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Sand and fire: applying the sandpile model of self-organised 
criticality to wildfire mitigation† 

Joshua E. GangA,#, Wanqi JiaB,# and Ira A. HerniterC,*

ABSTRACT 

Background. Prescribed burns have been increasingly utilised in forest management in the past 
few decades. However, their effectiveness in reducing the risk of destructive wildfires has been 
debated. The sandpile model of self-organised criticality, first proposed to model natural hazards, 
has been recently applied to wildfire research for describing a negative linear relationship 
between the logarithm of fire size, in area burned, and the logarithm of fire incidence 
number of that size. Aims. We demonstrate the applicability of the sandpile model to an 
understanding of wildfire incidence and its trend with interested factors, such as prescribed 
burns. Methods. We leverage the sandpile model to perform a series of simulations, along with 
comparisons to historical wildfire data in three American states: Florida, California, and Georgia. 
Key results. Both simulated and historical data indicate that increased prescribed burning is 
associated with lowered incidence of large wildfires. Conclusions. Our study justifies the 
application of the sandpile model to wildfire research and establishes a novel method for 
facilitating the investigation of potential risk factors of wildfires. Implications. The sandpile 
model may be utilised for the development of optimal strategies for prescribed burning. An 
R-script for sandpile model simulation is available for further wildfire investigation.  

Keywords: California, fire management, Florida, Georgia, prescribed burn, sandpile model, 
self-organised criticality, United States of America, wildfire. 

Introduction 

Wildfire is of increasing risk to people and landscapes as anthropogenic climate change 
progresses (IPCC 2018). The 2018 Camp Fire in Northern California was the largest and 
most destructive fire in California history, burning 153 336 acres (620.5 km2) and 
responsible for 85 fatalities (Cal Fire 2019). Even if global warming can be limited to 
just 1.5°C above preindustrial levels, the incidence and intensity of wildfires is expected 
to increase dramatically (Settele et al. 2015). 

While wildfires can be deadly and destructive, fire also plays a major role in promoting 
ecological diversity and maintaining sustainability in bio-systems. For example, regular fires 
result in increased diversity of bat species (Steel et al. 2019), and some plant species require 
fire treatment of their seeds for germination (Keeley 1987). Efforts to prevent as many fires 
as possible over the past century by federal and state agencies in the United States have 
resulted in unhealthy buildups of brush and dead wood littering forest floors, promoting 
more intense and destructive fires (Minnich and Chou 1997; Haugo et al. 2019; Roos et al. 
2020). Prescribed fires, as defined by the National Park Service (2020), are intentionally set, 
low intensity fires, which are used to manage land. The main hypothetical function of 
prescribed burning is to reduce the ground litter, which serves as fuel driving the most 
destructive wildfires. There is evidence to show that regularly prescribed burning of forests 
may be highly beneficial by, among other effects, maintaining critical species habitat 
(Russell et al. 1999). Other research, however, has claimed that the association between 
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previous fires and reduction of the area of wildfire does not 
generally hold in global case-studies from a range of biomes 
(Bradstock et al. 2012; Price et al. 2012, 2015). The hypothe-
sis that prescribed burns can significantly reduce the risk of 
destructive wildfires needs to be further tested using properly 
selected models, in which other covariates are well controlled. 

The sandpile model of self-organised criticality was intro-
duced by Bak et al. (1987). In this model, the main ingredi-
ents include (1) slow driving towards some instability and 
(2) a mechanism to relax tension locally and partially. The 
model consists of an imagined plane organised as a grid, in 
which a large number of individual grains of sand are 
dropped onto the plane in a random fashion. In each site 
of the grid, grains of sand can be placed. Fig. 1 contains an 
example of such a grid. Once the number of grains reaches a 
predefined threshold, the pile in the site collapses, transfer-
ring its collected grains to neighbouring sites in the cardinal 
directions. If any of those sites then reach the threshold, the 
piles in the adjacent sites collapse and transfer their col-
lected grains to their respective neighbouring sites. When 
placing a sand grain causes a pile collapse on a site, this 
collapse can propagate across the plane until the plane 
reaches equilibrium without affecting sites on the borders 
of the plane, or until the propagating collapse impacts on 
the border(s) to cause an avalanche – an event of interest in 
the process. The size of an event (avalanche) is represented 
by the number of hit(s) on the boundaries, i.e. a propagating 

collapse that reaches the borders of the plane. Testing this 
model has shown that the size of avalanches and the fre-
quency of avalanches of that size follows a power-law, 
which takes the following form: 

f A A( ) =c c (1)  

where Ac is the size of collapse (the number of hit(s) on the 
plane boundaries) and f(Ac) is the corresponding frequency 
(Bak et al. 1987; Cajueiro and Andrade 2010). In examining 
this effect, it has been found that numerous real-world phe-
nomena follow this same pattern, including earthquake power 
(Bak and Tang 1989), solar X-ray flares (Crosby et al. 1993), 
and even evolutionary rates (Sneppen et al. 1995). Of particu-
lar relevance, the sandpile model has been successfully applied 
to natural wildfire systems to demonstrate the relationship 
between wildfire sizes and their frequencies (Ricotta et al. 
1999; Malamud et al. 1998; Yoder et al. 2011). The analysis 
of historical wildfire data from ‘natural experiments’ using the 
sandpile model showed that small early season fires, left to 
burn to natural extinction, contribute to a region’s natural fire 
resistance (Yoder et al. 2011). This conclusion suggests that 
prescribed burning likely provides additional resistance. 

Ishii et al. (2002) showed that agent choice, or anthropo-
genic intervention, had a significant impact on the size of the 
avalanches in counterintuitive ways. When the agent’s inten-
tion is to create a large avalanche, the average avalanche size 
is decreased relative to the random deposition. However, if 
the agent’s intention is to cause the smallest possible ava-
lanche, the result is a major increase in the chances of trigger-
ing exceptionally large avalanches. The relevance between the 
sandpile model and forest fires is that the buildup of fuel 
functions like the buildup of sand, releasing in critical events. 
The agent’s intention effect in the sandpile experiment is in 
agreement with the observation in anthropogenic wildfire 
management, where aggressively suppressing small early sea-
son fires can facilitate conditions that significantly increase 
the rate of large and destructive events (Yoder et al. 2011). To 
expand the conceptual model, the setting of prescribed fires 
can be considered analogous to an agent’s intention to cause a 
collapse of the sandpile. Here, for the first time, we leverage 
this powerful model to quantify the effect of prescribed fire, a 
major intervention of forest management, on the incidence of 
wildfires. A series of simulations and a comprehensive analy-
sis of historical data of forest fires from multiple states in the 
United States demonstrate that prescribed burns can signifi-
cantly reduce the incidence of especially destructive wildfires. 

Materials and methods 

Simulation 

Basic sandpile model 
The basic sandpile model for describing natural wildfires 

without anthropogenic effects is defined as follows: 
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Fig. 1. An example of implementing the basic sandpile model (drop a 
single sand grain) on a 5 × 5 square grid. The number at each position 
represent the number of sand grains. Positions with glowing ring 
represent the unstable positions subject to the redistribution of sand 
grains collected in these positions. A border hit (event of interest) is 
denoted by an filled-inposition along the edge of the grid, and the 
number of border hits represents the event size, 1 in this example.   
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(i) A sand grain drops onto a random position on a L × L 
square grid, for example, a 20 × 20 grid.  

(ii) Each position can hold up to three sand grains. If a 
position has more than three sand grains, the sandpile 
will collapse and these sand grains will be evenly 
distributed to cardinally adjacent sites.  

(iii) A collapse of a sand pile at one site can cause collapse 
at adjacent sites, leading to a propagation across the 
plane until the grid reaches equilibrium.  

(iv) A border hit, referred to as an ‘avalanche’ or ‘event of 
interest,’ is when a propagating collapse causes a sand 
pile at any edge site to collapse. The number of border 
hits is recorded as the size of the event. Any sand grains 
which would fall off the edge are lost.  

(v) Simulation process: repeat steps (i) through (iv) for a 
large number of times, for example, 64 000 sequentially 
dropped sand grains onto the grid. 

(vi) The observed event sizes and their corresponding fre-
quencies during the simulation process are summarised 
for further analysis. 

The random drops of sand grains represent net fuel deposi-
tion, including both biomass accumulation through plant 
growth and removal through decomposition, whereas local 
collapses may be regarded as small-scale natural wildfires in 
the areas where too much fuel has been piled up. When the 
tension due to fuel accumulation keeps being built up, a local 
collapse (wildfire) may be propagated very quickly, yielding 
an avalanche (destructive wildfire). A simple example of 
implementing the basic sandpile model (dropping a single 
sand grain) on a 5 × 5 square grid is depicted in Fig. 1. In 
this case, dropping a sand grain to the centre position of a 
loaded grid causes a series of collapses, which eventually 
leads to an event of size 1. 

Sandpile model with intervention 
We incorporated the periodic prescribed fires (anthropo-

genic wildfire intervention) into the basic sandpile model by 
simply emptying the positions with three sand grains (risky 
pileup) at different time intervals, i.e. between dropping every 
2, 4, 5, 8, 10, 16, 20, 25, 50, 100, 200, 400, 800, 1600, 3200, 
6400, and 12 800 sand grains, as well as a system with no 
interventions or no burning (NB). These numbers were chosen 
to make the total number of sand grains, 64 000, divisible 
by each. This setting in the simulation can be considered 
analogous to a planned prescribed burn in a region with 
various frequencies, from high to low. 

Historical fire data 

We used fire data from Florida, California, and Georgia. 
Wildfire data from Florida were available from the Florida 
Forest Service (Florida Fire Service 2020; http://fireinfo. 
fdacs.gov/fmis.publicreports), with additional data provided 
by the Prescribed Fire Manager of the Florida Forest Service, 

John Saddler (pers. comm., 18 December 2020). Wildfire 
data from California were available from CalFire (https:// 
www.fire.ca.gov/stats-events/) as were prescribed fire data 
(https://gis.data.cnra.ca.gov/). Wildfire and prescribed fire 
data from Georgia were provided by Fire Chief Frank Sorrells 
of the Georgia Forestry Commission (pers. comm., 21 
October 2020). The fire incidence data from each state 
were divided for each year into seven class sizes, A–G, as 
defined by the federal government. We did not use Class A 
fires (<0.25 acres [<0.001 km2]) in the analysis as they are 
likely heavily underreported (Ricotta et al. 1999) and so the 
numbers associated with this class in the data severely 
underestimate their true incidence. The maximum fire size 
in each class was used to represent that class for the subse-
quent analysis. Classes B, C, D, E, and F were considered to 
be 9.9, 99, 299, 999, and 4999 acres, respectively (0.04. 
0.40, 1.21, 4.04, and 20.2 km2, respectively). Class G, 
which included wildfires at least 5000 acres (>20.2 km2), 
was set to be 10 000 acres (40.47 km2) for ease of analysis. 
Prescribed and wildfire data were available for Florida for 
1993–2019, for California for 1963–2019, and for Georgia 
for 1995–2020, all inclusive. Additional wildfire data, but no 
prescribed fire data, were available for Florida for 1981–1992, 
inclusive. Complete data can be found in Supplementary 
Table S1. 

Log10 transformation based on sandpile model of 
self-organised criticality 

For each state (Florida, California, and Georgia), we divided 
yearly data into quintiles based on the number of acres 
subject to prescribed burning that year. The breakdown of 
the data from all three states is shown in Table 1. Based on 
the theorem described in the sandpile model of self- 
organised criticality by Bak et al. (1987), we took the 
log10 of the average number of fires in each fire size class 
for each category and plotted them against the log10 of the 
maximum fire size in acres in that class for that category. 
For each plot we calculated the slope of the fitted linear 
regression line as determined by the sum of least squares, 
which represents the relative risk for destructive fires. The 
estimated values and standard errors of these slopes were 
analysed for model comparisons and for hypothesis testing. 

As an example, we demonstrate the method using the 
first quintile of the data from Florida (Table 1). As noted 
above, we do not make use of the Class A fires. For Classes 
B–G, we take the average number of fires in that class size 
and determine the log10 of the value. For Class B fires in the 
first quintile of Florida data, that would be an average of 
2572.67 fires per year, the log10 of which is 3.41. For Class C 
fires in the first quintile of Florida data, that would be an 
average of 795.83 fires per year, the log10 of which is 2.90, 
and so on, for the remaining fire classes. To obtain the slope, 
the log10 of the number of fires in a class is plotted against the 
log10 of the maximum fire size of the class. For Class B fires, 
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that would be log10 (9.9), or 0.99957; for Class C fires, that 
would be log10 (99.9), or 1.99957, and so on. The slope taken 
from this graph (Fig. 2a) is −0.806. Once completed for each 
quintile, the slope of slopes was determined (Fig. 2f). 

Comparison of data with and without 
prescribed fires 

The Florida data consist of data without the record of pre-
scribed fires (1981–1992) and data with the record of pre-
scribed fires (1993–2019). To compare subsets of fire 
incidence data in Florida, we split the data with the record 
of prescribed fires into first (1993–2005) and second 

(2006–2019) halves, yielding three consecutive periods for 
comparisons: period I (1981–1992), period II (1993–2005), 
and period III (2006–2019). We then plotted the data from 
each subset in a box plot for visual examination (Fig. 3). 

We used a two-sample t-test of analysis of variance 
(ANOVA) to compare the Florida data with and without the 
record of prescribed fires. The nominal P < 0.05 was used to 
claim a significant difference between any comparison. 

Analysis of slopes 

We conducted the pairwise comparison of slopes of the 
fitted regression lines for various categories using the pooled 

Table 1. The average number of wildfires of each class across subgroups in Florida and California defined based on the acreage of prescribed 
burns.         

Class Class 
size 

Category based on acres of prescribed burn (median of category in acres) 

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5   

Florida   

(1 779 524) (2 055 513) (2 130 843) (2 294 177) (2 475 650)  

A 0.24 1145.17 680.00 986.60 764.80 534.00  

B 9.9 2572.67 1621.60 2381.20 1964.40 1392.50  

C 99 795.83 449.60 734.40 592.80 357.50  

D 299 109.50 46.80 97.20 73.80 36.83  

E 999 61.83 20.40 41.60 30.60 17.33  

F 4999 23.17 7.20 13.80 10.20 5.33  

G 10 000 10.50 1.20 4.40 2.20 2.33 

California   

(2844) (10 095) (21 694) (32 402) (47 786)  

A 0.24 5908.5 3928.5 4190.9 4272.4 2697.9  

B 9.9 1763.8 1500.1 1425.7 1505.1 1486.6  

C 99 373.2 300.2 261.4 256.6 232.0  

D 299 74.1 66.2 51.6 47.2 47.5  

E 999 36.7 31.9 24.9 24.3 26.4  

F 4999 15.3 13.0 13.0 10.9 15.8  

G 10 000 5.6 5.0 4.4 4.0 6.5 

Georgia   

(1 023 396) (1 252 156) (1 351 109) (1 469 347) (1 632 603)  

A 0.24 1451.33 2151 1780.2 1845.6 1743.4  

B 9.9 3149.33 4792.2 4177 3947.2 4242.8  

C 99 372.17 563.2 568.4 487.6 583  

D 299 12.33 18.8 28.8 20 24.2  

E 999 3.5 2.8 6 4 4.4  

F 4999 1.17 0.001 2.6 0.6 2  

G 10 000 0.33 0.001 0.6 0.001 0.8 

1 acre = 0.00404 km2.  
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t-test. Suppose we would like to test whether two 
slopes are identical, i.e. Ho: b1 = b2 vs Ha: b1 ≠ b2, where 
b1 and b2 are slopes estimated from two linear regression 
models, respectively. Under the null hypothesis, the t-test 
statistic 

t b b
s s

=
b b

1 2
2 2
1 2

(2)    

follows a t distribution with degree of freedom n1 + n2 − 4, 
where sb1 and sb2 represent the standard errors for two slopes 
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Fig. 2. Analysis of slopes based on wildfire data. (a–e) Fitted regression models for the Florida wildfire data in quintiles, based 
on the number of acres subject to prescribed burning. (f) Fitted regression model for the Florida slopes vs the median sizes of 
prescribed burns, with data points for quintile 2 labelled red. (g) Fitted regression model for the California slopes vs the median 
sizes of prescribed burns. (h) Fitted regression model for the Florida slopes vs the median sizes of prescribed burns. 
1 acre = 0.00404 km2.   
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and n1 and n2 are the sample sizes for two models, 
respectively. The R script, named ‘TwoSlope.ttest’, for 
implementing the comparison of two slopes of fitted regres-
sion lines, is available in Supplementary File S1. 

We used simple linear regression to analyse the associa-
tion between the estimated slopes (risk of destructive wild-
fire) and the average acres per year that were subject to 
prescribed burn in various categories. 

Results 

Simulated study 

Following the simulation strategy described in Materials and 
Methods, we randomly dropped a total of 64 000 sand grains 
onto a 20 × 20 grid in each simulation scenario and 
monitored the fire sizes (number of border hits) and their 
frequencies (numbers of occurrence) for subsequent analysis 
and comparison. Graphs showing the relationship between 
fire sizes and the logarithm of their frequencies based on a 
single simulation when prescribed burns (or interventions) 
were administered at various intervals can be found in 
Supplementary Fig. S1. This simulation scheme was repeated 
three times and the mean and standard deviation of slopes 
for each scenario are summarised in Fig. 4. When prescribed 
fires were sparsely administered, i.e. for every 12 800, 6400, 
3200, 1600, or 800 sand drops, the estimated values for their 

slopes did not differ from the slope when no prescribed fire 
was applied (NB). While passing a threshold of every 800 
sand drops, the slope values decreased in an approximately 
linear fashion as the frequency of prescribed fires increased. 
This indicated that the chance of destructive wildfires can be 
substantially reduced if prescribed burns are administered 
more often. When prescribed fires were used more often than 
every 50 sand drops, there were not consistently at least 
three differently sized events, so slopes could not be confi-
dently determined, and the slopes for those data points were 
not used. Only when prescribed burns were administered 
every 200 sand drops or more sparsely did events of at 
least size 5 (at least five sand grains hitting the borders) 
occur consistently. 

Comparison of data with and without record of 
prescribed fires 

The Florida data consist of data without the record of pre-
scribed fires (period I, 1981–1992) and data with the record 
of prescribed fires (1993–2019). We split the data with the 
record of prescribed fires into first (period II, 1993–2006) and 
second (period III, 2007–2019) halves, yielding three consec-
utive periods for comparison. Fig. 3a indicates that there was 
a significant increase in the total size of prescribed burns 
between periods II and III. We assume that the undocumented 
prescribed fires in period I (1981–1992) were significantly less 
than in periods II or III. The comparisons of the total areas 
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Fig. 3. Comparison of Florida wildfire data between various periods. (a) The areas of prescribed fires in period III (2007–2019) 
were significantly greater than those in period II (1993–2006), P  = 0.0007. (b) No significant differences in means were detected 
between the three periods (P  > 0.05). There is a trend in the reduction of destructive wildfires (extreme values along y axis) 
along three consecutive periods. 1 acre = 0.00404 km2.    
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burnt yearly between these three periods are shown by boxplot 
(Fig. 3b). Although no significant difference in means was 
detected among these three periods, there is a clear trend in 
the reduction of giant wildfires as the prescribed burns have 
been progressively introduced to forest management. 

Analysis of slopes calculated from sandpile model 

For the log10 transformed Florida data, the scatter plots with 
the best fitted linear regression lines for the five quintiles are 
shown in Fig. 2a–e, with the slope of slopes shown in Fig. 2f. 
The intersects, estimated slopes, standard errors, and P-values 
are shown in Table 2. We carried out a pairwise comparison 
among slopes of the fitted regression lines for various catego-
ries using the log10 transformed Florida data, the results of 
which are shown in Table 3. Due to the limited sample size 
(n = 6) in each category, only marginally significant differ-
ences (0.05 < P < 0.1) have been detected between quintiles 
1 and 2 and between quintiles 1 and 4. Similarly, due to the 
limited sample size, the regression of these slopes on the 
median land areas that were subject to prescribed burn in 
five categories only showed a trend of negative association 
(slope of −0.17 with P = 0.298, Fig. 2), suggesting that 
increased prescribed burning tended to reduce the risk of 
destructive wildfires. Note that the magnitude of the slope 
for quintile 2, coloured red in Fig. 2, appeared to be much 
lower than expected. Possible explanations for this outlier 
slope associated with the data in quintile 2 are proposed in 
the Discussion. 

For the log10 transformed California data, the slope of 
slopes for the five quintiles is shown in Fig. 2g. The inter-
cepts, the slopes estimated for these five categories, their 
standard errors, and P-values are shown in Table 4. We did 
not carry out a pairwise comparison among slopes for 
California data since these slope values were close to one 
another with a slope of slopes that was nearly flat. The slope 
of the line of best fit in all quintiles ranged from −0.84 
to −0.75, with an average P-value of 0.00023. Similar 
results were obtained when investigating the Georgia data, 
the slope of slopes of which is shown in Fig. 2h, in which the 
slopes of the line of best fit in all quintiles ranged 
from −1.66 to −1.29 with an average P-value of 0.0066. 
The intercepts, the slopes estimated for these five categories, 
their standard errors, and P-values are shown in Table 5. 
The differences between the results from analysing Florida 
data and those from California or Georgia data are likely due 
to greatly varied overall size of prescribed burns in these 
states (Table 6). Scatter plots with the best fitted linear 
regression lines for the five categories in both California 
and Georgia can be found in Supplementary Figs S2 and S3. 

Discussion 

The analysis of our simulated data (Fig. 4, Supplementary 
Fig. S2) as well as the historical data for Florida (Figs 3 and  
2a–f), California (Fig. 2g, Supplementary Fig. S3), and 
Georgia (Fig. 2h, Supplementary Fig. S3), supports the pre-
vious claim that the behaviour of natural wildfires can be 
well described using the sandpile model (Ricotta et al. 1999;  
Malamud et al. 1998; Yoder et al. 2011). For the first time, 
we used both simulated data (Fig. 4) and historical forest 
wildfire data (Fig. 2) to demonstrate that the sandpile model 
may also be used to test whether prescribed fires reduce the 
risk of destructive wildfires. These results suggested that the 
application of this model may be expanded to investigate 
the influence of other wildfire drivers, such as temperature, 
rainfall, atmospheric circulation patterns, and socioeconomic 
factors (Pereira et al. 2005; Costa et al. 2011). To facilitate 
such research, we developed an R program, which researchers 
can use to study the association between wildfire outcome 
and any factor of interest using simulations. Outcomes of 
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Fig. 4. Slopes of each tested intervention frequency on a 20 × 20 
grid. Error bars indicate standard deviation. Interventions occurring 
more often than every 50 sand drops are excluded as these did not 
consistently have at least three different data points to confidently 
assign slopes.  

Table 2. Estimation of slopes and relevant metrics for quintiles of 
Florida wildfire data.       

Category Estimate of 
slope 

Standard 
error 

P value R2   

Quintile 1 −0.8060 0.0714 0.00035 0.9696 

Quintile 2 −1.0139 0.1034 0.00061 0.9601 

Quintile 3 −0.9152 0.0769 0.00029 0.9726 

Quintile 4 −0.9687 0.0904 0.00043 0.9663 

Quintile 5 −0.9448 0.0803 0.00030 0.9719   
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natural wildfires are often the results of influences from 
multiple factors. For this reason, the current version of the 
simulation program is not sufficiently powerful to handle the 
complexity due to the potential interactions between factors, 
for example, temperature and rainfall in a specific landform. 
Since prescribed burns are an anthropogenic intervention 
rather than a natural condition, this may be regarded as a 
factor independent of other drivers. Therefore, the current 
simulation program is suitable for studying the relatedness 
between prescribed fires and outcomes of wildfires. In future 
studies, we intend to develop advanced simulation schemes to 
extend the sandpile model for analysing data with interacting 
factors for wildfires or other complications, such as fuel 
decomposition, which would reduce the fuel load in a cell, 
but could not be represented as a collapse. 

Previous studies applied mathematical models to temporal 
and spatial data of local fires (microenvironment) and 
identified a strong association between past and current 
fires, indicating that recently burned areas may be less 

flammable than those not recently burned (Malamud et al. 
2005; Bradstock et al. 2012; Price et al. 2012, 2015). 
However, it is challenging to expand this strategy to esti-
mate the general effect of recent fires on future fires at a 
much larger scale, such as statewide or nationwide levels, 
for two reasons: (1) various regions are highly heteroge-
neous in many aspects, including landscape, climate, fire 
history, and anthropogenic effects; and (2) existing wildfire 
database statistics often have low spatial and/or temporal 
resolution of their data sets. Therefore, a model that may be 
overfitted to local data likely has limited predictive ability 
when applied to other regions with different microfeatures. 
In contrast, the sandpile model is intentionally at a broader 
scale, so as to mitigate potential issues due to overfitting to 
local conditions. 

In our study, we adapted the sandpile model to study 
wildfires at statewide scale, in which the connection between 
past and current fires, and the gradual buildup of fuel 
between, are well represented by local collapses of sand 
piles, redistribution of the collapsed sand grains, and rebuild-
ing of sand piles at these loci. One major advantage of using 
the power-law represented by the sandpile model to describe 
natural hazards, including earthquakes, asteroid impacts, 
volcanic eruptions, and wildfire (the subject of this manu-
script), is leveraging a simple model to account for complex 
systems which are determined by many interacting factors. 
Note the rate of fuel build-up varies geographically and is 
likely to be different in, for example, Florida and California, 
reflecting their respective natural resistances to wildfire. Our 
simulation suggests that such baseline features of Florida and 
California would likely be reflected by the slopes of fire 
categories when no prescribed fires (NB) were applied in 
the two states. Indeed, given the wide range of environments 
in each state there are differences in areas within the states 
in terms of resistance to wildfire. Further research is required 
to develop the model to account for ecological differences in 
different locations. 

The simulation shows a correlation between an increase 
in prescribed burning and a decrease in the slope value, i.e. 
a more negative slope (Fig. 4), given that prescribed fires are 
administered within a certain range. Only when prescribed 
burns were administered following every 200 grains of 
sand dropped, or less often, did events of at least size 5 

Table 3. The pairwise comparison of slopes among five categories in Florida data.        

Category Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5   

Quintile 1 −0.8060 0.0683 0.1641 0.0978 0.1163 

Quintile 2 * −1.0139 0.2329 0.3754 0.3061 

Quintile 3 – – −0.9152 0.3321 0.3984 

Quintile 4 * – – −0.9687 0.4241 

Quintile 5 – – – – −0.9448 

The diagonal entries (bold entries) are the estimated slopes; the upper triangle (italicised entries) show the P-values for the pairwise comparisons; the ‘*’ and ‘–’ in 
the lower triangle represent significant and non-significant results, respectively, based on P < 0.1.  

Table 4. Estimation of slopes and relevant metrics for quintiles of 
California wildfire data.       

Category Estimate of 
slope 

Standard 
error 

P value R2   

Quintile 1 −0.8164 0.0547 0.00012 0.9824 

Quintile 2 −0.8091 0.0484 0.00008 0.9859 

Quintile 3 −0.8091 0.0643 0.00023 0.9754 

Quintile 4 −0.8352 0.0627 0.00018 0.9780 

Quintile 5 −0.7562 0.0742 0.00052 0.9629   

Table 5. Estimation of slopes and relevant metrics for quintiles of 
Georgia wildfire data.       

Category Estimate of 
slope 

Standard 
error 

P value R2   

Quintile 1 −1.3456 0.1369 0.0006 0.9603 

Quintile 2 −1.6576 0.2869 0.0287 0.9435 

Quintile 3 −1.2908 0.1244 0.0005 0.9642 

Quintile 4 −1.4918 0.1544 0.0024 0.9689 

Quintile 5 −1.2899 0.1429 0.0008 0.9532   
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(at least five sand grains hitting the borders) occur regularly. 
This result indicates that (1) insufficient intervention fires 
are not effective in reducing the risk of gigantic wildfires 
and additionally that (2) excessive burns cannot further 
increase such an effect, resulting in wasted cost and effort. 
These conclusions are supported by the analysis of wildfire 
data in multiple states: Florida, California, and Georgia. The 
slope of the Florida first quintile is −0.81, the second −1.01, 
the third −0.92, the fourth −0.97, and the fifth −0.94. 
The negative slope of slopes observed in Florida data 
demonstrates that increasing the number of acres subject to 
prescribed burning has substantially reduced the incidence 
of destructive wildfires. This tracks with the increasing use of 
prescribed burning in Florida over the past 27 years, while 
use has remained essentially static in California and Georgia 
at low and high levels, respectively. From 1993 to 2002, an 
average of about 1.9 million acres (7689 km2) in Florida 
were subject to prescribed burning, while from 2010 to 
2019 an average of about 2.3 million acres (9308 km2) 
were subject, an increase of ~20%. Compared to Florida, 
the intervention fires appeared to be far from enough in 
California to be effective in preventing gigantic wildfires. 
As shown in Table 6, the median prescribed burn in 
California was dramatically less than that in Florida, while 
the Georgia prescribed fire data for the fifth quintile were 
comparable to the first quintile in Florida. It may be that 
California is in the ‘low burn’ section of Fig. 4, while Georgia 
is in the ‘high burn’ section. These statistics of historical 
prescribed fires may explain why, unlike the result from 
Florida data, the slopes for five quintiles were invariant 
when California or Georgia data were analysed. 

Interestingly, the slope of the log10 of fire incidence of the 
second quintile in Florida is far lower than would be 
expected based on the trend present in the other data 
(Fig. 2f). The slope of the second quintile is −1.01, lower 
even than the fifth quintile, which had a slope of −0.94. It 
may be that the major dip indicates the presence of an 
optimal level of prescribed burning. The possible presence 
of optima requires further study to determine if judicious 
application of prescribed burning can be more effective, 
both in terms of cost and effort, than generally increasing 
the use of prescribed burning. Our data and conclusions 
warrant future research involving the use of this model to 
develop the optimal strategy, with both geographic and 
temporal considerations, for prescribing fires which can 

achieve the maximum efficacy of suppressing giant wild-
fires with minimum possible human efforts and operative 
costs. 

In all examined fire incidence data, Class A fires 
(<0.25 acres [0.001 km2]) were greatly underrepresented 
relative to expectations based on the modelling. This is 
likely because many, if not most, small fires are not reported 
to statewide agencies and may be put out by landowners or 
simply run out of fuel and sputter out without intervention. 
The national fire policy in the United States from the late 
1800s has been fire suppression, leading to significant fire 
deficits in the 20th century. This fire suppression policy has 
been demonstrably linked to major increases in fire inten-
sity, especially in the 21st century (Haugo et al. 2019; Roos 
et al. 2020). The increased incidence of especially destruc-
tive fires could be due to buildup of debris on the forest 
floor. It should be noted that not all the blame for increased 
fire intensity is due to fire suppression; indeed, global cli-
mate change has greatly stressed forests by shifting rainfall 
patterns, causing prolonged droughts (Stephens et al. 2018) 
and opportunistic infestations, such as by bark beetles 
(Preisler et al. 2017), leading to large stands of dead trees, 
which fuel the more intense fires. The fire regime in California 
can be compared to the fire regime in Florida, which has 
made aggressive use of prescribed burns. The results show 
that not only does the fire incidence track the expected nega-
tive linear log10 line, but that in years in which more acreage 
was subject to prescribed burns the slope of the line of best fit 
of the log10 line is more negative, indicating across the board 
reductions in larger and more destructive fires. 

Supplementary material 

Supplementary material is available online. 
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