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ABSTRACT 

Soil moisture conditions are represented in fire danger rating systems mainly through simple 
drought indices based on meteorological variables, even though better sources of soil moisture 
information are increasingly available. This review summarises a growing body of evidence 
indicating that greater use of in situ, remotely sensed, and modelled soil moisture information 
in fire danger rating systems could lead to better estimates of dynamic live and dead herbaceous 
fuel loads, more accurate live and dead fuel moisture predictions, earlier warning of wildfire 
danger, and better forecasts of wildfire occurrence and size. Potential uses of soil moisture 
information in existing wildfire danger rating systems include (1) as a supplement or replacement 
for drought indices, (2) for live and (3) dead fuel moisture modelling, (4) for estimating 
herbaceous fuel curing, and (5) for estimating fuel loads. We identify key remaining research 
questions and note the logistical challenge of convincing wildfire professionals of the importance 
of soil moisture compared with more familiar wildfire danger metrics. While obstacles remain, 
the path forward is clear. Soil moisture information can and should be used to improve fire 
danger rating systems and contribute to more effective fire management for the protection of 
communities and ecosystems worldwide.  

Keywords: fuel properties, in situ, modelling, remote sensing, review, soil moisture, wildfire, 
wildfire danger index, wildfire danger rating systems. 

Introduction 

At 6:33 am on the morning of 8 November 2018, a small fire was reported under 
electrical power lines near Camp Creek Road outside the town of Pulga in northern 
California, USA. Dry conditions and strong downslope winds with gusts >25 m s−1 

(Brewer and Clements 2020) rapidly transformed that small fire into the deadliest and 
most costly wildfire in California’s history. The Camp Fire burned >62 000 ha, destroyed 
>18 000 structures, and resulted in 85 fatalities (California Department of Forestry and 
Fire Protection 2019). This tragedy powerfully illustrates the importance of fire danger 
rating systems and the need to provide earlier and more accurate warnings for fire 
management agencies and the public. Toward that end, this review explores recent 
developments, knowledge gaps, and challenges in applying previously underutilised 
soil moisture information to better understand, assess, and predict wildfire danger. Up 
until now, the incorporation of soil moisture information into existing fire danger rating 
systems has been limited to simplistic models or drought indices that use standard 
weather variables to estimate soil moisture, even though better information is becoming 
increasingly available via in situ measurements, remote sensing, and more sophisticated 
modelling. One week prior to the tragic Camp Fire, for example, satellite observations 
showed strong negative soil moisture anomalies across northern California (Fig. 1), 
conditions that are known to substantially increase the probability of large wildfires 
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(Krueger et al. 2015, 2016; Sazib et al. 2022), but the tools 
needed to effectively put this information into action are 
currently lacking. 

It is not a recent revelation that soil moisture conditions 
are important for fire danger rating. Prominent fire danger 
rating systems in Canada, Australia, and the United States 
each use approximations of the moisture of mineral and/or 
organic soil horizons to quantify wildfire danger (Kumar 
and Dharssi 2015). For example, the Canadian Forest Fire 
Danger Rating System (CFFDRS) (Stocks et al. 1989; Wotton 
2009) includes three moisture indices, termed moisture 
codes, to represent moisture stored in the organic layers of 
the forest floor. The Fine Fuel Moisture Code (FFMC) repre
sents fuel moisture of fine surface litter with a depth of 
10–20 mm, the Duff Moisture Code (DMC) represents fuel 
moisture of loosely compacted duff with a depth of about 
50–100 mm, and the Drought Code (DC) represents fuel 
moisture of deep organic materials having a depth of 
about 100–200 mm (de Groot 1987) (Fig. 2). While intended 
to represent moisture of surface organic layers, DMC and DC 
are strongly correlated with soil moisture of mineral hori
zons near the surface (Pellizzaro et al. 2007; D’Orangeville 
et al. 2016), likely in part because of capillary and vapour 
flow between mineral and organic soil layers (Zhao et al. 
2022). When considering soils with deep organic layers at 
the surface, i.e. deep O horizons in soil science terminology, 
the water stored in those layers may be viewed as either soil 

moisture or fuel moisture because the organic layer itself 
can become combustible at low water contents. 

In the recently modified Australian Fire Danger Rating 
System (AFDRS, Matthews 2022), fire danger ratings for dry 
eucalypt forests are dependent in part on soil moisture 
deficit estimated using the Keetch–Byram Drought Index 
(KBDI, Keetch and Byram 1968). The KBDI uses temperature 
and precipitation data to estimate the soil moisture deficit in 
the upper soil layers (mineral and organic, if present) using 
a water balance approach. The KBDI was designed to repre
sent the moisture deficit in approximately the top 
760–890 mm for a fine-textured soil and greater depths for 
coarser-textured soils (Keetch and Byram 1968) (Fig. 2). 
Similarly, in the National Fire Danger Rating System 
(NFDRS) used in the United States (Deeming et al. 1972;  
Bradshaw et al. 1983; Burgan 1988; Jolly 2018), KBDI helps 
determine fire danger ratings through its influence on dead 
fuel load. The inclusion of these moisture indices in widely 
used fire danger rating systems makes it clear that their 
developers recognised the importance of soil moisture for 
understanding wildfire danger. However, at the time these 
systems were developed, large-scale soil moisture measure
ment systems and physically-based hydrologic models were 
not sufficiently developed. Instead, meteorological observa
tions from existing weather stations were used to calculate 
soil moisture indices. Given advances in soil moisture mea
surement and modelling systems in recent decades, there is 
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Fig. 1. Measured surface soil moisture anomaly in approximately the top 15 cm of the soil profile on 1 November 2018, 1 week 
prior to the Camp Fire in northern California, the deadliest and most destructive wildfire in the state’s history. Soil moisture 
anomaly is calculated as deviation from average for that day, as reported by NASA’s SMAP satellite mission. The map indicates 
exceptionally dry soil conditions conducive to high fire danger in northern California (image: USDA NASS Crop Condition and 
Soil Moisture Analytics system, https://nassgeo.csiss.gmu.edu/CropCASMA/).    
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a need to reassess how to best represent the moisture condi
tions of organic and mineral soil layers in fire danger rating 
systems and to better understand the effects of those condi
tions on fire danger. 

The effectiveness of fire danger rating systems can be 
determined through retrospective analyses of the relation
ship between fire danger ratings and important wildfire 
metrics including occurrence and size. For example, a recent 
analysis of the NFDRS showed generally positive correla
tions between fire danger ratings and fire sizes across the 
contiguous US, but there were important spatial inconsisten
cies. Notably, there was poorer performance in the eastern 
half of the country compared to the western half, possibly 
due to regional differences in soil–vegetation–climate inter
actions and in the timing and length of the fire season 
(Walding et al. 2018). Furthermore, large areas in the cen
tral US lacked the necessary data to generate fire danger 
ratings because those areas contained only a limited num
ber of designated reporting stations for the Weather 
Information Management System, which provides weather 
data for the NFDRS (Walding et al. 2018). Thus, improve
ments to the NFDRS will likely need to consider both model 
structural improvements, as well as new and better sources 
and types of input data. Currently, the NFDRS and most 
other fire danger rating systems in use around the world 
rely on a relatively standard set of input variables that are 
routinely measured at weather stations, chief among them 
being air temperature, relative humidity, precipitation, and 
wind speed (de Groot et al. 2015), as well as the aforemen
tioned simplistic moisture indices derived from these 
measurements. 

A major hindrance to the integration of improved sources 
of soil moisture information into fire danger rating systems 
has been the inadequate duration and spatial extent of those 
sources. That situation is rapidly changing as a variety of 
new sources of soil moisture information are becoming 
available, each with unique strengths (Fig. 3). These new 
data sources include (1) soil moisture measured in situ, 
(2) soil moisture measured remotely by satellites, and 
(3) soil moisture data that are generated using physically- 
based models. This groundswell of information began with 
the advent of state and national automated soil moisture 
monitoring networks in the US in the late 1990s and the 
subsequent emergence of similar networks in other countries 
around the world (Dorigo et al. 2021). In parallel, satellite 
missions capable of monitoring soil moisture and closely- 
related variables have been developed and launched by 
NASA and other space agencies, with substantial increases 
in daily coverage of the Earth’s surface since the late 1990s 
(Karthikeyan et al. 2017). These advances in soil moisture 
measurements have occurred alongside advances in numeri
cal models, which can now provide soil moisture estimates 
for large domains with sub-kilometre resolution (Holden 
et al. 2019). Using these three types of soil moisture infor
mation, researchers began to generate first glimpses of the 
strong relationships between wildfire and in situ soil mois
ture (Krueger et al. 2015), remotely-sensed soil moisture 
(Bartsch et al. 2009), and modelled soil moisture (Slocum 
et al. 2010) (Table 1). Further studies have provided new 
insights into the relationships between soil moisture and fuel 
characteristics including fuel loads (e.g. Ellsworth et al. 
2013; Sharma et al. 2018), curing (e.g. Wittich 2011;  
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Fig. 2. Diagram of a hypothetical forest soil profile 
that approximates the relationships of mineral and 
organic soil layers to moisture indices used in fire 
danger rating systems in Canada (CFFDRS), the 
United States (NFDRS), and Australia (AFDRS). 
Moisture indices in the CFFDRS include the Fine 
Fuel Moisture Code (FFMC), the Duff Moisture 
Code (DMC), and the Drought Code (DC), which 
represent only the organic layers. The AFDRS uses 
the Keetch–Byram Drought Index (KBDI) and the 
Soil Dryness Index (SDI), each of which represent 
soil moisture in mineral and organic layers, and the 
NFDRS uses KBDI. None of these indices use mea
sured soil moisture, account for physical properties 
of the soil, or directly account for impacts of over
lying vegetation. Instead, moisture content is esti
mated using simplistic water balance approaches 
based on weather variables.    
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Sharma et al. 2021), and live (e.g. Bianchi and Defossé 2015;  
Fan et al. 2018) and dead fuel moisture (e.g. Masinda et al. 
2021; Rakhmatulina et al. 2021). Other studies have directly 
related soil moisture to fire occurrence (Jensen et al. 2018;  
Ambadan et al. 2020) and fire size (e.g. Slocum et al. 2010;  
Forkel et al. 2012; Krueger et al. 2015), while still others 
have identified the impact of vegetation type on soil 
moisture–wildfire relationships (e.g. Schaefer and Magi 
2019; Rigden et al. 2020). These and other important contri
butions (Table 1) to our understanding of soil 
moisture–wildfire relationships have emerged across a wide 
variety of scientific disciplines, which often are not well- 
connected, making the accelerating progress difficult to 
track and synthesise. 

A further roadblock complicating the use of soil moisture 
information for fire danger ratings is that soil moisture 
conditions can be expressed in a variety of ways, making 
it more difficult to compare results across studies. For exam
ple, soil moisture can be expressed simply as soil volumetric 
water content (e.g. Schaefer and Magi 2019; Ambadan et al. 
2020; Vinodkumar et al. 2021) or water content summed 
over some soil depth, i.e. soil water storage (e.g. Slocum 
et al. 2010; Krawchuk and Moritz 2011; Chikamoto et al. 
2015). Alternatively, soil moisture can be formulated to 
represent the amount of soil moisture available to plants 
(Krueger et al. 2019), and it may also be normalised to allow 
for comparison across sites or across different soil moisture 
metrics. This normalisation procedure may be based on the 
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Fig. 3. A variety of in situ, remotely sensed, and modelled soil moisture data sources have been recently developed, with each 
having unique qualities making them well suited for wildfire danger modelling.    
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Table 1. Chronological list of some important contributions to improving our understanding of soil moisture–wildfire relationships.       

Authors Country Wildfire or fuel metrics Vegetation types Soil moisture   

Studies focused on fire   

Bartsch et al. (2009) Russia Wildfire extent Forest (boreal) Remotely sensed   

Slocum et al. (2010) USA Wildfire size Forest, grass, marsh Modelled   

Krawchuk and Moritz (2011) Global Wildfire occurrence Multiple types Remotely sensed   

Forkel et al. (2012) Russia Wildfire extent Forest (larch) Remotely sensed   

Chikamoto et al. (2015) North America Wildfire frequency Multiple types Modelled   

Krueger et al. (2015) USA Wildfire size Forest, shrub, grass In situ   

Chaparro et al. (2016) Spain Wildfire extent Multiple types Remotely sensed   

Krueger et al. (2016) USA Wildfire probability Forest, shrub, grass In situ   

Waring and Coops (2016) Canada, USA Wildfire occurrence Forest Modelled   

Forkel et al. (2017) Global Wildfire extent Multiple types Remotely sensed   

Krueger et al. (2017) USA Wildfire occurrence Forest, shrub, grass In situ   

Jensen et al. (2018) USA Wildfire occurrence, extent Multiple types Remotely sensed   

Holden et al. (2019) USA Wildfire occurrence Multiple types Modelled   

Schaefer and Magi (2019) Global Wildfire occurrence Multiple types Remotely sensed   

Vinodkumar and Dharssi (2019) Australia Wildfire radiative power Forest, shrub, grass Modelled   

Ambadan et al. (2020) Canada Wildfire occurrence Multiple types Remotely sensed   

O et al. (2020) Global Wildfire occurrence Multiple types Remotely sensed   

Rigden et al. (2020) USA Wildfire occurrence Forest, shrub, grass Remotely sensed   

Sazib et al. (2022) Australia, USA Wildfire occurrence Multiple types Remotely sensed 

Studies focused on fuel   

Pook and Gill (1993) Australia Fuel moisture (dead) Forest (pine) In situ   

Samran et al. (1995) Canada Fuel moisture (dead) Forest (aspen) In situ   

Pellizzaro et al. (2007) Italy Fuel moisture (live) Shrub In situ   

Wittich (2011) Germany Fuel moisture (live, dead) Grass In situ   

Qi et al. (2012) USA Fuel moisture (live) Shrub In situ   

Ellsworth et al. (2013) USA Fuel load, moisture (live, dead) Grass In situ   

Bianchi and Defossé (2015) Argentina Fuel moisture (live) Forest (ñire and cypress), other In situ   

Myers-Smith et al. (2015) Multiple (arctic) Fuel Load Shrub Remotely sensed   

Burapapol and Nagasawa (2016) Thailand Fuel moisture (dead) Forest (dipterocarp, deciduous) Remotely sensed   

D’Orangeville et al. (2016) Canada Drought code Forest (maple, fir, spruce) In situ   

McGranahan et al. (2016) South Africa Fuel moisture, fire danger Grass In situ   

Ackerman et al. (2017) USA Fuel load Shrub In situ   

Elmes et al. (2018) Canada Fuel moisture (dead) Forest, peatland In situ   

Fan et al. (2018) France Fuel moisture (live) Shrub Remotely sensed   

Ruffault et al. (2018) France Fuel moisture (live) Shrub Modelled   

Jia et al. (2019) USA Fuel moisture (live) Shrub Remotely sensed   

Krueger et al. (2019) USA Fuel Load Grass In situ   

Sharma et al. (2021) USA Fuel moisture (live, dead) Grass In situ 

(Continued on next page) 
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physical properties of the soil (e.g. Krueger et al. 2015;  
Waring and Coops 2016; Vinodkumar et al. 2017) or use 
statistical techniques (Lyons et al. 2021). To further compli
cate the situation, soil moisture may be expressed across 
different soil depths (Fan et al. 2018; Vinodkumar et al. 
2021) and as absolute values or anomalies (O et al. 2020;  
Sazib et al. 2022). These varied formulations of soil mois
ture may have inadvertently prevented its widespread use 
and obscured the growing body of literature establishing the 
important relationships between soil moisture and wildfire. 

Therefore, our objectives are to (1) summarise the rapidly 
growing body of research on soil moisture–wildfire relation
ships, (2) broaden the community of researchers aware of 
and engaged in this line of research, and (3) make a con
vincing case for more widespread use of soil moisture infor
mation in operational fire danger rating systems. This 
review is organised into four primary sections. The first 
three sections summarise what is known about the relation
ships of wildfire and fuel bed properties to (1) in situ soil 
moisture measurements, (2) remotely sensed soil moisture, 
and (3) modelled soil moisture. The fourth section explains 
potential links between soil moisture information and exist
ing fire danger rating systems, using NFDRS as one specific 
example. We conclude by describing primary challenges and 
opportunities for using soil moisture information to better 
understand and predict wildfire danger, including the iden
tification of key areas of needed future research. 

In situ soil moisture measurements 

In situ soil moisture measurements are the gold standard of 
soil moisture information (Levi et al. 2019) against which 
remote sensing and modelled soil moisture values are eval
uated (Fig. 3). In some geographic areas, in situ soil moisture 
data are available at sufficient spatial and temporal resolu
tions to inform wildfire management. The International Soil 
Moisture Network (ISMN) houses publicly available data 
from nearly 2700 in situ soil moisture monitoring stations 

across 65 networks worldwide, a number that is steadily 
growing (Dorigo et al. 2021). The United States has an 
especially prolific collection of in situ soil moisture monitor
ing networks, and the ongoing National Coordinated Soil 
Moisture Monitoring Network (NCSMMN) initiative aims 
to produced harmonised data products from in situ soil 
moisture measurements from approximately 2000 sites 
across the nation (Cosh et al. 2021). One of the longest 
running and densest large-scale soil moisture monitoring 
networks in the US, and in the world, is the Oklahoma 
Mesonet (McPherson et al. 2007; Ochsner et al. 2013). 
Oklahoma is also consistently among the top 10 states in 
the US for wildfire risk (III 2021); accordingly, data from 
Oklahoma have proven valuable for understanding soil 
moisture–wildfire relationships. 

A striking example of the connections between soil mois
ture, fuel bed properties, and wildfire comes from the 
Marena, Oklahoma, In Situ Sensor Testbed (MOISST) 
located in north-central Oklahoma. The MOISST site was 
established in 2010 to compare in situ soil moisture sensing 
technologies (Cosh et al. 2016) and measure vegetation 
dynamics in tallgrass prairie (PhenoCam 2021), with fuel 
bed properties repeatedly measured at and around the site 
(Sharma et al. 2018). PhenoCam images collected at the site 
showed markedly different vegetation conditions during 
August of 2012 and 2013 (Fig. 4). Drought conditions for 
May–July 2012 resulted in a fuel moisture content for mixed 
live and dead fuels of only 27% in early August when the 
photo in Fig. 4a was taken. The severity of the drought was 
reflected in the measured soil moisture, expressed as frac
tion of available water capacity (FAW). FAW is a calculated 
measure of plant-available water based on measured volu
metric water content and the available water capacity of the 
soil (Krueger et al. 2015), and it can be determined for any 
landscape (e.g. grassland, forest, and cropland) for which 
these variables are known. It is defined as the ratio of mea
sured plant available water to the maximum plant available 
water capacity of the soil, and it typically ranges from 0 (no 
plant available water) to 1 (maximum plant available water). 

Table 1. (Continued)      

Authors Country Wildfire or fuel metrics Vegetation types Soil moisture     

Krueger et al. (2021) USA Fuel Load Grass In situ   

Lu and Wei (2021) USA Fuel moisture (live) Multiple types Remotely sensed   

Lyons et al. (2021) USA Fuel moisture (live) Forest, shrub, grass/forb Modelled   

Masinda et al. (2021) China Fuel moisture (dead) Forest (pine) In situ   

Rakhmatulina et al. (2021) USA Fuel moisture (dead) Forest (conifer) In situ   

Vinodkumar et al. (2021) Australia Fuel moisture (live) Forest, shrub, grass Modelled   

Zhao et al. (2021) Australia Fuel moisture (dead) Forest, shrub, woodland In situ   

Zhao et al. (2022) Australia Fuel moisture (dead) Woodland In situ 

Studies are separated by those focused on soil moisture relationships with wildfire and those focused on relationships with fuels. The publication rate for studies 
on soil moisture–wildfire relationships has increased substantially in the past decade.  

E. S. Krueger et al.                                                                                                             International Journal of Wildland Fire 

116 



During May–July 2012, FAW averaged only 0.23 (i.e. plant 
available water was at 23% of its possible maximum), levels 
indicative of severe drought (Sridhar et al. 2008). In con
trast, FAW averaged 0.82 (i.e. 82% of possible maximum) 
over the same period in 2013, which corresponded with 
green vegetation in August 2013 (Fig. 4b) and a mixed 
fuel moisture content of 101%. The low fuel moisture con
tents in August 2012 contributed to extreme wildfire danger 
and the devastating Freedom Hill Fire, which ignited 
approximately 80 km east of the MOISST site the same day 
the photo was taken. This fire burned nearly 24 000 ha of 
mostly shrubland and forest over a 2-week period, destroyed 
more than 300 homes, and resulted in Federal Emergency 
Management Agency assistance claims totalling more than 
US$7 million. 

The qualitative soil moisture–fuel bed relationships that 
are clear in Fig. 4, and may be intuitive to fire managers, 
have been described in detail by recent research based on 
in situ soil moisture measurements. The soil moisture–fuel 
moisture relationship was quantified for various shrub spe
cies in Italy by Pellizzaro et al. (2007), who found that soil 
moisture was a better predictor of live fuel moisture than 
weather variables or weather-derived drought indices. Their 
finding was corroborated by Qi et al. (2012), who found that 
soil moisture explained 66% of the variability in live fuel 
moisture for oak and sagebrush in northern Utah, and soil 
moisture was more strongly correlated with live fuel mois
ture than were remotely sensed vegetation indices. Similar 
linear relationships between soil moisture and fuel moisture 
have also been reported for grassland fuels in South Africa 
(McGranahan et al. 2016). 

These findings have been corroborated by a series of 
studies in Oklahoma, the key results of which are sum
marised in Fig. 5. Sharma et al. (2021), using data from a 
grassland field study close to the MOISST site, reported that 
when soil moisture was plentiful (FAW values of at least 
0.59), mixed fuel moisture was not related to soil moisture, 
but it declined as FAW decreased below this threshold. 
When FAW dropped below 0.40, the transpiration and 
growth rate of grassland live fuels declined, reflecting the 
intensification of drought stress (Krueger et al. 2021). When 
FAW declined below 0.36, the greenness of the vegetation, 
as indicated by the normalised difference vegetation index 
(NDVI), began to decrease (Sharma et al. 2021) (Fig. 5). 
At a still lower FAW threshold of 0.30, the transition 
of live fuel to dead (i.e. curing rate) increased rapidly, 
from near 0 g m−2 day−1 for FAW > 0.30 to more than 
10 g m−2 day−1 as FAW approached 0.20 (Sharma et al. 
2021). This drought-induced curing is vividly depicted in  
Fig. 4, with extremely low soil moisture corresponding with 
vegetation that was almost completely cured by early August 
2012, while little curing had occurred by the same time in 
2013 when soil moisture was plentiful. A perhaps subtler 
distinction in fuel bed characteristics between these years is 
that the live fuel load in 2013 was more than double that 
in 2012, which portended potentially high wildfire activity if 
dry and windy conditions prevailed during the subsequent 
dormant season. These findings offer a physical explanation 
for the observed dependence of growing season wildfire size 
and probability on soil moisture conditions (Fig. 5). 

In a different study that used in situ soil moisture data 
from the entire state of Oklahoma, Krueger et al. (2015) 
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Fig. 4. PhenoCam images collected over grassland near Stillwater, Oklahoma on (a) 2 August 2012 and (b) 6 August 2013 show 
the influence of soil moisture on vegetation, and by extension, fire danger. The graph shows the measured fraction of available 
water capacity (FAW) at the image location, with colours indicating relative wildfire danger and solid circles and diamonds 
representing the mixed (live + dead) fuel moisture and fuel load, respectively, on days the images were collected. Photo credits: 
University of New Hampshire Phenocam Network (adapted from  Levi et al. 2019).    
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showed that 90% of large growing season wildfires across all 
Oklahoma landscapes (forest, shrubland, and grassland) 
occurred for FAW < 0.40, which matches the threshold 
for transpiration reduction due to moisture stress in grassland 
vegetation (Krueger et al. 2021). These soil moisture–wildfire 
relationships were further described using probabilistic 
models in a subsequent study (Krueger et al. 2016). When 
plant available soil moisture was near its maximum, the 
probability of a large growing season wildfire across all 
Oklahoma landscapes was near zero even when temperature, 
wind speed, and relative humidity conditions were ripe for 
wildfires (Fig. 4 and Krueger et al. 2016). As FAW decreased 
to 0.59, the soil moisture threshold below which grassland 
fuel moisture decreased, wildfire probability increased to 
0.10, and for a FAW value of 0.30, the threshold for rapid 
fuel curing, wildfire probability more than tripled to 0.44 
(Fig. 5). These results suggest that soil moisture and weather 
conditions work in concert to support high growing season 
wildfire probability. Low soil moisture is associated with 
decreased fuel moisture and accelerated curing, while high 
temperatures, low relative humidity, and high wind speed 
facilitate fire ignition and spread. 

When vegetation is dormant, however, current FAW lev
els were not a strong predictor of the probability of large 
wildfires in Oklahoma (Krueger et al. 2016), which may be 
related to the fact that dead fuel moisture content across 
most Oklahoma landscapes is not strongly dependent on soil 
moisture (Sharma et al. 2021). However, dormant season 
wildfire probability was increased by high soil moisture 
during the previous growing season. For example, when 
FAW during the growing season was at least 0.40, the 
probability of a large wildfire during the subsequent dor
mant season was approximately double compared with 
growing season FAW values near 0.20 (Krueger et al. 
2016). Vegetation productivity, at least for Oklahoma grass
lands, is maximised when FAW is >0.40 (Krueger et al. 
2021), contributing to increased fine fuel loads in the sub
sequent dormant season. 

Although there is a lack of evidence for soil moisture 
effects on dead fuel moisture in grasslands, in situ measure
ments from a diverse array of sites around the world reveal 
important links between soil moisture and dead fuel mois
ture for surface fuels in forests. In Australia, the influence of 
soil moisture on the fuel moisture content of fine dead fuels 
(i.e. leaf litter) was observed in plantations of Monterey pine 
approximately three decades ago (Pook and Gill 1993). The 
fuel moisture content for the pine needle litter on the surface 
was positively correlated with measured soil moisture in the 
0–40 cm soil layer, and the correlation was stronger for un- 
thinned and un-pruned stands (r = 0.91) than in thinned 
and pruned stands (r = 0.45). The fuel moisture content of 
the surface leaf litter was predicted more accurately when 
soil moisture data were included along with temperature 
and humidity data in a multiple regression model compared 
to a similar model without soil moisture data. 

More recently in Australia, in situ soil moisture measure
ments have been linked to the fuel moisture content of the 
surface and subsurface litter layer under various eucalyptus 
species (Zhao et al. 2021). A follow-up experiment showed 
that dry soil had a limited influence on the fuel moisture 
content of the litter, primarily through vapour flow between 
the soil and the litter (Zhao et al. 2022). In contrast, wet soil 
had a stronger influence on litter moisture content, with 
evidence for both vapour and capillary flow between the 
soil and the litter. Similarly, in situ measurements from 
forested sites in the foothills of the Sierra Nevada in central 
California showed that soil moisture had a stronger influ
ence than any other environmental or meteorological factor 
on the fuel moisture of 10-h fuels (6–25 mm diameter dead 
fuels) for wet soil conditions (Rakhmatulina et al. 2021). 
A dominant influence of soil moisture on the moisture con
tent of dead fine fuels was also documented through in situ 
measurements in Korean pine and Scots pine stands in 
northeastern China (Masinda et al. 2021). These reports of 
the connection between moisture of mineral soils and that of 
overlying organic layers corroborate previous studies corre
lating soil moisture measurements with moisture codes from 

60
Fuelbed transition

thresholds

Fuel moisture
begins to decline

50

40

N
um

be
r 

of
 la

rg
e 

w
ild

�r
es

La
rg

e 
w

ild
�r

e 
pr

ob
ab

ili
ty

30

20

10

0

1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6

FAW
0.8 1

Sharma et al. (2021)

Transpiration and
growth slow

Krueger et al. (2021)

Greenness begins
to decline

Sharma et al. (2021)

Onset of
rapid curing

Sharma et al. (2021)

Wild�re
probability

Krueger et al. (2016)

Fig. 5. Frequency distribution (histograms) and probabilistic rela
tionship (solid black curve) between fraction of available water 
capacity (FAW) and large growing-season wildfires in Oklahoma 
from 2000 to 2012, adapted from  Krueger et al. (2015) and   
Krueger et al. (2016). Subsequent research provided physical expla
nations and thresholds for empirical soil moisture–wildfire links 
( Sharma et al. 2021;  Krueger et al. 2021). These thresholds describe 
how live grassland fuels transition to dead fuels as soil moisture 
declines, beginning with a drop in live fuel moisture (FAW = 0.59) 
followed by decreased transpiration and growth (FAW = 0.40). Next, 
vegetative greenness declines (FAW = 0.36), which culminates in 
rapid fuel curing as soil moisture conditions continue to deteriorate 
(FAW = 0.30).   
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the CFFDRS. For example, correlation coefficients of 0.6–0.8 
were reported between measured soil moisture and soil 
moisture estimated from the DC index in Canadian forests 
(D’Orangeville et al. 2016). 

These findings from diverse ecosystems and geographies 
highlight the dependencies of fuel loads, fuel moisture con
tent, and wildfire probability on soil moisture. They have 
also laid the groundwork for a new generation of wildfire 
danger assessment tools that use in situ soil moisture infor
mation. However, even with expanding national- and 
regional-scale soil moisture monitoring networks, using 
in situ data for wildfire danger monitoring and management 
decisions is still constrained by the limited number of mea
surement sites in some locations, e.g. boreal forest, and most 
of South America, Africa, and Australia (Dorigo et al. 2021). 
Because soil moisture can vary greatly across even small 
distances (Famiglietti et al. 2008), point measurements of 
soil moisture are not necessarily representative of soil mois
ture at the landscape scale (Fig. 3). Finally, these datasets 
are often of limited duration, generally spanning less than 
20 years (Cosh et al. 2021; Dorigo et al. 2021), which can 
make it challenging to use them for soil moisture–wildfire 
modelling. Therefore, there is a clear need for supplemental 
strategies for quantifying soil moisture, which include 
remotely sensed and modelled soil moisture information. 

Remotely sensed soil moisture 

Remote sensing technology has advanced rapidly since the 
first photograph of Earth was taken from space in 1946. 
Since that time, improvements in sensor fidelity, satellite 
and rocket launch technology, data storage, and aperture 
development have enabled many new capabilities, including 
near-real-time operations related to earth sciences and 
hydrology (McCabe et al. 2017). The ability to characterise 
the land surface using strategic regions of the electromag
netic spectrum has resulted in opportunities to remotely 
monitor and assess near-surface soil moisture and vegeta
tion dynamics (Kumar et al. 2020; Mladenova et al. 2020), 
which are key to understanding the risks and impacts of 
wildfires. With the advent of refined satellite-based micro
wave sensors such as the European Space Agency’s Soil 
Moisture Ocean Salinity (SMOS) mission, which launched 
in 2009 (Kerr et al. 2010), and NASA’s Soil Moisture Active- 
Passive (SMAP) mission (Entekhabi et al. 2010), which 
launched in 2015, evidence is beginning to emerge that 
satellite-based soil moisture data can provide value for 
understanding and predicting wildfire danger in many eco
systems (O et al. 2020). 

Remotely-sensed soil moisture data have proven useful 
for assessing fuel bed properties including biomass accumu
lation (i.e. fuel production) and fuel moisture content. For 
example, in southern France, live fuel moisture measure
ments for Mediterranean shrub species were significantly 

correlated with the preceding 15-day average remotely 
sensed soil moisture from the European Space Agency’s 
Climate Change Initiative Soil Moisture dataset (ESA CCI 
SM, formerly known as ESV SM) (Fan et al. 2018). A subse
quent study used soil moisture data from SMAP to estimate 
live fuel moisture of chamise at 12 chaparral sites in south
ern California (Jia et al. 2019). At those sites, a statistical 
model using weighted, accumulative soil moisture and 
growing degree days outperformed models using vegetation 
optical depth or other optical indices. There is also some 
evidence that remotely sensed soil moisture might be useful 
for estimating dead fuel moisture. Burapapol and Nagasawa 
(2016) reported that remotely sensed soil moisture based on 
Landsat and MODIS was closely linked with fuel moisture of 
dead leaves in dipterocarp and deciduous forests in 
Thailand. Soil moisture based on microwave remote sensing 
may be preferable to optical reflectance indices commonly 
used to characterise fuel moisture [see reviews by Gale et al. 
(2021), Yebra et al. (2013), and Arroyo et al. (2008)] 
because microwave sensors are less prone to disturbances 
from unfavourable weather (e.g. clouds) and because soil 
moisture is physiologically linked to plant processes (Nolan 
et al. 2020). 

The results of the above regional studies (Fan et al. 2018;  
Jia et al. 2019) were supported by a nationwide analysis of 
the ESA CCI SM data and live fuel moisture at >1000 sites 
across the contiguous US (Lu and Wei 2021). That analysis 
spanned numerous vegetation types and climate zones and 
revealed that the correlations between soil moisture and live 
fuel moisture were typically strongest when soil moisture 
was measured 10–50 days in advance. Important vegetation 
types showing a relatively high sensitivity to soil moisture 
included pine, red cedar, sagebrush, oak, manzanita, cha
mise, mesquite, and juniper. The SMAP Level-4 surface and 
root zone soil moisture products, which result from assimi
lation of SMAP observations into a land surface model, and 
in situ soil moisture measurements at selected sites both 
showed somewhat stronger correlations with live fuel mois
ture than did the ESA CCI SM data. 

The links between remotely sensed soil moisture data and 
fuel bed characteristics make those data useful for assessing 
wildfire danger. For example, positive soil moisture anoma
lies observed by Earth Resources Satellite 1 and 2 corre
sponded with a lower burned area of forest fires in the 
boreal forest of Siberia (Bartsch et al. 2009). Furthermore, 
extreme fire events in this region were more closely associ
ated with remotely sensed soil moisture [AMSR-E (Njoku 
et al. 2003)] than precipitation anomalies or fire danger 
indices (Forkel et al. 2012). More recently, SMOS observa
tions over boreal forest areas of Canada revealed that wild
fires occurred more frequently in anomalously low soil 
moisture conditions (Ambadan et al. 2020). At more south
erly latitudes, models using SMOS-derived soil moisture, in 
conjunction with temperature and site specific variables, 
such as land cover type, explained 68% of variability of 
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maximum fire area burned on the Iberian Peninsula 
(Chaparro et al. 2016). The inclusion of SMAP soil moisture 
observations increased skill in predicting wildfire occur
rence in the western US relative to the use of vapour pres
sure deficit alone, particularly in grasslands (Rigden 
et al. 2020). 

Because current soil moisture conditions can influence 
future fuel moisture and fuel load, soil moisture observa
tions may be particularly helpful for forecasting wildfire 
danger. In Australia and California, for example, Sazib 
et al. (2022) found that soil moisture from SMAP was nega
tively correlated with wildfires at 1–2 month lead times in 
moist regions where fuels are typically plentiful, and it was 
positively correlated with wildfires in drier regions where 
fuel is scarce. These trends were attributed to a decrease in 
moisture of surface fuels in moist regions and increased 
biomass accumulation in dry regions. In an analysis that 
spanned the globe, O et al. (2020) found that soil moisture 
from the Essential Climate Variable Soil Moisture (ECV-SM) 
project was an important early predictor of wildfires. They 
reported that, in arid regions, positive soil moisture anoma
lies corresponded with increased biomass accumulation 
followed by wildfire outbreaks at lead times of 5 months. 
In humid regions, negative soil moisture anomalies were 
related to wildfires at lead times of 4 months, presumably 
because of decreased moisture of surface fuels. Likewise, 
soil moisture inferred from NASA’s Gravity Recovery and 
Climate Experiment (GRACE) mission was often positively 
correlated with wildfire occurrence in herbaceous vegeta
tion, shrublands, and forests at seasonal lead times, indi
cating that a wetter pre-fire-season can lead to increased 
plant (i.e. fuel) production in these landscapes (Jensen 
et al. 2018). 

The large spatial extent of remote sensing datasets provides 
natural opportunities to explore how soil moisture–wildfire 
relationships vary across different land cover types. Schaefer 
and Magi (2019) used satellite-based fire count data from 
NASA (Giglio et al. 2018), land-use and land cover maps 
(Hurtt et al. 2020), and the ESA CCI SM product (Dorigo 
et al. 2017) with a biome map (Levavasseur et al. 2012) to 
study how fires behave relative to soil moisture variability 
within land cover types and across biomes. They found that 
the fire–productivity curve shape, which describes resource 
and climate limits surrounding a zone of optimal fire condi
tions (Krawchuk and Moritz 2011), was captured within the 
phase-space of fire and soil moisture. Fire counts were gen
erally greatest when remotely-sensed average monthly soil 
moisture was relatively low, often around 0.1 m3 m−3. At 
lower soil moisture levels, the average number of fires 
decreased with decreasing soil moisture, presumably 
because of resource limitations (i.e. decreasing fuel availa
bility). At higher soil moisture levels, the average number of 
fires decreased with increasing soil moisture, likely due to 
increased fuel moisture contents. But the shape of the 
fire–soil moisture curve differed as a function of biomes 

and land cover types. For example, the occurrence of fires 
in boreal forests (Fig. 6b), which have a shallower rooting 
depth than forests in other biomes (Fan et al. 2017), relates 
to soil moisture availability in a way that is similar to grass
lands (Fig. 6a), which also have shallow root depths. This 
apparent effect of root depth on the sensitivity of fire occur
rence to soil moisture under different biomes reinforces the 
value of soil moisture as a predictor of fire danger. 
Consistent with these results, Forkel et al. (2017) showed 
that across the world, biophysical models of fire activity 
(e.g. Rabin et al. 2015) performed better when remotely 
sensed soil moisture (and moisture state in general) was 
considered. 

These global scale analyses are possible because, unlike 
in situ soil moisture measurements, remotely sensed mea
surements provide data on soil moisture conditions across 
large spatial domains. However, remotely sensed measure
ments typically represent soil moisture conditions in only 
the top few centimetres of the soil (Abbaszadeh et al. 2021) 
and have lower temporal resolution compared to in situ 
networks. Furthermore, remotely sensed soil moisture mea
surements have historically shown a limited ability to accu
rately monitor soil moisture conditions where a dense 
vegetative canopy is present (Djamai et al. 2015; Dorigo 
et al. 2015), although recent advances provide unequivocal 
evidence that remote sensing measurements are sensitive to 
soil moisture under forest canopies (Colliander et al. 2020;  
Ayres et al. 2021). There is a clear need to focus future 
research on remotely sensed soil moisture–wildfire relation
ships at higher spatial resolution and for specific land cover 
types. Such studies may enhance the relevance of satellite- 
based soil moisture data to fire managers. These types of 
studies may also be particularly well-suited for linking with 
model-based approaches as described in the next section. 

Modelled soil moisture 

Given the historical lack of in situ and satellite measure
ments, proxies and estimates of soil moisture conditions 
have long been used in the context of wildfire danger. 
Approaches have ranged from drought indices based on 
simplistic soil water balance models (e.g. Palmer 1965;  
Keetch and Byram 1968; Mount 1972), to actual soil mois
ture values simulated using more complex process-based 
models (Carrega 1991; Holden et al. 2019), to hybrid 
approaches that incorporate measured soil moisture data 
into plant growth models (Krueger et al. 2021). These 
approaches have been applied across widely-varying time 
horizons, with some showing the possibility to facilitate 
predictions of soil moisture, and subsequently wildfire, for 
time frames potentially spanning decades (Chikamoto et al. 
2015). The KBDI (Keetch and Byram 1968), in particular, 
has been used extensively to address the challenges of rep
resenting moisture deficits and their influence of wildfire 
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danger. For example, KBDI has been used in the McArthur 
Mark 5 forest fire danger index (Holgate et al. 2017), the 
Fosberg fire weather index (Goodrick 2002), and the NFDRS 
(Burgan 1988). 

Developed in the southern United States in the 1960s to 
predict moisture deficits in organic and mineral soil layers, 
KBDI is a unitless index ranging from 0 to 800. The KBDI 
calculation attempts to address important physical processes 
such as canopy interception of precipitation and the effects 
of biomass on rates of soil water loss. However, it has 

significant limitations. For example, it does not include 
humidity, wind, or radiation in its estimate of soil water 
loss. The model also uses climatological average precipita
tion as a surrogate for both leaf area and canopy intercep
tion, based on the assumption that wetter sites support more 
vegetation. Finally, KBDI does not consider variability in soil 
properties, instead assuming a water holding capacity of 
8 inches (19.32 cm) for all soils. Given these limitations, 
it is not surprising that in situ and remotely sensed soil 
moisture are more strongly related to wildfires than KBDI 
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in grasslands in the western US (Rigden et al. 2020) and 
across grasslands, shrublands, and forests in Oklahoma 
(Krueger et al. 2017). 

When compared to in situ soil moisture observations in 
Australia, KBDI showed a large wet bias relative to measure
ments in the 0–30 and 0–90 cm soil layers, had correlations 
with measured soil moisture that vary widely across climate 
zones and were sometimes negative, tended to dry down 
too slowly after wet periods, and performed more poorly 
than simulations from a physically-based land surface 
model (Holgate et al. 2017; Vinodkumar et al. 2017). 
Although KBDI can be calibrated to represent temporal 
variations in live fuel moisture at specific sites, it is unable 
to accurately represent spatial variations in live fuel mois
ture, and thus is not recommended for use in operational 
fire management (Ruffault et al. 2018). Replacing drought 
indices like KBDI with more robust soil moisture models 
has been noted as a priority for improving fire danger 
rating in the US (Jolly 2018) and is well underway in 
Australia (Vinodkumar and Dharssi 2019; Vinodkumar 
et al. 2021). 

Process-based models link vegetation growth and func
tioning with soil properties and climate information and 
are sometimes referred to as land surface models or 
soil–vegetation–atmosphere-transfer models (Moran et al. 
2004). These models can be particularly useful because 
they represent plant physiological processes, allowing veg
etation to be modelled accurately over space and time, and 
thus capture many of the vegetation fuel attributes that 

are relevant for fire spread models (Landsberg et al. 2003). 
One example is the TOPOFIRE model, which was recently 
developed to provide high spatial resolution daily estimates 
of soil moisture, fuel moisture, and fire danger data and 
maps for the conterminous US (Holden et al. 2019). Another 
recent example is the modelling system developed by the 
Australian Bureau of Meteorology based on the Joint UK 
Land Environment Simulator (JULES) called the JULES- 
based Australian Soil Moisture Information (JASMIN) sys
tem (Vinodkumar and Dharssi 2019). The JASMIN system 
was specifically designed for application in operational fire 
prediction and risk management. 

Such models hold promise, not only for wildfire decision 
support, but also for revealing a new foundational under
standing of soil moisture–wildfire relationships. For example, 
modelled soil moisture values from the US National Oceanic 
and Atmospheric Administration Climate Prediction Center 
(NOAA CPC) (e.g. Fig. 7) have been used with remotely 
sensed active fire data to understand global patterns in the 
constraints of fine fuel loads and fuel moisture on wildfire 
occurrence (Krawchuk and Moritz 2011). The NOAA CPC 
soil moisture (NOAA CPC 2022) is modelled using a water 
balance approach based on measured temperature and pre
cipitation, as well as calibrated models that account for 
precipitation lost to streamflow and subsurface drainage 
(Huang et al. 1996). In another recent study, simulations 
from a physics-based model showed the close interaction of 
soil moisture with the fuel moisture of the litter layer in 
shrublands, woodlands, and forests (Zhao et al. 2021). 
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Fig. 7. Modelled soil moisture in top 160 cm of soil profile as reported by the National Oceanic 
and Atmospheric Administration Climate Prediction Center (NOAA CPC) for 1 November 2018, 
1 week prior to the Camp Fire in northern California. Daily and monthly soil moisture maps for the 
conterminous United States, as well as monthly soil moisture maps for the world, are produced by 
NOAA CPC. As with measured surface soil moisture in  Fig. 1, this map indicates dry soil conditions 
throughout the soil profile in northern California prior to the Camp Fire (image: NOAA CPC).    
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Likewise, soil moisture modelled using TOPOFIRE has been 
shown to be a better predictor of canopy water content 
across the western US than is atmospheric vapour pressure 
deficit (Lyons et al. 2021). In fact, gridded 5-km resolution 
live fuel moisture estimates in grasslands, shrublands, and 
forests have been generated for Australia based on soil 
moisture values simulated with the JASMIN system 
(Vinodkumar et al. 2021). These live fuel moisture predic
tions used soil moisture as a leading indicator with a 14-day 
lag period. The 0–35 cm soil layer was determined to be the 
best layer for live fuel moisture prediction. This is similar to 
the 0–40 cm layer used for in situ soil moisture measure
ments in several prior wildfire-related studies (Pook and Gill 
1993; Krueger et al. 2015, 2016, 2017; Sharma et al. 2021). 
There is a clear need for further development and refine
ment of process-based models specifically designed to cap
ture soil moisture–fuel load–fuel moisture–fire danger 
relationships and for the application of those models for 
greater scientific understanding and improved fire danger 
ratings. 

One limitation to process-based modelling approaches 
relative to simple drought indices is the increased complex
ity of model inputs and sometimes intensive calibration 
needs. Necessary inputs typically include gridded data sets 
for climate conditions, soil properties, and vegetation type 
and condition. Obtaining these input data at the necessary 
spatial and temporal scale and resolution can be challeng
ing. For example, soil maps are often compiled at broad 
spatial scales, often do not cross political boundaries, and 
sometimes use inconsistent nomenclatures (Zheng et al. 
1996; Mulder et al. 2011). Some critical soil attributes like 
soil depth and available water capacity can be hard to derive 
using traditional soil mapping techniques, although this 
may be overcome by using process-based models in 
an inverse fashion to estimate soil physical properties from 
plant growth data (Coops et al. 2012). Levi and Bestelmeyer 
(2018) summarise available spatial soil information datasets 
for fire modelling in the US and suggest that advances in soil 
modelling can lead to improved soil property maps and 
therefore more accurate fire predictions. 

There appears to be great potential for hybrid approaches 
that incorporate in situ or satellite soil moisture measure
ments into process-based models. For example, predictions 
of grassland fuel loads can be improved by direct insertion 
of in situ soil moisture observations into a simulation 
model’s soil water balance routine (Krueger et al. 2021), 
or a soil moisture model can be improved by assimilating 
satellite-based soil moisture observations, as demonstrated 
in Bolten et al. (2010). Hybrid approaches have also proven 
useful when predicting areas of vegetation stress, which 
may be more prone to wildfires. For example, areas 
of increased land surface temperature and decreased green
ness are likely to be subject to lower vegetation growth 
and increased stress (Nemani et al. 1996). If prolonged, 
these stresses can result in increased litter fall, increased 

non-photosynthetic vegetation, and drier soil, which in turn 
correspond with increased fuel load. Based on this concept,  
Mildrexler et al. (2009) developed a global disturbance 
index using remotely sensed land surface temperature and 
greenness and demonstrated that this index could identify 
areas of broad scale vegetation stress. Waring et al. (2011) 
applied this index over western North America and demon
strated that increases in the area designated as stressed were 
positively correlated with the areas of increased simulated 
soil water stress and wildfire. Waring and Coops (2016) 
then compared simulated soil moisture with satellite derived 
area burned (Fig. 8a). Using a decision tree approach, they 
identified four seasonal combinations of current and ante
cedent soil moisture conditions that predicted where forest 
fires >1 km2 occurred with 69% accuracy (Fig. 8b). 

These studies add to the growing body of evidence that 
an accurate accounting of soil moisture status, either by 
in situ measurements, remote sensing, or modelling, can 
improve our ability to anticipate when and where wildfires 
will occur. While soil moisture models can suffer from errors 
caused by inaccuracies in input data and the model struc
ture, they are appealing because of their capability to incor
porate diverse data sources including measured soil 
moisture and vegetation condition (Fig. 3). Yet as described 
in the following section, soil moisture information has thus 
far been largely absent from major fire danger rating 
systems. 

Potential for inclusion of soil moisture 
information into fire danger rating systems 

In this section we explore the potential for integration of soil 
moisture information into fire danger rating systems. We 
begin with a brief review of some of the leading fire danger 
rating systems and how they incorporate weather and other 
information to estimate fuel bed properties, estimates that 
could potentially be improved by incorporating soil mois
ture information. 

National fire danger rating systems 

Fire danger rating systems integrate inputs representing 
multiple fire danger factors, often via a model, into one or 
more qualitative or numerical indices of fire danger. Some 
systems also model physical characteristics of the fire, such 
as fire intensity, rate of spread, and flame length. Fire 
danger rating systems provide assessments of fire danger 
over broad geographical areas, encompassing up to millions 
of hectares, and are typically not designed to provide 
detailed fire danger information at the field scale. 
Spatially, when calculated over a grid, the fire danger for 
each grid cell represents the average fire danger at a given 
time over that cell, assuming homogeneous fuels, weather, 
and topography within the cell. Such systems are used to 
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provide public warnings, set preparedness levels, provide a 
good indication of the difficulty of fire suppression over a 
wide range of conditions, and to help wildfire managers 
make wise tactical and strategic management decisions 
(NWCG 2002). 

While there are a number of fire danger ratings systems 
across the world, ranging from national to regional to local 
scales, it is instructive to look at three national systems that 
have been widely used for many decades, those of Australia, 
Canada, and the United States. While a new Australian 
system (AFDRS) is becoming operational in 2022 (AFAC 
2022), the previous system consisted of two fire danger 
indices, each with six fire danger categories: the McArthur 
Forest Fire Danger Index (FFDI) and the McArthur Grassland 
Fire Danger Index (GFDI) (McArthur 1966, 1967; Noble 
et al. 1980). The FFDI and GFDI each required temperature, 
relative humidity, wind speed, and rainfall as weather 
inputs. The FFDI assumed a standard eucalypt forest in its 
calculations, while the GFDI assumed a standard grassland. 
For each index, the fuel type and total fuel load (live +  
dead) were constant. For the FFDI, fuel availability 
(drought factor) was calculated from soil moisture deficit, 

time since last rain, and rainfall amount (Matthews 2009). 
The soil moisture deficit used KBDI or the Soil Dryness Index 
(SDI, Mount 1972). For the GFDI, the degree of curing was 
also an input, which was typically estimated by ground- 
based visual observations, satellite imagery, or a combina
tion of both. 

The CFFDRS in Canada (Stocks et al. 1989) has been in its 
current form since 1992, with a series of improvements 
planned for release beginning in 2025 (CFSFDG 2021). 
It consists of two major subsystems, the Fire Weather 
Index (FWI) System (Van Wagner 1987) and the Fire 
Behaviour Prediction (FBP) System (FCFDG 1992). The 
FWI System uses a standard jack pine forest and consists 
of six components: three moisture indices (fine fuel moisture 
code, duff moisture code, and drought code) that represent 
three organic layers at or beneath the forest floor (Fig. 2), 
and three fire danger indices, including FWI itself. Weather 
inputs are temperature, relative humidity, wind speed, and 
rainfall. The FBP System consists of 16 available fuel mod
els, including a grass model that requires degree of curing as 
an input (de Groot 1993). The system incorporates three 
outputs from the FWI System and uses topography in its 
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calculations. Foliar (live) fuel moisture is modelled using 
elevation, geographical location, and date; thus, the foliar 
moisture remains the same on a given date and location 
from year to year. Outputs of the FBP System include physi
cal characteristics of the wildfire (e.g. rate of spread and fire 
intensity). 

The NFDRS of the United States was originally released in 
1972 (Deeming et al. 1972) with major updates in 1978 
(Bradshaw et al. 1983) and 1988 (Burgan 1988). The latest 
version (NFDRS2016) includes five standard fuel models, 
reduced from 20 in the 1978 and 1988 versions (Jolly 
2018). As with the two former versions, NFDRS2016 sepa
rately calculates live and dead fuel moisture as well as the 
dynamic fuel load transfer (i.e. curing or green-up) between 
1-h dead (<6 mm diameter dead fuels) and live herbaceous 
fuels (Fig. 9). The live fuel moisture and dynamic fuel load 
transfer calculations in NFDRS2016 are a function of 
Growing Season Index (GSI), which is a function of temper
ature, relative humidity, and photoperiod (Jolly et al. 2005). 
As with the 1988 NFDRS, the new system uses KBDI as a 
drought surrogate to linearly increase the dead fuel loads 
when KBDI increases above a threshold of 100. The inputs to 
NFDRS2016 are temperature, relative humidity, rainfall, 
wind speed, solar radiation, and photoperiod (based on 

latitude and day of year). The outputs from NFDRS consist 
of four components describing the wildfire danger: Spread 
Component, Energy Release Component, Burning Index, and 
Ignition Component. 

Potential pathways for inclusion of soil moisture 
information 

Within fire danger rating systems like those described 
above, there are at least five potential uses for soil moisture 
information: (1) as a replacement or supplement for drought 
indices; (2) as an input for live fuel moisture modelling; 
(3) as an input for dead fuel moisture modelling; (4) as an 
input to estimate curing for herbaceous fuels; and as (5) as 
an input for estimation of fuel loads. We now briefly discuss 
each of these potential uses within the context of 
NFDRS2016 (Fig. 9), which provides a representative exam
ple for how soil moisture could potentially be used in fire 
danger rating systems worldwide. 

First, soil moisture measurements or simulations from 
process-based models could be used to replace drought 
indices in fire danger rating systems. Moisture indices that 
can represent soil moisture have been used in fire danger 
rating systems across the world, including KBDI and SDI in 
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the Australian FFDI system, the drought code in the 
Canadian FWI System, and KBDI in the US NFDRS system. 
A growing body of evidence indicates that new sources of 
soil moisture information are useful for predicting wildfire 
danger across a variety of landscapes including grasslands, 
shrublands, and temperate and boreal forests, and soil mois
ture information can be more closely related to wildfire 
danger than traditional drought indices (e.g. Bartsch et al. 
2009; Forkel et al. 2012; Krueger et al. 2015; Chaparro et al. 
2016; Schaefer and Magi 2019; Ambadan et al. 2020;  
Rigden et al. 2020). For example, in Oklahoma, in situ soil 
moisture measurements provided an average of 10 days 
earlier warning than KBDI for the largest growing-season 
wildfires (Krueger et al. 2017). For one of the largest wild
fires in that study, the Chester Fire, soil moisture reached 
dangerously low levels (FAW ≤0.2) more than 3 weeks 
before the actual fire, while KBDI never reached levels 
considered dangerous (≥600), thus providing no advance 
warning at all. When FAW is < 0.2, as it was when leading 
up to the Chester Fire, grassland curing rates of 
~13 g m−2 d−1 can occur (Sharma et al. 2021), which 
could result in the accumulation of >270 g m−2 of dead 
fuel in 3 weeks, or near 100% curing given typical grassland 
fuel loads for the region (Krueger et al. 2021). Analyses from 
Australia indicate that SDI is on average more strongly 
correlated with in situ soil moisture measurements than is 
KBDI, but like KBDI, SDI exhibits slower dry downs than 
in situ soil moisture and greater variation in performance 
across regions than more advanced process-based models 
(Holgate et al. 2016). These results suggest that soil mois
ture measurements or simulations from process-based mod
els could effectively supplement or replace drought indices 
in fire danger rating systems. 

A second potential use of soil moisture information is for 
live fuel moisture modelling in fire danger rating systems. 
Soil moisture has been shown to be a strong predictor of live 
fuel moisture in grasslands, (Sharma et al. 2021), shrublands 
(Pellizzaro et al. 2007; Qi et al. 2012), and forest understory 
(Bianchi and Defossé 2015). In fact, soil moisture observa
tions have shown stronger correlations with live fuel mois
ture than drought indices in some Mediterranean shrub 
species (Pellizzaro et al. 2007) and stronger than remotely 
sensed vegetation indices in Gambel oak and sagebrush (Qi 
et al. 2012). In NFDRS2016, live fuel moisture is estimated 
using GSI, a simple empirical index for vegetation phenology 
based on photoperiod, vapour pressure deficit, and air tem
perature (Jolly et al. 2005 and Fig. 8). We are not aware of 
any peer-reviewed evaluations of the accuracy of live fuel 
moisture estimates based on GSI, although GSI has shown 
temporal trends similar to live fuel moisture content in sage
brush and chamise (Jolly 2018). Based on the evidence from 
the literature, we hypothesise that inclusion of soil moisture 
information as an additional input variable in the GSI calcu
lation would lead to improved live fuel moisture estimates. 
Alternatively, live fuel moisture could be directly estimated 

from soil moisture information as has been successfully dem
onstrated in Australia (Vinodkumar et al. 2021). 

Third, soil moisture could also be useful for dead fuel 
moisture estimation in fire danger rating systems. Soil mois
ture influences near-surface air temperature and humidity 
(McKinnon et al. 2021), and water movement between the 
soil and dead surface fuels has been observed in shrubland, 
eucalypt forests (Zhao et al. 2021, 2022), and aspen forests 
(Samran et al. 1995). The NFDRS2016 estimates dead fuel 
moisture using the Nelson model, which uses temperature, 
relative humidity, solar radiation, and precipitation as 
inputs (Nelson 2000). The Nelson model has shown reason
able accuracy in estimating dead fuel moisture with r2 

values of 0.51–0.79 (Carlson et al. 2007), but for some 
landscapes like conifer forests there is evidence that dead 
fuel moisture models incorporating soil moisture informa
tion provide better estimates than those that omit soil mois
ture information (Pook and Gill 1993; Masinda et al. 2021;  
Rakhmatulina et al. 2021). These studies highlight the 
potential to improve fire danger rating systems by using 
soil moisture information for estimating dead fuel moisture, 
particularly for dead surface fuels at forested sites. 

Improving representation of the curing of herbaceous 
fuels is a fourth promising use of soil moisture information. 
Few studies have directly considered the relationship 
between soil moisture and curing, but the limited available 
data suggest a strong relationship between soil moisture 
conditions and the rate of curing in grasslands (Sharma 
et al. 2021). Likewise, positive correlations between the 
fuel moisture content and soil moisture content in grass
lands have been observed during the curing period from the 
end of the growing season into mid-winter (McGranahan 
et al. 2016). The degree of curing in herbaceous fuels can be 
determined through direct measurements, visual estimates, 
remote sensing, or soil moisture deficit or plant phenology 
models (Duff et al. 2019). For example, in NFDRS2016 the 
dead herbaceous fuel load transfer is estimated as a function 
of the degree of curing, which is estimated from the GSI 
plant phenology model. Unpublished data show a negative 
relationship between GSI and grass curing (r2 = 0.41) for 
one site in North Dakota, USA (Jolly 2018), but few, if any, 
published studies have compared GSI with curing levels 
measured in situ. Given that soil moisture deficits enhance 
curing (Wittich 2011), soil moisture information could per
haps be used as an additional input for the estimation of GSI 
and therefore curing, or the curing rate could be directly 
estimated from soil moisture observations. 

A fifth potential use of soil moisture information in fire 
danger rating systems is for the estimation of fuel loads. 
Current fire danger rating systems assume a constant fuel 
load (live + dead) regardless of the differences in weather 
from one growing season to the next. But loads can vary 
substantially year-to-year, especially for herbaceous fuels. 
For example, incorporation of soil moisture observations 
into a simple, process-based plant growth model can provide 

E. S. Krueger et al.                                                                                                             International Journal of Wildland Fire 

126 



improved predictions of grassland productivity and fuel 
loads (Krueger et al. 2021). Likewise, soil moisture is a 
significant predictor of live fine fuel loads at guinea grass 
(Megathyrsus maximus) dominated sites in Hawaii 
(Ellsworth et al. 2013). There is also evidence for an impor
tant role of soil moisture conditions in regulating the growth 
rates of shrubland fuels in the Arctic (Myers-Smith et al. 
2015; Ackerman et al. 2017; Martin et al. 2017). Accounting 
for soil moisture effects on fuel production rates could lead 
to better approaches to represent dynamic fuel loads and 
could potentially improve the performance of fire danger 
rating systems. 

While research provides evidence for these proposed uses 
of soil moisture in wildfire danger rating, the supporting 
studies have been relatively few and often of limited geo
graphic scope. Substantiating research across diverse geo
graphic locations and biomes is essential to support 
implementation on a large scale. Furthermore, the useful
ness of soil moisture information in fire danger rating sys
tems is dependent on the way such information is generated. 
In situ soil moisture measurements can monitor conditions 
deep into the soil profile rather than just the top few centi
metres. Therefore, these in situ measurements effectively 
represent root zone conditions, and they can be located in 
diverse vegetation types (e.g. grasslands, shrublands, and 
forests). A main limitation of in situ measurements is that 
each measurement typically represents only a small area 
and may not adequately reflect heterogeneous soil moisture 
conditions in the surrounding landscape. 

Unlike in situ observations, which are lacking in many 
regions, satellite remote sensing is available globally and 
can provide useful large-scale estimates of soil moisture 
conditions. But remotely sensed soil moisture measurements 
have limited capacity to monitor conditions below the 5-cm 
depth, reduced accuracy beneath dense forest canopies, and 
lower temporal resolution as compared to in situ measure
ments. In contrast, simulated soil moisture information from 
process-based models can represent the entire root zone, can 
be extended to almost any land cover and land use type, and 
have flexible spatial and temporal resolution. Yet, the accu
racy of these simulated values is limited by the availability 
and quality of the necessary soil, vegetation, and weather 
input data and by uncertainties in the model structure and 
parameters. Another limiting factor is the sometimes large 
computational requirements for running the simulations. 
The use of soil moisture information in fire danger rating 
systems may need to rely on a combination of all three 
sources to represent the best available information across 
a range of relevant scales. 

Challenges and opportunities 

We have described a steadily growing body of evidence 
indicating the need for and potential benefits of using soil 

moisture for wildfire danger assessments. While this 
research is promising, many questions remain. First, and 
perhaps most important, while the current body of research 
supports a litany of potential uses of soil moisture in fire 
danger rating systems, the practical benefits of these uses 
remain largely untested and logistical challenges likely 
remain. Pioneering efforts in the operational use of soil 
moisture information in fire danger rating systems include 
the use of in situ soil moisture measurements in OK-FIRE, a 
weather-based decision support system for wildland fire 
managers in Oklahoma that produces maps of growing- 
season wildfire danger, updated every 30 min, based on 
soil moisture (Oklahoma Mesonet 2021). These maps sup
plement similar maps based on KBDI for operational fire 
management decisions. Similarly, the operational use of 
remotely-sensed soil moisture data is being explored by 
the Barcelona Expert Centre (BEC), which downscales 
SMOS soil moisture data to create near-real-time fire risk 
maps (BEC Team 2018) that are currently used by Barcelona 
Provincial Council to provide wildfire early warning 
(Chaparro et al. 2016). In Australia, modelled soil moisture 
values are being used to generate dynamic nationwide live 
fuel moisture estimates designed for use in operational fire 
danger ratings (Vinodkumar and Dharssi 2019; Vinodkumar 
et al. 2021). Further research specifically aimed at tech
niques for incorporating soil moisture into wildfire danger 
systems is critically needed, as well as evaluation of fire 
danger ratings with and without soil moisture information. 

Other important research needs and opportunities 
abound in this context. Some key research questions 
include: (1) What representations of soil moisture (e.g. abso
lute values, scaled values like FAW, anomalies, and percent
iles) are best suited for wildfire danger assessment? 
(2) What are the soil depths for which moisture conditions 
are most strongly related to fuel production rates, fuel 
moisture, and wildfire occurrence and size? (3) How can 
the various sources of soil moisture information (in situ, 
remotely sensed, modelled, or a combination of these) best 
be leveraged for improving operational fire danger assess
ments? (4) How can soil moisture information be used to 
produce accurate dynamic estimates of live and dead 
fuel loads in fire danger rating systems? (5) How are soil 
moisture conditions related to and predictive of wildfire 
occurrence and severity in organic soil layers, where the 
soil itself is the fuel (Reardon et al. 2007; Rein et al. 2008;  
Prat-Guitart et al. 2016; Elmes et al. 2018)? (6) How do 
pre-fire soil moisture conditions influence burn severity, soil 
heating, and post-fire impacts of both wildfire and pre
scribed fire across different landscapes? These questions 
must all be answered in parallel with continued research 
aimed at refining and expanding in situ, remotely sensed, 
and modelled soil moisture products. 

After clearing these scientific hurdles, there remains the 
further challenge of convincing wildfire professionals of the 
importance of soil moisture compared with more familiar 
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wildfire danger metrics. For example, the importance of 
KBDI has been engrained in generations of wildfire profes
sionals, and it benefits from widespread familiarity and is 
inherently understood. It is critical that soil moisture be 
distinguished from this and other drought indicators, or it 
risks being overlooked as just another drought metric. The 
challenge for scientists is to formulate soil moisture infor
mation into a form that is easily understood and used by fire 
managers. Once that occurs, use of soil moisture information 
by fire managers should encourage greater acceptance, 
which in turn should encourage greater use. If available 
soil moisture information had been included in operational 
fire danger rating systems in the US, would it have resulted 
in earlier warning of extreme fire danger prior to the Camp 
Fire in 2018? Would it have helped save the lives of any of 
the 85 people who died from the fire? We do not know. But 
we know that we now have sufficient soil moisture informa
tion and adequate scientific evidence to begin using that 
information to improve fire danger rating systems around 
the world. So, let’s begin. 
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