
RESEARCH PAPER 
https://doi.org/10.1071/WF22077 

A dynamic and evidence-based approach to mapping burn 
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ABSTRACT 

Background. Fire management is a crucial part of managing ecosystems. The years since last 
burn (YSLB) metric is commonly used in fire planning to predict when an area might be suitable to 
burn; however, this metric fails to account for variable recovery due to climate variability. Aim. The 
aim of this study was to develop a predictor of when an area may be able to ‘carry’ fire based on 
observed patterns of vegetation recovery and fire occurrence that is responsive to climate variabil
ity. Methods. Fire history maps and Landsat satellite imagery within the Great Victoria Desert of 
Australia were used to map vegetation recovery following fire. Burn potential models were then 
created by calculating the distributions of YSLB and vegetation recovery values for areas that 
subsequently burnt. Key result. A burn potential model based on vegetation recovery is a better 
predictor of when an area is likely to burn than a model based on YSLB. Conclusions. A burn 
potential model based on vegetation recovery provides an evidence-based and dynamic assessment 
of whether an area is likely to burn. Implications. This approach provides a model that is 
responsive to climate variability that can assist fire managers in burn planning and assessing fire risk.  

Keywords: fire management, fire mapping, fire planning, fire recovery, high-resolution imagery, 
Landsat, LiDAR, vegetation cover. 

Introduction 

Historical fire regimes across the globe have been altered and are expected to continue to 
do so owing to a range of factors including climate change (Rodman et al. 2020), changing 
land-use (Baudena et al. 2020) and depopulation of indigenous people (Burrows et al. 
2006). Owing to these factors, dynamic approaches to monitor fire recovery and subse
quent burn potential are required to determine risk and guide management actions. In 
forests environments, the combination of pre- or post-fire drought and fire can impact 
vegetation recovery rates (Harvey et al. 2016; Werner et al. 2022) and species composi
tion (Connell et al. 2022). Additionally, short fire return intervals can promote early 
successional species and grasses that may maintain a system in a highly fire-prone state 
(Baudena et al. 2020). 

Fire regimes in Australia’s ecosystems have also undergone significant changes. Across 
millennia, the Aboriginal nations that inhabited Australian deserts regularly applied 
small-scale, cool fires on the landscape, creating a fine-grain mosaic of vegetation patches 
at different stages of post-fire recovery (Gould 1971; Burrows and Christensen 1990;  
Bliege Bird et al. 2008, 2018). After European colonisation, it is likely that desert de- 
population resulted in a shift to fire patterns characterised by cycles of hot fires that burn 
large areas in spring and summer (Burrows and Christensen 1990; Burrows et al. 2006;  
Burrows and Chapman 2018). However, it is also possible that climatic factors contrib
uted to large fire events also being typical of the period of traditional fire management 
(Wright et al. 2021). 

The Great Victoria Desert (GVD) is Australia’s largest desert, covering an area of 
42.2 million ha within Western Australia and South Australia. Traditional Owners in this 
region have an interest in managing country, and fire management is an integral 
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component of their management. Currently, unmanaged fire 
is having adverse impacts on economic, environmental, 
social and cultural values (Burrows et al. 2018). It is there
fore one of the critical threats facing the GVD. As in other 
Triodia-dominated landscapes (spinifex, Triodia spp.), large 
fires in the GVD follow good rainfall periods, typically after 
summer storms, and a clear relationship has been established 
between above-average precedent rainfall and increased fire 
occurrence (Griffin et al. 1984; Turner et al. 2008). 

Contemporary fire management programs are informed 
from fire occurrence maps and generally have targets involv
ing parameters such as minimum and maximum desirable 
intervals between fires, fire size and patchiness (Burrows and 
Butler 2011; Moore et al. 2018; Burrows 2020). The influence 
of climate can alter management of fire and associated con
trolled burn planning in various ways. Fire intervals could be 
shortened, by the increased presence of species that promote 
regular fire (Baudena et al. 2020) or high post-fire rainfall 
leading to rapid vegetation recovery. Conversely fire intervals 
could be lengthened by slow recruitment following severe 
fire or low rainfall (Harvey et al. 2016). In either case, models 
that can evaluate current vegetation patterns and respond 
accordingly will assist managers plan or prepare for future 
fire scenarios. 

In the central deserts of Australia, localised fire history is 
mapped from field observations. However, across larger 
scales, imagery captured from satellites is used to interpret 
fire history and delineate fire boundaries, and to predict and 
manage wildfire risk in the future. Landsat satellite imagery 
is used extensively to map the progress of active fires 
(Schroeder et al. 2016), compile detailed fire histories and 
‘years since last burn’ (YSLB) maps (Ruscalleda-Alvarez 
et al. 2021), and evaluate post-fire vegetation recoveries 
(Qarallah et al. 2021). The accuracy of fire mapping produced 
using Landsat imagery in desert environments was demon
strated by Ruscalleda-Alvarez et al. (2021), who reported 
that, at the landscape scale, Landsat-derived fire maps 
achieved a low rate of omission and commission errors (3.4 
and 8.0%). The observed errors were limited to variability in 
the fire edge delineation and missed internal unburnt patches. 

In the context of fire management, YSLB is commonly 
used as a predictor of when an area might be able to sustain 
fire spread or be suitable for fire management burns. The 
YSLB map is, in many ways, a proxy for vegetation cover. 
However, Triodia biomass is determined by the accumulated 
rainfall since the last fire (Allan and Southgate 2002) and 
YSLB per se. Moseby et al. (2016) stressed the importance of 
Triodia height as a factor in habitat suitability for the sand
hill dunnart (Sminthopsis psammophila). Triodia height was 
a function of not only time since last fire, but crucially rain
fall, which strongly influenced post-fire recovery trajectories. 

The amount of biomass available to burn (fuel load) in 
specific vegetation types can be modelled using satellite 
indices (Rampant et al. 2019) and Phased Arrayed L-band 
Synthetic Aperture Radar data (Li et al. 2021). However, 

these approaches are reliant on sufficiently accurate map
ping of vegetation type, which is often lacking particularly 
in remote regions. In addition to fuel load models specific to 
vegetation types, more general environmental metrics, such 
as leaf area index (Macfarlane et al. 2007), fractional cover 
(Muir et al. 2011) and vegetation cover (van Dongen et al. 
2019) can also be mapped from satellite imagery indices. In 
each of these cases, reference data are required to test and 
calibrate the indices that are subsequently used to create 
vegetation cover maps. Reference data can take a variety of 
forms from destructive sampling and canopy photographs 
(Macfarlane et al. 2007) to field measures of vegetation 
cover (Muir et al. 2011), remotely piloted aircraft imagery 
(Rampant et al. 2019) and archived aerial photography (van 
Dongen et al. 2019). In each case, the accuracy of the 
resulting product must be taken into consideration along 
with the resources available to collect reference data. 

Reference data may also be collected with the use of 
airborne Light Detection and Ranging (LiDAR) data. The 
use of LiDAR has become increasingly common in ecological 
studies (Bergen et al. 2009). It provides high-resolution 
vertical measures of plants and other aboveground objects 
and can also produce detailed ground elevation models 
(Polat and Uysal 2018; Zhao et al. 2021). These outputs, 
when analysed in conjunction with high-resolution optical 
imagery, have been used to produce accurate vegetation 
cover maps (Young et al. 2017). Globally, large amounts 
of high-resolution (~50 cm) satellite imagery are now avail
able, which provides another potential source of reference 
data. If a strong relationship can be defined between vege
tation cover as determined through these high-resolution 
data sources and data extracted from freely available 
Landsat images (in the form of, for example, a vegetation 
index), there is great potential to use Landsat to produce 
regionally calibrated models of vegetation cover. The mod
els can then be applied to the vast, freely available archive 
of Landsat satellite imagery to produce current and past 
vegetation cover datasets over large areas in an efficient 
and cost-effective way. 

The main purpose of the present study was to develop a 
novel method to quantify, and map, the potential that an 
area can carry fire. There was also an emphasis on identify
ing an accessible and cost-effective process to achieve this. 
Although the focus of this study is the Triodia hummock 
grassland of the GVD, there is no technical or ecological 
reason why the approach could not be applied to a broad 
range of ecosystem types. The objectives of this study are to:  

1. Examine and discuss the comparability and utility of the 
reference vegetation cover data from the two remote 
sources: LiDAR and high-resolution airborne imagery 
(6 cm), and high-resolution satellite imagery (50 cm).  

2. Determine what spectral index from Landsat satellite 
imagery has the highest correlation with reference vegeta
tion cover data from the GVD; and 
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3. Determine if YSLB or vegetation cover change since the 
last fire (vegetation recovery) is the best predictor of 
burnt areas. 

Methods 

Study region 

The GVD bioregion extends across Western Australia and 
South Australia and is divided into six IBRA (Interim 
Biogeographic Regionalisation for Australia) floristic sub- 
regions (Thackway and Cresswell 1995; Beard et al. 2013). 
The region’s dominant vegetation is Triodia hummock grass
lands and mallee eucalypts, which are highly flammable. The 
study area is a 30 by 30 km region in the south-west of the 
GVD where the Great Victoria Desert Biodiversity Trust 
(GVDBT) (www.gvdbiodiversitytrust.org.au) is assessing the 
effects of fire management on conservation outcomes for rare 
and threatened fauna species. Large fires (>20 000 ha) 
impacted this area in 2007 and 2014 (Ruscalleda-Alvarez 
et al. 2021). The location of the management area and 
Landsat scene used in the study are shown in Fig. 1. The 
closest rainfall station with a complete rainfall record during 
the study period (1995–2020) is the Laverton Aero station 
260 km northwest of the study area. The average annual 
rainfall for this station is 281 mm (Fig. 2). 

Spatial datasets 

Landsat satellite imagery has become a key dataset for 
monitoring and modelling environmental change (Wulder 
et al. 2012). The Landsat series of satellites captures imagery 

at 30 m resolution across several spectral bands. The satellites 
began capturing data in 1972 with the Landsat 1 satellite 
(at 60 m pixel resolution) with regular captures from 1987 
(at 30 m pixel resolution). Landsat imagery, processed to 
surface reflectance (Commonwealth of Australia (Geoscience 
Australia) 2014), of the study area was downloaded from the 
Geoscience Australia data cube. Images downloaded included 
one cloud-free Landsat 5, 7 or 8 image per year captured 
between 1 January 1995 and 1 December 2021, with the 
capture month centred on November. This appeared to be 
the most suitable month, as the majority of rainfall in this 
region falls between December and March (http://www.bom. 
gov.au/; 2022). All Fractional Cover (FC) datasets (Lymburner 
2021) over the same period were also downloaded. The FC 
dataset contains three bands: non-photosynthetic vegetation, 
photosynthetic vegetation and bare ground. 

Great Victoria Desert:
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Landsat scene: 107/81

Fig. 1. Management area and Landsat scene location 
within the Great Victoria Desert IBRA bioregion 
(bioregional and subregional boundaries of the 
Interim Biogeographic Regionalisation for Australia) 
( Thackway and Cresswell 1995) within Western 
Australia.   

500

400

300

R
ai

nf
al

l (
m

m
)

200

100

2000 2010

Year
2020

Station: Laverton Aero, 12305

0

Fig. 2. Annual rainfall from the Laverton Aero Bureau of 
Meteorology station (http://www.bom.gov.au; 2022).  
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A fire history dataset for the study area created using 
Landsat imagery was acquired from the Department of 
Biodiversity, Conservation and Attractions (DBCA) of the 
Government of Western Australia (DBCA-060; www.data. 
wa.gov.au). The dataset includes annual fire maps, in shape
file format, for the period 1995–2020. The data were created 
using a semi-automated approach in eCognition software; 
they have low rates of omission (3.4%) and commission 
(8%) error (Ruscalleda-Alvarez et al. 2021). Commission 
errors were attributed to inaccuracies in fire edge detection 
as well as internal unburnt patches being mapped as burnt. 

LiDAR data were captured from a fixed-wing aircraft 
across 33 strips (mean dimensions of 0.6 by 54 km) within 
the GVD. The capture was tasked by the GVDBT and was 
processed by the data provider (Anditi) and delivered as a 
point cloud dataset, at 4 points per m2. Digital photography, 
capturing imagery across the red (630–690 nm), green 
(510–580 nm) and blue (450–510 nm) (RGB) optical wave
lengths at 6 cm resolution, was collected simultaneously 
with the LiDAR data. The point cloud LiDAR data were 
converted to a normalised surface model (NSM) at 1 m 
resolution using LASTools (Isenburg 2019). Owing to the 
clarity provided by the 6 cm RGB imagery and the binary 
target classes (bare ground and vegetation cover), this imag
ery was used as a proxy for field-based reference data. 
A comparison of vegetation cover measures from high- 
resolution imagery and field transects was carried out by  
Rampant et al. (2019). Results showed that the measures of 
vegetation cover from high-resolution imagery were more 
suitable as reference data for satellite imagery. 

High-resolution satellite imagery was acquired from the 
‘Vivid’ satellite mosaic. This mosaic covers Western Australia 
and was supplied to the West Australian government by 
Maxar™. The mosaic comprises imagery captured by the 
WorldView, GeoEye and Quickbird satellites over the period 
23 November 2005 to 23 July 2019, with a median date of 
8 September 2018. The imagery mosaic has the red 
(630–690 nm), green (510–580 nm) and blue (450–510 nm) 
optical wavelengths and is pansharpened to a resolution of 
50 cm. The details of the individual scenes that make up the 
mosaic can be accessed via a reference shapefile (available 
by request from www.landgate.wa.gov.au). The satellites 
and acquisition dates that constitute the region of the mosaic 
used as training data are shown in Table 1. 

Computing vegetation cover measures 

To determine the accuracy of plot-scale percentage vegeta
tion cover calculated from high-resolution satellite imagery 
against the LiDAR/RGB data, 50 test plots (90 by 90 m) were 
created. The location of each plot was manually selected to 
cover the range of vegetation types visible in the imagery. 
For example, plots were placed in areas of largely bare 
ground, areas with a mix of grasses and shrubs, and areas 
of dense tree/shrub cover. Imagery tiles from each plot 

location clipped from the LiDAR/RGB and high-resolution 
satellite imagery were then created. 

Within each plot/tile, 40 training points were manually 
added, 20 points in vegetation (photosynthetic and non- 
photosynthetic) and 20 in bare ground. The RGB imagery 
was used as a reference to identify vegetation/bare ground. 
Separate training data were created for the LiDAR/RGB and 
high-resolution satellite imagery. The LiDAR/RGB training 
data were buffered by 0.25 m and used to extract the mean 
pixel values from the RGB and NSM datasets. The training 
data, which included values from the red, green and blue 
bands from the high-resolution satellite imagery and the 
red, green and blue bands plus NSM from the LiDAR/RGB 
data were then used to create a series of random forest 
models. The random forest model used was from the ranger 
package (Wright and Ziegler 2017) in R (R Core Team 2021). 
The mtry values in the high-resolution satellite imagery 
model were 1–3 (covering the three bands), and for the 
LiDAR/RGB model were 1–4 (three bands plus NSM). The 
splitrule was set to ‘extratrees’ and the number of folds was 
set to four. Using an iterative process, a separate model was 
created and applied to the tiles from each of the 50 respec
tive plots (100 individual models in total, 50 plots × 2 data
sets). The result of this process was a series of images, in 
which vegetation and non-vegetation pixels were classified 
and from which percentage vegetation cover was calculated. 

The creation and application of the random forest models 
was programmed to ensure repeatability and scalability. The 
application of a separate model per plot per dataset ensures 
that the classification of each individual plot achieves the 
highest possible accuracy. Each model is essentially trained 
on and applied to a very small geographic area (90 by 90 m). 
The proportions of vegetation cover in each plot, as measured 
by the LiDAR/RGB and high-resolution satellite imagery, 
were compared by calculating a correlations coefficient 
and root-mean-square error (RMSE). 

The vegetation cover measures calculated from the high- 
resolution satellite imagery across the 50 plots were then 
regressed, using a linear model, against a range of indices 

Table 1. The number of plots of high-resolution satellite data used 
as a reference for vegetation cover, attributed to each satellite 
imagery platform and dates of image capture (n = 50).     

Satellite Acquisition date 
(dd/mm/yyyy) 

Number of 
training plots   

GeoEye 25/11/2018 6 

GeoEye 5/01/2019 2 

WorldView 2 23/03/2018 8 

WorldView 2 30/04/2018 1 

WorldView 2 11/05/2018 20 

WorldView 2 18/02/2019 8 

WorldView 3 26/02/2019 5   
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from Landsat satellite data (Table 2). The index values 
were calculated from the mean pixel values within each of 
the 50 plots. 

Vegetation cover and post-fire recovery 

The Landsat-derived index with the strongest correlation 
with vegetation cover measures was selected (i35; see 
Results section). This index, along with the offset and gain 
from the linear regression (Eqn 1), was applied to the annual 
Landsat imagery to produce a series of vegetation cover 
images over time covering the management area. 

Eqn 1: Formula to convert Landsat (processed to surface 
reflectance) dataset to vegetation cover percentage within the 
study area (R, red band; SWIR, short-wave infrared band): 

Vegetation cover (percentage) = 167.34

+ 0.048 × R + SWIR
2

i
k
jjj y

{
zzz

(1)  

The vegetation cover images were combined with the fire 
history dataset to produce a vegetation recovery dataset for 
all years from 1995 to 2020. Using an iterative process in R, a 
YSLB layer was created for each year in the fire history 
dataset. For each year in the YSLB layer, the vegetation 
cover values prior to the burn were calculated, and were 

then subtracted from the current year’s vegetation cover val
ues (Fig. 3). In the resulting images (one for each year), areas 
with a negative value have a current vegetation cover level 
lower than before the last time they burnt and areas with a 
positive value have cover levels higher than before the last 
time they burnt. 

Burn potential 

Burn potential maps were created using YSLB and vegetation 
recovery raster datasets along with the fire history shapefile 
as inputs. Annual versions (1995–2020) of the raster datasets 
were created. Using annual burn polygons from the fire 
history dataset, an iterative process was then carried out to 
calculate the distribution of values in each raster for year Y 
that were burnt in year Y + 1, and the distribution of values 
that were unburnt in year Y + 1. The distributions from each 
year were then combined. This resulted in a complete distri
bution of pixel values that had burnt for each of the raster 
datasets (YSLB and vegetation recovery). 

Quantiles from the distributions were then used to assign 
burn potential classes (Table 3). For example, with the YSLB 
distribution, YSLB values that made up less than 5% of the 
complete distribution of areas that burnt were classified as 
having low burn potential. This approach provided an 
evidence-based and standardised approach to determine 
break points for classes but may need to be modified to 

Table 2. Spectral indices used in this study.      

Index Abbreviation Formula Reference   

Index 3 plus 5 i35 i35 = (R + SWIR)/2 Curry et al. (2008) 

Stress-Related Vegetation Index STVI STVI = SWIR × R
NIR

Jafari et al. (2007) 

Normalized Difference Moisture Index NDMI NDMI = SWIR LSWIR
SWIR + LSWIR

Wilson and Sader (2002) 

Normalized Difference Vegetation Index NDVI NDVI = NIR R
NIR + R

Tucker (1979) 

Soil-Adjusted Total Vegetation Index SATVI SATVI = (1.5)SWIR R
SWIR + R + 0.5

LSWIR
2

Marsett et al. (2006) 

Bare Soil BS Fractional cover (see  Lymburner 2021)  Lymburner (2021) 

Non-Photosynthetic Vegetation NPV Fractional cover (see  Lymburner 2021)  Lymburner (2021) 

Abbreviations: R, red; NIR, near-infrared; SWIR, short-wave infrared; LSWIR, longer short-wave infrared.  

For each
year (Y1) in
!re history

For each
year (Y2)
in YSLB

Combine
all
difference
images

Fire history
dataset

1995–2020

Pre burn vegetation
cover = Vegetation

cover for Y2– 1

Vegetation cover for
Y1

Vegetation
recovery for Y1

Y1 vegetation
cover – pre burn
vegetation cover

Select !res < Y1 Make YSLB

Fig. 3. Schematic of the workflow to 
produce the vegetation recovery data
set. The workflow uses the years since 
last burn (YSLB) dataset and iterates 
through each year (Y1) in the fire history 
dataset and each year (Y2) in successive 
YSLB datasets.    
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suit operational requirements. A schematic diagram of how 
the YSLB burn potential map was created is shown in Fig. 4. 
The burn potential maps based on vegetation cover and 
vegetation recovery were created following a similar process. 

The means of the burnt and unburnt classes from YSLB, 
vegetation cover and vegetation recovery datasets were com
pared using an unpaired two-sample Wilcoxon test. The 
Shapiro–Wilk normality test showed that the data were not 
normally distributed (P < 0.05). The proportional overlap 
between burnt and unburnt distributions (shown in 
the Results) was calculated using the effectsize package 
(Ben-Shachar et al. 2020) in R. A logistic regression 
was also applied to each of the burnt and unburnt values 
from the YSLB, vegetation cover and vegetation recovery 
measures to test the ability of each measure to predict 

whether an area had burnt in the following year. The logistic 
regression was carried out using the glm function in R 
(R Core Team 2021) with the value of each measure as the 
independent variable, and whether the area burnt in the fol
lowing year the dependent variable. The Akaike Information 
Criterion (AIC) from the three logistic regression models was 
used to determine the best-performing model. The AIC is 
commonly used to determine the merit of alternative models 
(Aho et al. 2014). 

To visualise the change in vegetation cover attributable 
to burn impact and subsequent recovery trajectory, six geo
graphic points were selected within the study area. The loca
tion of each point was determined to highlight how different 
burn and recovery patterns are expressed in the burn potential 
models. For each point, vegetation cover was calculated from 
annual Landsat satellite imagery (1 January 1995 and 1 
December 2021), using Eqn 1, and graphed. The fire history 
data were then used to confirm the late burn date. 

Results 

Vegetation cover model 

The accuracies achieved from the classification of vegeta
tion cover from the LiDAR/RGB data (example in Fig. 5) and 
high-resolution satellite imagery were both very high 
(Table 4). The mean classification accuracy across the 50 
training plots using LiDAR/RGB (99.7%) was only slightly 
higher than that achieved with the high-resolution satellite 

Table 3. Burn potential class thresholds for the years since last 
burn (YSLB) and vegetation recovery models.      

Burn 
potential 
class 

Quantile Thresholds 

YSLB 
(years) 

Vegetation recovery 
(% vegetation cover)   

Very low 5–0 <10 <−12.4 

Low 25–5 10–12 −12.4 to −3.4 

Below average 50–25 12–14 −3.4 to 4.7 

Above average 50–75 14–16 4.7–15.1 

High 75–95 16–19 15.1–24.9 

Very high 95–100 >19 >24.9   
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vegetation recovery were created following a similar process.    
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imagery (99.1%). The classification of vegetation cover 
across the 50 training plots from the two datasets was also 
highly correlated (r2 = 0.881, RMSE = 8.82). At high cover 
levels (>60%), vegetation cover measures from the high- 
resolution satellite imagery were, on average, 7.9% higher 
than those measured from the LiDAR/RGB data (Fig. 6). 

Correlations between vegetation cover classifications 
from the high-resolution satellite imagery and Landsat indices 
were also high (Table 5). The best-performing index was i35 
(Table 2) (r2 = 0.915 and RMSE = 10.54). However, many of 
the indices tested (i35, SRWI, SATVI, BS, NPV and STVI) 
(Table 2) all performed well (r2 > 0.85 and RMSE < 13). 
Although bare soil has a high negative correlation with vege
tation cover, it is somewhat offset from vegetation cover 

RGB imagery

0 2.5 5 10 15 20
m Bare ground

Vegetation cover

Vegetation cover classi�cation

Fig. 5. The classification of vegetation cover from 
the LiDAR/RGB imagery at Plots 1 and 3. The areas 
shown are subsets of the larger 90 by 90-m plots 
used in the analysis. In Plot 1, 48.9% was classified as 
vegetation cover; this was higher in Plot 3, at 72.8%.   

Table 4. Classification accuracy of the training plots (n = 50) from 
the LiDAR/RGB and high-resolution satellite imagery.      

Classification with 
LiDAR/RGB imagery 

(% accuracy) 

Classification with 
high-resolution satellite 
imagery (% accuracy)   

Mean 99.7 99.1 

Minimum 95.0 94.7 

Maximum 100 100   
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Fig. 6. Relationship between percentage vegetation cover obtained 
from 6 cm resolution LiDAR/RGB imagery, and from 50 cm resolution 
high-resolution satellite imagery for 50 90 by 90-m plots. The dashed 
black line represents 1:1 relationship, the solid black line represents 
the regression fit, and the grey area shows 95% confidence intervals 
for the regression. The r2 is 0.881 and RMSE = 8.82.   
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values in this study area with areas close to 100% vegetation 
cover recording a bare soil percentage of ~30% (Fig. 7). 

Vegetation recovery dataset 

The vegetation recovery dataset for the study area from 
2020 shows the difference between the current vegetation 
cover level and the vegetation (Fig. 8). Negative values 
indicate areas that have a vegetation cover value below 
that at which they previously burnt. These areas generally 
indicate recent fire where vegetation cover has not yet 
returned to the level at which it previously burnt. Areas 
with vegetation recovery values equal to or greater than 
zero indicate areas where vegetation cover has recovered 
back to, or beyond, the value at which it previously burnt. 
The mean vegetation recovery value is −1.5; this indicates 
that, on average, areas have approximately returned to their 

previous vegetation cover value. However, the distribution 
of recovery values is slightly skewed, with the most common 
value (mode) being −8. 

Burn potential models 

For the vegetation cover, vegetation recovery (difference from 
pre-burn cover) and YSLB datasets, the Wilcoxon test showed 
a significant difference between the burnt and unburnt classes 
(P < 0.05). The proportional overlap between distributions 
was lowest for the YSLB data (52.1%), followed by vegetation 
recovery (62.5%) and then vegetation cover (79.2%) (Fig. 9). 
The AIC scores from the logistic regression show the vege
tation recovery data as the best predictor of when an 
area will burn (AIC = 256 011); this is closely followed by 
the YSLB dataset (AIC = 271 578). When using vegetation 
cover as a predictor, the AIC score is substantially higher 
(AIC = 926 659). 

Percentiles, calculated from the burnt class distributions 
shown in Fig. 9, were used as threshold values to create broad 
classes of burn potential (Fig. 10). The YSLB and vegetation 
recovery models are similar, with agreement within one class 
(i.e. very low/low) of 69% (Table 6). Both models have areas 
within the management zone that did not burn during the 
1995–2020 period. These areas, therefore, cannot be assessed 
and do not have a percentile value. Unassessed areas account 
for 15.3% of the management area. 

Areas where the two models predict the same burn poten
tial class are represented in example Points 1 and 2 (Fig. 10 
and Table 7). Point 1 last burnt in 2006, equating to a YSLB 
of 14 years. In the time since this last burn, vegetation cover 
has increased at a steady rate and is currently close to its 
pre-burn level. In both models, this puts this location in the 
‘below average’ burn potential class, with a YSLB of 14 years 
being the upper limit of this class. Point 2 has a YSLB of 
5 years and a current vegetation cover of 52.4%, which is 
38.7% below its last pre-burn level of 91.1%. This puts the 
point in the ‘very low’ burn potential class for both models. 

Points 3 and 4 represent locations where the vegetation 
recovery model predicts a higher burn potential than 
the YSLB model. A scenario where this occurs is when the 
current vegetation cover value increases above the pre-burn 
cover value. This is the case with Point 3, which is currently 
at 76.0% cover; this is 15.5% higher than the pre-burn 
vegetation cover value of 60.5%. Faster-than-typical post- 
fire vegetation recovery can also be associated with higher 
burn potential in the vegetation recovery than YSLB models. 
Point 4 has a YSLB of 9 years, burning most recently in 
2011. A YSLB of 9 years puts this area at the high end of 
the ‘very low’ class. However, the vegetation cover percent
age returned to close to its pre-burn level, putting it in the 
‘below average’ class according to this model. It is notable 
that it reached this level as early as 2015, 4 years post fire. 

Points 5 and 6 demonstrate cases where the vegetation 
recovery model predicts a lower burn potential than the 

Table 5. Correlation coefficients for indices calculated from 
Landsat satellite imagery and vegetation cover percentage calculated 
from high-resolution satellite imagery using a linear regression.     

Index Correlation (r2) RMSE   

i35  0.915  10.54 

NDMI  0.910  10.8 

SATVI  0.900  11.37 

BS  0.899  11.44 

NPV  0.891  11.83 

STVI  0.872  12.76 

NDVI  0.642  20.02 

Abbreviations: i35, index 3 plus 5; NDMI, Normalized Difference Moisture 
Index; SATVI, Soil-Adjusted Total Vegetation Index; BS, Bare Soil ( Lymburner 
2021); NPV, Non-photosynthetic vegetation ( Lymburner 2021); STVI, Stress- 
Related Vegetation Index; NDVI, Normalized Difference Vegetation Index.  
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Fig. 7. Relationships between the percentage vegetation cover 
from high-resolution satellite imagery and the bare soil dataset 
( Lymburner 2021) (a), and Landsat-derived spectral index i35 
( Table 2) (b). The solid black line represents the regression fit, and 
the grey area shows 95% confidence intervals for the regression.   
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YSLB model. These appear to be areas where despite long 
periods since the previous fire, vegetation cover levels have 
not returned to pre-burn levels. At Point 5, 15 years after the 
previous fire, vegetation cover is at 59.1, 19.7% lower than 
the pre-burn value of 78.8%. The 15-year YSLB value puts 
the point in the ‘above average’ class in the YSLB model, 
while the large pre-burn to current vegetation cover differ
ence results in it being classified as ‘very low’ burn potential 
in the vegetation recovery model. A similar response can be 
seen in Point 6, which, 17 years post fire, is at 65.0% cover, 
22.3% lower than the pre-burn value of 87.3%. 

Discussion 

The classification of vegetation cover from LiDAR/RGB and 
high-resolution satellite RGB demonstrated that the two 
remote sources produce reference data that are highly 
correlated (r2 = 0.881, RMSE = 8.82). This is a significant 
result as it was expected that, owing to the higher resolution 
and added height layer, the LiDAR/RGB would outperform 
the high-resolution satellite data. The similarity in results 
may be due to the stark differences between the brightness 
of the soil in comparison with the darker vegetation in the 

Vegetation recovery:
The difference between vegetation cover (%) at
2020 and vegetation cover prior to the last burn

The difference between vegetation cover
(%) at 2020 and vegetation cover prior to
the last burn.
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Fig. 8. Vegetation recovery map of the study area. The map shows the difference between the 2020 vegetation 
cover percentage and vegetation cover prior to the last burn. Area in white did not burn during the study period. 
A histogram showing the area in hectares covered by each difference value is also shown.   
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since last burn datasets comparing the distribution of 
values across the dataset in a given year with the 
values that burn in the following year. The central 
bold line represents the median, while the boxes 
cover from 25th (first quartile) to 75th percentiles 
(third quartile). The vertical lines extend from 
the 75th percentiles plus 1.5 times the inter quartile 
range (IQR) to the 25th percentiles minus 1.5 times 
the IQR.   
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GVD (Fig. 5). Although the LiDAR/RGB data, at 6 cm reso
lution, can create detailed vegetation cover maps (as evident 
in Fig. 5), this level of detail is perhaps beyond what is 
required for a reference dataset for Landsat satellite imag
ery. Results indicate that high-resolution satellite data, 
which is a much more cost-effective option, can be used as 
a reference dataset with a similar result. 

Results showed the i35 index as the best predictor of 
vegetation cover of the Landsat indices (Table 5). However, 
except for NDVI, the other indices tested recorded correlations 
(r2) greater than 0.85 and would likely be functionally equiva
lent to i35. This is consistent with Villarreal et al. (2016) who 
reported that NDVI was a poor predictor of vegetation cover 
in a desert grassland ecosystem. The BS fractional cover, 
which is the inverse of percentage vegetation cover, is one 
such dataset that recorded a high correlation with percentage 
vegetation cover. The BS datasets were produced through an 
extensive network of field sites (~1400) (Gill et al. 2017). 
However, none of these field sites occurred within the study 
area or wider GVD. This perhaps explains the offset between 
percentage vegetation cover measured in this study and those 
obtainable from the BS dataset. These results are important 
for land managers who wish to produce locally calibrated 
vegetation cover datasets. 

Table 6. Cross-tabulated agreement between the YSLB and vegetation recovery burn potential models in 2020.          

YSLB model Vegetation recovery model 

Very low Low Below average Above average High Very high Agreement (%)   

Very low  45.4  2.6  0.5  0.2  0.1  0.0  93 

Low  2.3  7.3  3.8  0.5  0.1  0.0  53 

Below average  3.5  2.2  0.8  0.1  0.0  0.0  13 

Above average  9.2  5.8  1.9  0.6  0.2  0.1  4 

High  1.6  4.8  2.7  0.5  0.1  0.0  1 

Very high  0.2  0.2  0.6  1.6  0.7  0.2  5 

Agreement (%)  73  32  8  18  6  69  54 

Values in the table represent the proportion (%) of the management area that fell in each category in 2020. Overall agreement is 54% and agreement within one 
class is 69%. Agreement values are highlighted with bold text.   

Table 7. Vegetation cover, vegetation recovery, years since last burn (YSLB) and burn potential classes for example points 1–6 (point 
locations shown in  Fig. 10).         

Point Vegetation recovery model YSLB model 

Pre-burn vegetation 
cover (%) 

Current vegetation 
cover (%) 

Vegetation cover 
difference (%) 

Burn potential 
class 

YSLB Burn potential 
class   

1  66.5  62.5  −4.0 Below average  14 Below average 

2  91.1  52.4  −38.7 Very low  5 Very low 

3  60.5  76.0  15.5 High  12 Low 

4  65.1  64.6  −0.5 Below average  9 Very low 

5  78.8  59.1  −19.7 Very low  15 Above average 

6  87.3  65.0  −22.3 Very low  17 High   

Legend
Management area
Very high
High
Above average
Below average
Low

Very low

0 2.5 5 10
km

N

S

W E

Fig. 10. Burn potential maps for 2020 produced using the years 
since last burn and vegetation recovery models. The location of 
example points is shown by numbers 1–6.  
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Consistency between imagery used for fire mapping and 
imagery used in the annual vegetation cover maps is crucial, 
and so is a complete and accurate fire mapping dataset. In 
this study area, the fire mapping dataset spanned 1995 
to 2021. The area burnt at least once in this period was 
84.7%. This is, therefore, the extent to which the vegetation 
recovery dataset can be calculated. Extending this back 
to the start of the regular-capture Landsat Thematic 
Mapper archive (1988) is likely to push the completeness 
up closer to 100%. Although occasional captures of Landsat 
Multispectral Scanner (MSS) data are available back to 
1972, it is unlikely that fire maps created from these data 
could be incorporated in such a system, owing to the limited 
number of spectral bands available in MSS data. 

A mean recovery value close to zero is a sensible result 
and seems to indicate a somewhat balanced system regard
ing the spatial and temporal distribution of fires. However, 
some 6000 ha (6%) of the study area has vegetation cover 
more than 20% above its previous burn value. This apparent 
anomaly could be due to varying fire intervals, such as a 
short fire interval preceding the current fire mapping, fol
lowed by a long period without fire, which allows greater 
vegetative growth. Alternately, high post-fire rainfall events 
could possibly provide greater growth than has previously 
been observed. A combination of both factors could be 
responsible: a longer than ‘usual’ fire interval that includes 
high post-fire rainfall. 

The influence of high post-fire rainfall seems most likely 
in this study as many of the plots shown in Fig. 11 show a 
sharp increase in cover between 2011 and 2012 of ~15%. 
The Laverton Aero weather station recorded 522 mm of 
rainfall in 2011. This is its highest annual rainfall on record 
(1995–2021). While drawing direct conclusions from rain
fall at this station can be problematic given it is located 
260 km from the study area, workers at a nearby gold mine 
confirmed that rainfall in the study area in 2011 was excep
tionally high (Alex Dent, AngloGold Ashanti, pers. comm.). 
By contrast, the near-complete lack of increases in vegeta
tion cover since 2015 across the plots (Fig. 10) presumably 
points to little rain since then. However, the Laverton 
station received >500 mm in 2017 (Fig. 2), well above 
the long-term average of 281 mm. This discrepancy high
lights the difficulty in utilising rainfall data as an explana
tory or predicting variable where there is no nearby 
complete historical record to reference. 

The distributions of vegetation recovery values show a 
greater overlap between burnt and unburnt classes in com
parison with YSLB (Fig. 4). This may be caused by the nature 
of these two measures. The YSLB value of unburnt areas 
increases infinitely with time as long as the area remains 
unburnt. The vegetation recovery value is constrained, with 
the mean recovery value in burnt areas being close to zero, 
meaning most areas reburn once they have returned to their 
pre-burn value. 
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The vegetation recovery dataset returned the lowest AIC 
score, indicating that it was the best predictor of whether an 
area was likely to burn. However, this was only marginally 
better than the YSLB model. Although the model perform
ance is similar, the vegetation recovery model provides 
greater spatial detail of within-fire variability in burn poten
tial. This represents an insight into areas where fire severity 
has been variable, where there is spatial variability in pro
ductivity related to soil fertility, and/or areas within a fire 
boundary in which rainfall has not been homogeneous. 

The main drawback in the vegetation recovery approach 
is that it relies on the pre-burn cover value from only the 
previous fire. For each point, this is a single observation that is 
in turn influenced by the prior fire interval. Along with 
vegetation cover level, there are random effects like ignition 
points, time of day and wind, among others (Cary et al. 2009), 
that play a role in whether a point gets burnt at a particular 
moment in time. A potential improvement on the method 
would be to calculate a mean (or minimum) pre-burn cover 
value from several observations. However, requiring more 
observations limits the area the model can be applied to, as 
in the study area only 42% of the area has burnt more than 
once (van Dongen et al. 2021). A greater number of metrics 
could be explored in areas with higher fire frequencies. 

The greater detail provided by the vegetation recovery 
model can be critical in fire management planning. Many 
fire management programs are geared to achieve a diversi
fication of desert landscapes by maximising range and het
erogeneity of post-fire recovery stages (also known as seral 
stages) (Burrows and Butler 2011; MNRAC 2012; KTLA 
2014; Burrows 2020). The approach presented here, in 
which percentage vegetation cover can be mapped with 
precision at 30 m resolution, means that fire managers can 
be more aware of the current distribution of recovery stages 
across the landscape and where diversity could be increased 
by planned fire or where planned fire may be less important 
owing to high levels of existing heterogeneity. Vegetation 
cover maps derived from Landsat imagery can be updated as 
frequently as every 16 days (depending on cloud-free imag
ery). This means that fire operations can become more 
targeted both spatially and temporally, and the results of 
prescribed burns can also be more accurately assessed. 
Another potential benefit of such high-resolution vegetation 
cover maps relates to ecological assessments. It has been 
well established that different desert fauna show preference 
for different post-fire recovery stages (Lundie-Jenkins 1993;  
Pianka 1996; Southgate and Carthew 2007; Bliege Bird et al. 
2018). The maps presented in this study can therefore be 
used to assess habitat suitability for different species as well 
as to inform targeted biodiversity surveys. 

In terms of vegetation recovery in Triodia-dominated 
deserts, an alternate metric of ‘rain since last burn’ has 
also been proposed (Burrows and Butler 2011). An issue 
with this approach is the sparsity of weather stations 
in arid environments. Although more stations could be 

installed, the approach is in principle trying to predict veg
etation cover from rainfall data, which is not always acces
sible. In these sparely gauged regions, regional atmospheric 
reanalysis products are believed to model rainfall more accu
rately than interpolated data sets (Acharya et al. 2019). 
However, these datasets currently have coarse resolution 
products (5–10 km pixel size), and still have an associated 
error. The approach in the present paper measures vegetation 
recovery from fire directly, without the need for rainfall data. 

Conclusions 

In this study, we have shown that highly accurate vegetation 
cover datasets can be derived from Landsat using widely 
available high-resolution satellite imagery as a reference. 
When combined with fire history data, vegetation cover 
estimates can be used to produce a burn potential model. 
The burn potential model provides an evidence-based and 
dynamic assessment of whether an area is likely to burn. 
Such information can be a very valuable tool for fire man
agers in desert environments as well as informing develop
ment of key ecological landscape attributes. 
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