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Evidence for lack of a fuel effect on forest and shrubland fire 
rates of spread under elevated fire danger conditions: 
implications for modelling and management 
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ABSTRACT 

The suggestion has been made within the wildland fire community that the rate of spread in the 
upper portion of the fire danger spectrum is largely independent of the physical fuel character
istics in certain forest ecosystem types. Our review and analysis of the relevant scientific 
literature on the subject suggest that fuel characteristics have a gradual diminishing effect on 
the rate of fire spread in forest and shrubland fuel types with increasing fire danger, with the 
effect not being observable under extreme fire danger conditions. Empirical-based fire spread 
models with multiplicative fuel functions generally do not capture this effect adequately. The 
implications of this outcome on fire spread modelling and fuels management are discussed.  

Keywords: dead fuel moisture contents, fire behaviour, fire propagation, fire spread model
ling, fire weather, forest fuels management, fuel characteristics, fuel model, fuel type, wind speed. 

Introduction 

Catastrophic wildfire events over the past two decades, many of them involving a 
modern-day record number of fatalities amongst the local population (Tedim et al. 
2020), have now more than ever highlighted the need for accurate fire spread prediction 
tools. Forecasts of fire propagation during wildfire events are required to assist decision 
making regarding the issuance of public warnings of an impending threat (Alexander 
et al. 2017). They are also needed to support safe and effective tactical and strategic 
wildfire suppression planning so that such actions are proactive and not reactive 
(Plucinski 2019a, 2019b; Neale and May 2020). 

There is a general belief amongst some members of the wildland fire research 
community (e.g. Bessie and Johnson 1995; Parks et al. 2015) that as fire danger and 
(or) fire weather conditions become increasingly severe, the influence that fuel structural 
characteristics exert on fire propagation accordingly decreases. For example, when it 
comes to the spread of crown fires in coniferous forests, many experienced fire behaviour 
specialists, at least in the Canadian boreal region, commonly speak of simply ‘trees’ as 
being the prevailing type of fuel (M. E. Alexander, pers. obs.) – i.e. once a wildfire is 
crowning, the variation in the tree species and stand characteristics is not going to affect 
the outcomes in fire behaviour appreciably. 

The term ‘fuel effect’ is used herein in a broad sense as the influence of the various 
physical characteristics of a fuel complex that directly affect fire behaviour (Sandberg 
et al. 2001; Keane 2014) – i.e. fuel load or quantity, fuel bed depth, height or 
thickness, bulk density or compactness, arrangement (vertical and horizontal conti
nuity), composition or number of categories including their size/shape, condition 
(live and dead), cover and the number of strata involved (ground, surface, ladder and 
crown). It is exclusive of fuel moisture and chemical properties. A fuel effect implies 
that changes in fuel characteristics induce a change in observable fire behaviour 
characteristics. In contrast, the lack of a fuel effect implies no changes in the observed 
fire behaviour. 
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In this paper, we examine the influence that the fuel 
effect has on the forward rate of spread of wildfires under 
elevated fire danger (i.e. conditions that cause wildfires to 
propagate in the upper range of the fire behaviour). We 
begin by contrasting a number of current operational fire 
spread model outputs. We then look at the results from 
studies analysing wildfire occurrence data and observations 
of wildfire spread rates. Finally, we discuss the implications 
of this analysis within the framework of fire spread model
ling and forest fuels management. Some familiarity on the 
part of the reader with the fundamentals of wildland fire 
behaviour and its impacts is presumed (Scott et al. 2014;  
Rego et al. 2021). 

Operational empirical-based fire spread rate 
models 

Fire spread rate models, both empirical (FCFDG 1992;  
Cheney et al. 1998, 2012) and semi-empirical ones (e.g.  
Rothermel 1972), form the basis of software tools used in 
the operational prediction of fire propagation, such as 
BehavePlus (Andrews 2014), Amicus (Plucinski et al. 
2017), FARSITE (Finney 2004), Wildfire Analyst Pocket 
(Monedero et al. 2019), Phoenix (Tolhurst et al. 2008), 
Spark (Miller et al. 2015) and Prometheus (Tymstra et al. 
2010). These operational tools are based on equations devel
oped in part from the statistical analysis of the relationships 
between the observed rate of fire spread and components of 
the fire environment (i.e. fuels, weather and topography). 
Typically, the underlying sub-models include the effects of 
wind speed, fuel moisture content (or a surrogate), slope 
steepness and one or more physical fuel characteristics 
(Sullivan 2009; Cruz et al. 2015; Andrews 2018). 

The fuel effect on rate of fire spread assumes distinct 
forms in various predictive models. Some models incorporate 
the influence of fuel characteristics through a multiplicative 
effect, where a fuel factor (comprising one or more variables 
and associated regression parameters) is multiplied by the 
other components of the model (Marsden-Smedley and 
Catchpole 1995; Cruz et al. 2005; Fernandes et al. 2009;  
Cheney et al. 2012; Anderson et al. 2015). Other models 
consider the effect of fuel characteristics in a discrete form 
– i.e. there is an individual fire spread equation for a given 
fuel type with its characteristics being static (e.g. Forestry 
Canada Fire Danger Group (FCFDG) 1992; Cheney et al. 
1998). A distinctly different, but commensurate fuel effect 
on rate of fire spread can also be seen using the Rothermel 
(1972) surface fire spread model while applying standardised 

fuel models (Anderson 1982; Scott and Burgan 2005) repre
senting broad vegetation types or customised descriptions of 
particular vegetation types (e.g. Burgan and Rothermel 1984;  
Burgan 1987; Ascoli et al. 2015).1 

Common to these modelling approaches is the fact that 
the fuel effect on fire spread rate is independent of the fire 
danger conditions. Fig. 1 illustrates this behaviour, showing 
how different empirical-based or semi-empirical fire spread 
rate models used operationally for shrublands and forests in 
Australia (Fig. 1a, c), the USA (Fig. 1b) and Canada 
(Fig. 1d), for example, respond to changes in fuel character
istics. This compilation shows that the increase in the poten
tial for extremely fast rates of fire spread, as driven by an 
increase in wind speed (assuming an underlying low level of 
fuel dryness), results in a commensurate increase in the 
differences in predicted rate of fire spread within a fuel 
type or fuel model. In other words, for a given fire spread 
rate model, the higher the spread potential, the larger the 
differences between distinct fuel types or fuel models. 
Although the Canadian fire spread models for conifer forests 
assume a distinct functional form, where through a sigmoid 
function the rate of fire spread converges to a maximum rate 
of spread, the largest differences in predicted rate of fire 
spread between different fuel types are also attained at the 
most extreme of burning conditions. 

The relationships between fuel characteristics and rate of 
fire spread in these models have typically been established 
under moderate burning conditions. Given this, the extra
polation of a fuel effect to elevated fire danger conditions 
needs to be accordingly verified. 

Evidence from observational studies of 
landscape-scale analysis of wildfire 
occurrence 

Several studies have attempted to quantify the effect of fuel 
characteristics on fire propagation under elevated fire danger 
conditions in certain vegetation types. Moritz et al. (2004), 
for example, found through the analysis of fire interval data 
in shrublands of coast central and southern California, USA, 
that extreme fire weather overwhelmed the influence of fuel 
age (a surrogate for biomass accumulation, arrangement and 
the quantity of dead fuels in shrubland fuel complexes) and 
the spatial patterns of fuels on area burned. 

A number of studies in eucalypt (Eucalyptus spp.) forests 
in Australia have provided insight into the fuel effect over 
an explicit range of fire danger conditions. For dry sclero
phyll forests in the Sydney region of New South Wales 

1A ‘fuel type’ represents an identifiable association of fuel elements of distinctive species, form, size, arrangement and continuity that will exhibit 
characteristic fire behaviour under defined burning conditions (Merrill and Alexander 1987). The strata for the fuel types in the Canadian Forest Fire 
Behaviour Prediction (FBP) System are, for example, generally described qualitatively. In contrast, a ‘fuel model’ is a simulated fuel complex for 
which all the fuel descriptors required for the solution of the Rothermel (1972) mathematical rate of spread model have been specified (Deeming and 
Brown 1975). 

M. G. Cruz et al.                                                                                                               International Journal of Wildland Fire 

472 



(NSW), Bradstock et al. (2010), for example, found the fire 
weather effect (extreme vs non-extreme) on the type of fire 
(understorey vs crown fire) to be much stronger than the 
fuel age effect. As fuel age varied between 5 and 20 years, 
with the latter considered a long-unburned condition in 
these forests, the fuel age effect on the type of fire was 
limited. The fuel age effect was found to be pronounced 
when fuels were younger (1–5 years), even under extreme 
fire weather conditions (as in McArthur 1967), but still 

small when compared with the weather effect. Price and 
Bradstock (2012) found comparable results in the burned 
areas associated with the 2009 Black Saturday fires in 
Victoria, with weather being the primary influence on fire 
severity, a surrogate for fireline intensity in this specific 
wildfire event. Price and Bradstock (2010), in another 
study in the Sydney region, also noted that under severe 
burning conditions (i.e. strong winds, low relative humidity 
and drought), the effect of young fuel-age areas in aiding 
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Fig. 1. Model predictions of rate of fire spread as a function of 10-m open wind speed on level 
ground for: (a) the  Anderson et al. (2015) shrubland model for three different fuel heights; (b) the   
Rothermel (1972) model as implemented in the US BehavePlus Fire Modeling System ( Andrews 
2014) for three of the four  Anderson (1982) shrubland fuel models (4, chaparral (1.8 m); 5, brush 
(0.6 m); and 6, dormant brush); (c) the  Cheney et al. (2012) eucalypt forest fire spread model for 
three different fuel ages; and (d) four of the seven conifer forest fuel types (C-1, spruce–lichen 
woodland; C-3, mature jack or lodgepole pine; C-6, conifer plantation; and C-7, ponderosa 
pine–Douglas-fir) in the Canadian Forest Fire Behaviour Prediction (FBP) System ( FCFDG 1992). 
All simulations assume a fine dead fuel moisture content of 6%. All BehavePlus simulations assume a 
live herbaceous fuel moisture content of 30% and a live woody fuel moisture content of 75%. All 
FBP System simulations assume the average Buildup Index ( Van Wagner 1987) level assigned to 
each fuel type. A foliar moisture content of 97% was assumed for the fuel type C-6.   
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effective suppression was less effective than under moder
ated burning conditions. Similarly, Parks et al. (2015) found 
in distinct North American ecosystems that the effectiveness 
of recent wildfires acting as a fuelbreak diminished as the 
fire weather severity increased. 

Tolhurst and McCarthy (2016) examined the effect of fuel 
reduction burns on wildfire severity in the southern 
Australia eucalypt forests of Victoria. They found that the 
reduction in severity and suppression assistance in fuel- 
treated areas declined substantially with an increase in the  
McArthur (1967) Forest Fire Danger Index (FFDI) above the 
‘Extreme’ rating threshold (i.e. FFDI > 50), with wildfires 
becoming ‘weather-dominated’ and the effect of variation in 
fuel and topography becoming less important in fire propa
gation (Fig. 2); refer to Appendix 1 for a description of the 
FFDI and its calculation. Storey et al. (2016) looked expli
citly at the variation of the effect of fuel age on wildfire 
severity across the FFDI spectrum over a broad range of 
eucalypt forests types in NSW, finding the overall fuel age 
effect to decrease with increasing FFDI. 

Studies like the ones discussed in this section support the 
notion that as the severity of fire weather conditions worsen, 
the influence that fuels exert on fire propagation diminishes.  
Agee (1997) called this the ‘weather hypothesis’, where fires 
driven by extreme fire weather events burn very intensely 
regardless of the fuel condition, assuming the fuels present 
are not at such a low level (e.g. just after a fuel reduction 
treatment) that they would limit combustion processes. It is 
worth noting that none of these studies looked explicitly at 
the actual observed wildfire rates of spread. 

Evidence from studies of observed wildfire 
rate of spread 

An analysis undertaken by Cruz and Alexander (2019) of 
published wildfire datasets (where n = sample size) from 
conifer forests (Alexander and Cruz 2006, n = 57), eucalypt 
forests (Cheney et al. 2012, n = 29) and shrublands 
(Anderson et al. 2015, n = 32), found the 10-m open wind 
speed (U10, km h−1) to largely explain the variation in the 
forward rate of fire spread when the U10 strength was above 

30 km h−1 and the moisture content of fine dead fuels (MC) 
were at low levels (i.e. <7%). For these elevated fire danger 
conditions (n = 24), the authors found no statistical differ
ences in the observed rate of fire spread across the three 
broad fuel types. 

Cruz et al. (2020) extended this analysis of spread rates to 
two larger (n = 350) wildfire datasets (Kilinc et al. 2012;  
Fernandes et al. 2020) and obtained results consistent with 
the original Cruz and Alexander (2019) study. This analysis 
considered the application of the 10% wind speed rule of 
thumb to fires spreading at U10 levels >30 km h−1 with the 
MC < 7% and found no effect of fuel or broad fuel type (i.e. 
conifer forests, eucalypt forests or shrublands) on the distri
bution of residuals. This analysis, based on a larger dataset 
of wildfires spreading under elevated fire danger conditions 
(n = 88), found an MC of 5%, rather than 7%, to be a better 
threshold below which U10 largely determines rates of fire 
spread. It also constituted a case where the variation in fuel 
characteristics had a negligible effect on fire spread. The 
analyses by Cruz et al. (2022) using an extended dataset in 
eucalypt forests also found the rate of spread of fast- 
spreading wildfires not to be related to any fuel structure 
variables. 

Interestingly enough, the >30 km h−1 U10 and <5% MC 
threshold levels equate to an FFDI of between 48 and 55 
(Noble et al. 1980). Coincidently, this represents the onset of 
the ‘Extreme’ fire danger rating according to the McArthur 
(1967) FFDI, where Tolhurst and McCarthy (2016) sug
gested wildfires become weather-dominated (Fig. 2). 

The evidence for a lack, or negligible, fuel effect on the 
spread rate of wildfires under elevated fire danger condi
tions as discussed above, coupled with the evidence of an 
observable fuel effect under moderate to high fire danger 
conditions (e.g. Fernandes et al. 2009; McCaw et al. 2012;  
Anderson et al. 2015) suggests that a fuel effect on fire 
spread rate varies with the burning conditions. From this, 
we contend that conceptually one should observe significant 
differences in fire spread rates between fuel complexes of 
distinct flammability under low- to moderate-severity burn
ing conditions, but as the severity of burning conditions 
increases, the relative differences in wildfire rates of spread 
should diminish, up to a point where they would become 
indistinguishable (Fig. 3). 

Implications for fire spread modelling 

The reduction in the influence of fuel characteristics on fire 
spread rate with increasing fire danger or fire weather 
severity does not take place in most empirical-based fire 
spread models (Fig. 1) that underpin fire behaviour simula
tion tools and spatially explicit fire growth simulators. Such 
models are typically based solely on outdoor experimental 
fire data (e.g. Fernandes et al. 2009; Cheney et al. 2012;  
Anderson et al. 2015) or a combination of experimental fire 
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Danger Index values (adapted from  Tolhurst and McCarthy 2016).  
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and wildfire data (e.g. Rothermel 1972; FCFDG 1992;  
Marsden-Smedley and Catchpole 1995; Cheney et al. 
1998). Because the fuel effect in these fire spread models 
arises from experimental field data in the lower portion of 
the fire danger spectrum, the effect is likely representative 
of that range and possibly not valid for higher-intensity 
wildfires. The careful choice of fuel inputs is necessary 
when operationally applying current empirical-based fire 
spread rate models under severe fire danger conditions. 
Under these conditions, the use of fuel inputs in the upper 
or lower extremes of their range of variability can poten
tially lead to noticeable over- and under-prediction errors. 
The use of mid-range fuel conditions, such as suggested by  
Cheney and Sullivan (2008) for grassfires, is possibly a good 
compromise with current fire spread models. Model systems 
that include linked surface and crown fire spread phases for 
conifer forests (e.g. Van Wagner 1993; Scott and Reinhardt 
2001), with the crown fire phase being used for high- 
intensity fire propagation, will typically not show a strong 
effect of fuel variables on the rate of fire spread under 
elevated fire danger conditions. 

The development of fire spread rate models that aim to be 
applied over a broad range of burning conditions should 
take into account the possibility of a non-linear fuel effect on 
fire propagation. For empirical-based models that rely on 
simple analytical equations (Sullivan 2009), this will require 
the use of distinct equations for different ranges in rate of 
fire spread (e.g. Cruz et al. 2022) and the inclusion of high- 
intensity fire spread rate data in the model development 
dataset (e.g. Stocks 1987; Storey et al. 2021; Cruz 
et al. 2022). 

Implications for fuels management 

The results of the current investigation need to be discussed 
within the context of fuels management (Omi 2015). Some 
might read the evidence for a weak fuel effect on fire 
propagation under severe burning conditions as a reason 
to discount or dismiss the need for fuel mitigation measures, 
namely the use of prescribed burning as a landscape-scale 
fire management tool (Leavesley et al. 2020). There are, 
however, a number of benefits of fuel mitigation to wildfire 
management operations, ecosystem health and sustainability 
that go beyond the effects of a change in fuel flammability on 
rate of fire spread (Fig. 4). 

Fire spread rate is but one of the dimensions of fire 
behaviour and its impacts. Fire behaviour characteristics 
that quantify or relate to its heat energy output rate, and 
hence to its effects on people and the environment (Rego 
et al. 2021), are directly dependent on the fuel quantity 
available for combustion (Cheney 1981; Alexander 1982). 
Fireline intensity, representing the rate of heat release per 
unit length of the fire front, is related to flame length 
(Byram 1959). These descriptors determine whether a wild
fire can be controlled by direct attack or not (Plucinski 
2019a). They are also important determinants of surface- 
to-crown fire transition (Van Wagner 1977) and spotting 
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characteristics (Gould et al. 2007), and are correlated to the 
fire effects on aboveground vegetation, namely overstorey 
crown scorch and damage (McArthur 1962; Alexander and 
Cruz 2012). 

Fireline intensity is directly proportional to fuel con
sumption (Alexander and Cruz 2020), which offers a 
straightforward and authoritative rationale for fuel reduc
tion practices. Prescribed burning removes surface and 
ground fuels, such as duff and coarse woody debris, that 
are often unappreciated from a fire hazard perspective but 
that can exacerbate certain extreme fire behaviour phe
nomena and the negative impacts of wildfires. These fuel 
components increase the duration of flaming combustion 
and depth of the active fire front, as well as post-frontal 
combustion, and thus their reduction is expected to diminish 
convective heating and in turn the onset of crowning 
(Finney 2016). Overall, a fuel load reduction across the 
landscape implies less energy available in the system and 
is relevant for minimising scaled-up fire behaviour under 
common, but not critical, burning conditions and in turn the 
likelihood of fire–atmosphere interactions. 

Fireline intensity can vary by one order of magnitude 
around a fire’s perimeter length (Catchpole et al. 1992), 
meaning that a fuel load reduction expands the extent of 
the fire front that can be subjected to safe and effective 
direct or parallel attack (Luke and McArthur 1978). As the 
work to contain a growing wildfire perimeter usually pro
ceeds from the rear of the fire to its head, this constrains 
flank fire spread and in turn the head fire width, hence the 
spread rate (Cheney et al. 1993) and ultimately the fire size. 
Likewise, fuel reduction enlarges the fire weather window 
for effective fire control operations, namely during initial 
attack (McCarthy and Tolhurst 2001). But a wildfire’s resist
ance to control depends on other factors besides fireline 
intensity (Page et al. 2013). Fuel reduction assists with fire 
suppression operations in multiple ways: facilitating access 
(or escape routes), increasing resource productivity, 
decreasing holding time and the amount of retardant or 
suppressant needed, and improving the conditions for 
back-burning and mop-up operations (Plucinski 2019a). 
Thus, fuel reduction is expected to increase the strategic 
and tactical options available for suppression, provided 
that the required resources are in place, and the likelihood 
that they will be successful (e.g. Collins et al. 2018;  
Plucinski 2019b). 

Often the focus of fuel treatment effectiveness is on fire 
severity and ecosystem resilience to wildfire, rather than an 
expanded fire suppression capability and a reduction in the 
extent of wildfires (Reinhardt et al. 2008), which can be a 
poor surrogate for fire-caused damage (Moreira et al. 2020). 
By recognising the inevitability of fire and its ecological 
role, this point of view focuses on the consequences of 
fuels management in terms of heat release. Thus, a decrease 
in fuel quantity lessens the potential burn severity of a fire 
by reducing its downward and upward heat energy fluxes, 

which are dominated by smouldering and flaming combus
tion, respectively. Less fuel available to burn potentially 
lowers the impacts on soils, vegetation and associated eco
system services (e.g. carbon storage), thereby modulating 
post-fire response, and thus minimising post-fire restoration 
needs (Burrows et al. 2021). 

Wildfire severity reduction in cases of extreme burning 
conditions in fuel-treated areas in the dry conifer forests of 
the western USA is well documented (Fernandes 2015;  
Lydersen et al. 2017). There is growing evidence of the 
ecological resilience to extreme wildfire events that fuels 
management in those ecosystems affords (Stevens-Rumann 
et al. 2013; Stevens et al. 2014; Waltz et al. 2014). 
Prescribed burning also mitigates the severity of extreme 
wildfires in the temperate eucalypt forests of southern 
Australia, but the effect tends to be much more short-lived 
(Price and Bradstock 2012; Tolhurst and McCarthy 2016;  
Hislop et al. 2020). This is possibly a result of such factors as 
plant adaptations to fire (e.g. resprouting trees and shrubs) 
and their fast response to it (Clarke et al. 2015). 

As with fire suppression, mitigation of wildfire severity as 
an outcome of prescribed burning implies that the decrease 
is high enough to reach a threshold with practical signifi
cance. For example, decreased fire severity in the forest 
overstorey is contingent on whether the fuels guarantee 
that fireline intensity will be low enough to avoid crowning 
or crown scorching. Still, the aforementioned Australian 
studies (e.g. Price and Bradstock 2012; Tolhurst and 
McCarthy 2016) are based on remote sensing data of euca
lypt canopy conditions and as such are unable to capture the 
full contribution of prescribed burning to decreasing wild
fire severity, and namely the effect of reduced fuel quantit
ies on understorey development and soil characteristics.  
Martinson and Omi (2013) note that fire severity assess
ments based on components other than aboveground vege
tation remain subjective and poorly quantified. 

Concluding remarks 

The aim of this paper was to assess and discuss our current 
understanding of the effect of fuels on the forward spread 
rate of wildfires under elevated fire danger conditions. Our 
analyses suggest a lack of a fuel effect on rate of fire spread 
in forest and shrublands under extreme fire danger condi
tions. Coupled with the existing evidence of a fuel effect on 
fire behaviour under lower fire danger conditions (e.g.  
McCaw et al. 2012; Anderson et al. 2015), one can expect 
this effect to diminish with increasing fire danger condi
tions, up to a point where the effect is not discernible. The 
observed lack of a fuel effect on rate of fire spread under 
extreme fire danger conditions should not be viewed as a 
reason to disregard the importance of forest fuels manage
ment in mitigating the negative impacts of wildfire on 
human and ecosystem related values. 
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Forest fuels management, and namely the application of 
prescribed burning over large areas, has been shown to 
increase the opportunity as well as the effectiveness and 
overall success of fire suppression operations under common 
summer-time burning conditions, which eventually leads to 
a reduction in the number and extent of unwanted wildfires 
occurring across the landscape (Burrows and McCaw 2013). 
Prescribed burning operations will also lead to a reduction 
in fire severity and impacts on ecosystem components, such 
as soil and above-ground vegetation characteristics, even 
under extreme fire danger conditions (Outcalt and Wade 
2004; Prichard et al. 2010). This will in turn lead to more 
sustainable ecosystems under the pressures of the increased 
length and severity of fire seasons as a result of the impacts 
of global warming. 
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Appendix 1. 

The McArthur Forest Fire Danger Index (FFDI) is a relative number indicating the degree of fire danger in Australian eucalypt 
forests in terms of suppression difficulty and rate of fire spread potential (McArthur 1967). The FFDI combines a record of 
short- and long-term fuel dryness with wind velocity. 

The FFDI is currently calculated using the Mk 5 version of the McArthur Forest Fire Danger Meter as parameterised by  
Noble et al. (1980):  

D RH T
U

FFDI=2 exp( 0.45 + 0.987)ln( ) 0.0345 + 0.0338 +
0.0234 10

(A1)  

where D is the McArthur (1967) Drought Factor, which ranges between 1.0 and 10.0, RH is relative humidity (%), T is air 
temperature (°C), and U10 is the 10-m open wind speed (km h−1). 

The term D is determined on the basis of the Keetch and Byram (1968) drought index, number of days since rain and 
amount of precipitation in the last rain event. For further information on the FFDI and D, consult Cruz et al. (2015).   
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