
progression depicts the temporal change (November–January), while from top to bottom spatial change (bioregions from north 
to south).   
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BRIGHT_AHI, which is a finding consistent with Engel et al. 
(2021a) and CB Engel, SD Jones, KJ Reinke (unpubl. data). 
Furthermore, in the case of cloud presence during the over
pass of the satellite, the entire fire event can be missed (e.g. 
fire supercluster in South East Corner – Fig. 8) or sporadic 
high-intensity fire activity during the night-time compared 
to daytime can also be omitted (e.g. South East Corner 

during December – Fig. 6). The absence of an albedo 
check in the night-time BRIGHT algorithm relaxes detection 
rules, thereby increasing hotspot detections and potentially 
the rate of commission errors. 

For the second level of intercomparison between the 
datasets, an alternative spatiotemporal constraint based on 
the work by Lizundia-Loiola et al. (2020) and adapted to the 
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Fig. 7. Aggregated diurnal cycles of Integrated FRP from MOD14/MYD14 (red dots) over the number of hotspots (blue bars) 
between November 2019 and January 2020 for the three analysed bioregions which follow a north to south latitudinal gradient 
(NSW North Coast – top row; Sydney Basin – middle row; South East Corner – bottom row). From left to right the progression 
depicts the temporal change (November–January), while from top to bottom spatial change (bioregions from north to south).   

Table 2. Superclusters of three chosen fire events, with the highest Mean FRP, Integrated FRP, number of hotspots and longest duration of 
fire in hours (indicated by the grey shading).          

Start End Duration 
(h) 

Area 
(sq km) 

Integrated 
FRP (MW) 

Mean 
FRP (MW) 

No. of 
hotspots 

Bioregion   

05/11/2019 09/11/2019 102 2871 3 314 865 138.0 30 576 NSW North 
Coast 

5 PM 11 PM 

11/11/2019 15/11/2019 113.5 1607 1 925 086 61.8 31 807 Sydney Basin 

6 AM 11 PM 

29/12/2019 30/12/2019 25.3 5051 3 122 205 382.7 11 612 South East Corner 

10 PM 11 PM   
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area by Ramsey et al. (2021) was applied using superclusters 
that corresponded to specific fire events. Here, it was 
observed that MOD14/MYD14 data underrepresented or 
completely omitted the fire activity (Fig. 8), unlike 
BRIGHT_AHI that provided consistent information for all 
the events. In the case of the South East Corner supercluster, 
a small number of BRIGHT_AHI hotspots along with high FRP 

values were measured, while MOD14/MYD14 missed the 
entire event. To further explore this, the cloud cover during 
the event was visually inspected using Japan’s National 
Institute of Information and Communications Technology 
(NICT) website (https://himawari8.nict.go.jp/). There it 
was observed that in the early morning and afternoon, both 
clouds and smoke were present covering parts of the coast, 
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Fig. 8. Comparison of aggregated diurnal cycles of mean FRP from BRIGHT_AHI (left column) and MOD14/MYD14 (right 
column) during the three fire superclusters analysed at the bioregion level (NSW North Coast – top row; Sydney Basin – middle 
row; South East Corner – bottom row).   
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while the sky was clear only during the late morning of 
30 December 2019. This could mean that MOD14/MYD14 
did not observe this extreme event due to cloud and smoke 
contamination during the AQUA/TERRA overpasses, unlike 
BRIGHT_AHI that managed to provide information through
out the day utilising clear-sky moments. 

The third level of comparison was implemented on a 
pixel level, using a superellipse neighbourhood to better 
match the MOD14/MYD14 smaller IFOV to the coarser 
and differently shaped BRIGHT_AHI pixels. As a result, the 
‘double counting’ of MOD14/MYD14 hotspots with multiple 
adjacent BRIGHT_AHI was reduced for the pixel matching 
process, better aligning the different grid systems of the two 
products compared to a simpler model, e.g. Euclidean dis
tance (circle). Further quality considerations for the neigh
bourhood definition include the varying pixel shape of 
BRIGHT_AHI across the observed disk, an artefact of the 
Earth’s curvature and AHI’s orbit. Adjustments to the dimen
sions of the superellipse in terms of rotation, minor and 
major axis length could be made when applied in continen
tal scales to keep the pixel matching consistent. 
Nevertheless, the distortion introduced by the sub-state 
size of the study area presented here was assumed 
insignificant and therefore the superellipse method had 
high utility. 

To better appreciate the strong positive correlation 
(r = 0.74) between the two hotspot products for concurrent 
detections (Fig. 10), variations in addition to the gridding 
systems should be considered. For example, while both 
products implement the same FRP calculation algorithm 
(Wooster et al. 2003), they each derive the background 
radiation differently during the hotspot detection stage. 
Background radiation is an important input in the model 
developed by Wooster et al. (2003), and therefore it greatly 
affects the final FRP estimation. BRIGHT_AHI utilises a 
series of dynamic seasonal, bioregional, and time-of-day 
thresholds to derive the background radiation for a given 
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hotspot, whereas MOD14/MYD14 uses only spatially neigh
bouring ‘ambient’ pixels from a single scene to separate the 
radiation from a fire hotspot from the radiation of the back
ground. Furthermore, the fact that multiple MOD14/MYD14 
observations are aggregated and compared to a single 
BRIGHT_AHI observation can exacerbate the differences in 

FRP magnitude that are caused by the difference in spatial 
resolution between AHI and MODIS. An example of this is 
the saturation at around 950 MW for BRIGHT_AHI FRP that 
is attributed to the MIR AHI channel saturation at 400 K 
(Hall et al. 2019), but also worsens through the MOD14/ 
MYD14 aggregation, amplifying the positive bias towards 
the latter (Fig. 10). 

Finally, the fire spread patterns derived by the two prod
ucts using the first ignition per pixel analysis revealed simi
lar insights about the black summer fire season. Both 
datasets suggest that the fire started in the north and spread 
towards the south and south-east of the study area over 
time, following the findings of Zheng et al. (2021). Our 
findings also indicate that most ignitions occurred in the 
south of the study area towards the end of December. This 
peak of ignitions corresponds to the South East Corner 
bioregion, which shows a low number of hotspots during 
daytime in December, but a large increase of hotspot num
ber, mean and integrated FRP during the night-time (Fig. 6) 
that is in agreement with the high night-time activity in East 
Victoria as documented by Zheng et al. (2021). 

Several studies have compared and combined GEO and 
LEO FRP products that focus on biomass burning emissions 
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Fig. 11. Heatmap of first detection dynamics by latitude (top row) and longitude (bottom row), BRIGHT_AHI hotspots (left 
column) and MD14_agg (right column). Plot axes correspond to coordinate (y-axis) and time (x-axis). The colour gradient shows 
the density of hotspot pixels for each point in time and space.   

Table 3. Correlation and number of pairs per IBRA Bioregion for 
the BRIGHT_AHI and MD14_A FRP comparison.     

Bioregion name Number of pairs r   

Australian Alps 409 0.73 

Nandewar 137 0.83 

New England Tablelands 1122 0.7 

NSW North Coast 1919 0.84 

NSW South Western Slopes 282 0.7 

South East Corner 1304 0.69 

South Eastern Highlands 1152 0.74 

South Eastern Queensland 643 0.86 

Sydney Basin 2082 0.79   
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(Freeborn et al. 2009; Li et al. 2018, 2019; Mota and 
Wooster 2018; Zhang et al. 2020). However, fewer studies 
focused on the intercomparison of FRP estimations from 
GEO and LEO sensors (Hyer et al. 2013; Xu et al. 2017,  
2021). AHI and MOD14/MYD14 were compared in the work 
by Xu et al. (2017), which was conducted for the whole disk 
for a single month (June 2015) and a hotspot aggregation to 
0.5° grid cells or specific fire event clusters spatial scales. In 
addition, Xu et al. (2017) used the FTA algorithm (Wooster 
et al. 2015) to calculate the FRP from AHI data (FTA_AHI). 
These aggregations may be sufficient for extracting general 
differences and trends, however, in this study we also used 
AHI’s native resolution to perform pixel-to-pixel overlap 
comparison. A higher resolution comparison allows for 
more detailed information about fire activity and how it is 
captured by different sensors to be produced. 

As shown by Engel et al. (2021a), the regionally tuned 
BRIGHT_AHI performs slightly better in terms of omission 
and commission errors compared to FTA_AHI, which uses 
global assumptions (Xu et al. 2017). The statistics provided 
for the FRP value comparison in terms of concurrently 
observed fire event clusters suggest an almost perfect asso
ciation between the two datasets used by Xu et al. (2017) 
with a slope of 0.99 and an R2 = 0.98. We found a 1.29 
slope for the fitted linear model through the origin and a 
Pearson’s r = 0.49 (R2 = 0.24), suggesting a low/moderate 
association with a clear underestimation of FRP for MOD14/ 
MYD14 when it comes to concurrently observed hotspots in 
the spatial extend of superclusters. When the data are com
pared on a fire supercluster level without a concurrency 
constraint, the association becomes stronger (r = 0.67, 
R2 = 0.45), but the bias increases with a 1.38 slope for the 
fitted linear model towards BRIGHT_AHI (Fig. 9) as a result 
of temporal resolution differences. 

On the grid cell level, BRIGHT_AHI seems to perform better 
than FTA_AHI when both datasets are compared to MOD14/ 
MYD14. Using a 0.5° grid cell aggregation, Xu et al. (2017) 
found a slope of 0.54 for the fitted linear model. Meanwhile 
here, BRIGHT_AHI shows a slope of 0.87 and a Pearson’s r of 
0.74 (R2 = 0.55) on the pixel-by-pixel comparison with 
MOD14/MYD14 (Fig. 9), in an approximately 20 times finer 
resolution grid than the one used in Xu et al. (2017). The 
differences between BRIGHT_AHI and FTA_AHI in this context 
could be also be explained due to the fact that Xu et al. (2017) 
used a shorter time period (1 vs 5 months), for different 
intensity events (mainly agricultural fires vs megafires), over 
a larger area (East Asia and Australia vs a sub-region of 
Australia). More research is needed to draw robust conclu
sions on algorithm suitability in different conditions. 

Conclusions 

The aim of this paper was to explore the capabilities and 
limitations of newly developed geostationary products for 

fire monitoring. FRP estimations from BRIGHT_AHI were com
pared to the widely used FRP retrievals from MOD14/MYD14 
during the extreme Black Summer Fires that devasted South- 
Eastern Australia in 2019–2020. Intercomparison on a pixel 
level revealed a strong association between the two, some
thing that increases the confidence of BRIGHT_AHI, whereas 
focusing on the temporal variability of FRP showcased an 
increased utility value when time dense measurements are 
available. Our findings suggest that geostationary products 
can be used in fire monitoring contexts which will also help 
enhance our understanding of wildfire dynamics from space. 
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