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KAPAS II: simulation of peatland wildfires with daily variations 
of peat moisture content 
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ABSTRACT 

Background. Peatland wildfires involve flaming vegetation and smouldering peat. The smoul
dering behaviour strongly depends on peat moisture, which can change significantly and quickly 
due to weather or human activities. Aims. We simulated wildfire in peatlands at the field scale 
and, for the first time, included daily variations of peat moisture. Methods. We developed 
KAPAS II, a cellular automaton that includes flaming and smouldering, and coupled it with 
PEATCLSM (Catchment Land Surface Model) for peatland hydrology. Key results. Compared 
with the satellite observations over 90 days of a 2018 wildfire in Borneo, KAPAS II predictions 
provide good agreement for burn scars (79% accuracy) and for the number of smouldering 
hotspots (85% accuracy). For the same burn scar, the model predicts that 54 ha of peat would 
smoulder when considering daily moisture variations, but only 12 ha if moisture was constant. 
Simulations at the same Borneo location, but in different years from 2000 to 2019, show the 
importance of seasons and climate events like El Niño. Conclusion. Temporal variations in peat 
moisture, which are strongly influenced by weather and climate, are important to predict the 
behaviour and severity of peatland wildfires. Implications. This model improves our under
standing of wildfire behaviour in peatlands and can contribute to its mitigation.  
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Introduction 

Peatland wildfires release carbon stored in peat, thus resulting in a positive feedback that 
contributes to climate change (Rein 2013). These wildfires involve both flaming and 
smouldering, with flames mainly burning surface vegetation (such as trees, shrubs, crops 
and grasses) and smouldering mainly burning peat, the organic soil underneath the 
vegetation. Smouldering wildfires can be sustained for weeks to months (Rein 2013;  
Turetsky et al. 2015; Lin et al. 2019; Rein and Huang 2021). Compared with flaming, 
smouldering spreads more slowly and at a lower temperature but releases a higher yield 
of pollutants, both gas and particulate matter (Rein 2013; Hu et al. 2018). An example 
where the importance of smouldering is clear is the 1997 peatland wildfires in southeast 
Asia. These wildfires emitted 0.8–2.56 Gt C (gigatonnes of Carbon) to the atmosphere, 
which is equivalent to 13–40% of global anthropogenic carbon emissions in that year, but 
only ~0.1 Gt C of these emissions resulted from flaming (Page et al. 2002). 

The peat moisture content (MC), which in this paper is referred to as the gravimetric 
MC if not stated otherwise, plays a prominent role in the behaviour of smouldering 
wildfires (Rein 2013; Christensen et al. 2020; Lin et al. 2021). In natural peatlands, the 
peat MC changes temporally owing to weather and seasonal variations that can be 
increased by anthropogenic activities (Waddington et al. 2015; Bechtold et al. 2020;  
Goldstein et al. 2020). Because these temporal variations can be large within a short time 
span (daily, even hourly, Waddington et al. 2015; Bechtold et al. 2020; Goldstein et al. 
2020) and because smouldering wildfires can sustain themselves for weeks to months 
(Rein 2013; Scholten et al. 2021), understanding the effects of temporal peat MC 
variations on smouldering behaviours is important. 
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Research on smouldering wildfires at the field scale is 
limited (Purnomo et al. 2021; Widyastuti et al. 2021; Yuan 
et al. 2021). The complexity and spatiotemporal extents of 
peatland wildfires prevent state-of-the-art wildfire models 
from properly simulating these phenomena. While physics- 
based computational models (e.g. computational fluid 
dynamics models) are too computationally expensive for 
field-scale scenarios (Purnomo et al. 2021), semiphysical 
and empirical models (e.g. the Fire Area Simulator model;  
Finney 1998) lack the ability to couple flaming and smoul
dering (Purnomo et al. 2021). 

Here, we used cellular automata (CA), which use simple 
rules rather than complex physics-based equations (von 
Neumann 1967; Wolfram 1984), to simulate peatland wild
fires that involve both flaming and smouldering. Despite 
being simpler than other models and thus requiring fewer 
equations and fewer resources, sufficiently accurate results 
can be achieved with CA (Alexandridis et al. 2008;  
Fernandez-Anez et al. 2019). CA consider a grid of cells 
that can be in different states (e.g. unburned, burning, or 
burned). The state of each grid cell is updated at discrete 
time steps by following a set of simple rules. 

Purnomo et al. (2021) successfully simulated both flam
ing and smouldering in peatland wildfires at the field scale 
over a 3-month period; however, they did not consider 
temporal variations in peat MC. Owing to the long lifespan 
of smouldering wildfires and the significant changes in peat 
MC that can occur within a short time span, the model 
produced in Purnomo et al. (2021), KAPAS,1 insufficiently 
captured realistic peatland conditions and thus led to 
inaccurate simulations. In addition, KAPAS can be used 
with only one set of spatial and temporal resolutions in 
the computational domain, which must be equal to the 
resolutions used in the model calibration. Each time the 
simulation requires a different spatial or temporal resolu
tion, KAPAS must be recalibrated with this new resolution; 
otherwise, its predictions could become unrealistic 
(e.g. resulting in smouldering that spreads a few orders of 
magnitude faster than the expected spread rate). This prob
lem occurs in most CA fire models (Purnomo 2022). 

Here, we further developed KAPAS to simulate field-scale 
peatland wildfires by integrating temporally varying peat 
MC and allowing simulations at any spatiotemporal resolu
tion. We used remote sensing data to derive the model input 
parameters (e.g. the vegetation type and density) and a peat- 
specific land surface model to estimate the temporal peat 
MC variations. We validated our CA model against satellite 
observations of burn scars, which in this paper are referred 
to as flaming burn scars if not stated otherwise, and smoul
dering hotspots. We then used our model to investigate the 
effects of daily and seasonal peat moisture variations on 
smouldering wildfires over contrasting climatic conditions. 

Materials and methods 

Cellular automata 

CA are discrete computational models that use simple rules 
to simulate physical phenomena (von Neumann 1967;  
Wolfram 1984). In these models, the domain is a matrix of 
cells in which each grid cell can be in one of n discrete states 
that is updated at discrete time steps. The updating process 
of these states follows a set of rules (e.g. stochastic, empiri
cal and physical rules) that affects both the cell and its 
nearby cells (called a neighbourhood). The set of rules and 
the neighbourhood are selected based on the phenomenon 
being simulated (Karafyllidis and Thanailakis 1997; Belcher 
et al. 2010; Collin et al. 2011; Fernandez-Anez et al. 2019). 

In the initial work on modelling peatland wildfires with 
CA, the KAPAS model developed in Purnomo et al. (2021) 
employed stochastic rules called bond percolation. In the 
bond percolation concept, the flow of information from 
one entity to adjacent entities occurs with a certain proba
bility (Favier 2004; Purnomo 2022). In the context of wild
fire modelling, the bond percolation concept allows a fire to 
spread from one cell to adjacent cells with a certain proba
bility representing the flammability of the fuel, where 
higher probabilities correspond to higher fuel flammability 
levels, thus facilitating a faster spread rate (Purnomo 2022). 
Owing to the probabilistic rules in the bond percolation 
CA model, when this model is run repeatedly with identical 
input parameters, the simulation results reflect stochastic 
uncertainty, and the results obtained from multiple 
repetitions (of simulations with identical input parameters) 
differ. This trait can mimic the uncertainty observed in 
nature, for example the uncertainty caused by landscape 
heterogeneity. 

In this work, we used the bond percolation rules with a 
Moore neighbourhood (in which the eight cells directly 
surrounding a considered cell are included in the neighbour
hood, forming a 3 × 3 square grid), similar to that used in 
KAPAS (Purnomo et al. 2021). However, we implemented 
significant modifications to these rules to improve the accu
racy and applicability of KAPAS. We refer to the updated 
model as KAPAS II, as this new model has a similar approach 
and is used for the same purpose as the initial KAPAS model 
(to model flaming and smouldering wildfires) developed in  
Purnomo et al. (2021). 

States and rules of the KAPAS II model 

KAPAS II considers the same five possible states as the 
model developed in Purnomo et al. (2021) for each cell: 
surface vegetation (SV), flaming vegetation (FV), exposed peat 
(EP), smouldering peat (SP) and burned peat (BP) (Fig. 1). EP 
represents a state in which the cell has lost its surface 

1Modified abbreviation of CA for Flaming And Smouldering that also means ‘cotton’ in the Indonesian language, as cotton is a material that can 
facilitate both flaming and smouldering. 
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vegetation owing to flaming but has intact peat soil because 
smouldering peat fails to ignite. 

At the initial time step (t = 0), the fire is ignited at a 
specific location to initiate the FV state. The FV cells then 
ignite the neighbouring vegetation with a probability of Pf 
and may ignite the underlying peat (SP) with a probability 
of Pt (see Fig. 1). A higher Pf value corresponds to a faster 
flaming spread rate, whereas a higher Pt value corresponds 
to nucleation (i.e. multiple ignitions of hotspots that arise at 
randomly distributed locations) of more smouldering hot
spots. If the FV fails to ignite the peat, the cell adopts the EP 
state. An SP cell spreads at a rate dependent on the Ps value 
(smouldering spread probability) and eventually extin
guishes with a probability of Pe, thus becoming BP.                      

Following Fernandez-Anez et al. (2019) and Purnomo et al. 
(2021), in the KAPAS II model, we use separate surface and 
soil layers in the cells (see Fig. 1) to enable the simulation of 
smouldering spread underneath unburned vegetation or 
firebreaks (if a flammable peat layer is present between a 
firebreak and the water table or mineral soil). By applying 
two separate layers, the cells in the soil layer can become 
smouldering peat, although in the surface layer, neither 
unburned vegetation nor firebreaks change state. The tran
sition of flaming vegetation on the surface resulting from 
underlying smouldering is not considered in KAPAS II, as 
this would require the inclusion of additional rules involving 
the transition from smouldering to flaming, which misses 
the objective of KAPAS II. The flaming of peat is unlikely 
(Huang and Rein 2015; Lin et al. 2019); thus, it is not 
considered in KAPAS II. 

Input parameters and validation datasets 

We simulated a peatland wildfire in Borneo (located at 
3.087°S, 113.991°E) that started on 21 September 2018 
and was fully extinguished on 10 October 2018, which 
was selected owing to the availability of the data. Fig. 2 
shows the progression of the flaming wildfire captured by 
the Sentinel-2 satellite (Copernicus 2022). These satellite 
images were obtained by using false-colour urban compo
sites that clearly distinguish among surface vegetation, burn 
scars and flames (Stavrakoudis et al. 2020). The black colour 
in Fig. 2 represents the burn scar, whereas the red areas 
represent regions of flames. The light green colour repre
sents a non-combustible region such as a firebreak or burned 
area that resulted from previous wildfires that were not 
considered in this research. 

The data obtained from Sentinel-2 were used to estimate 
the burn scar in the validation process. In the model, the 
shape formed by EP cells corresponded to the burn scar. We 

Surface layer

Soil layer

EP

EP

1–Pt Pf

Pt

PsPe

FV FVSV

SP SP

BP

Fig. 1. The states and rules of KAPAS II. FV is flaming vegetation, 
SV is surface vegetation, SP is smouldering peat, EP is exposed peat, BP is 
burned peat, Pf is the probability of the flames spreading, Pt is 
the probability of the transition from flaming to smouldering occurring, 
Ps is the probability of smouldering spreading, and Pe is the probability 
of smouldering extinguishing. The solid arrows represent possible state 
changes, whereas the dotted arrows represent potential influences 
from neighbouring cells. This figure was adapted from KAPAS in   
Purnomo et al. (2021).  

N

Day 3

Unburned vegetation Prev. burned/�rebreak Burn scar Flames

Day 8 Day 20

Fig. 2. Satellite image of a landscape in Borneo 
(3.087°S, 113.991°E) in September 2018, obtained 
from Sentinel-2 ( Copernicus 2022), which shows 
the progression of flames and the burn scar.   
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used the seed-fill algorithm (Khayal et al. 2011) to detect 
burn scar pixels (black colour) from the satellite images 
shown in Fig. 2. The burn scar also shows the locations of 
firebreaks, which serve to stop flames from spreading. 
Firebreaks are indicated by the abrupt stop of a flaming 
wildfire, thus causing the burn scar to exhibit smooth 
edges (see Day 20 in Fig. 2). Fig. 3a shows the landscape 
distribution, including the estimated locations of firebreaks 
before the flames began (on 8 September 2018). 

KAPAS II considers three different surface vegetation 
types: dry shrubs, wet shrubs and trees (shown in Fig. 3b), 
following Ferraz et al. (2019), who used field sampling and 
satellite observations to estimate vegetation types. KAPAS II 
also considers the rain and wind conditions to simulate 
flaming wildfires. We used meteorological data from a 
local weather station to obtain daily precipitation, wind 

speed and wind direction data (measured 6 m above the 
surface). This weather station is located at 2.220°S, 
113.951°E, ~93 km north of the landscape under study 
(BMKG 2018). For the wind direction, we used the conven
tion of direction of origin; thus, for instance, a south-eastern 
wind describes wind coming from the southeast and moving 
northwest. These meteorological phenomena significantly 
change over short time spans (hourly or even shorter); 
however, these daily data are the only locally available 
data. KAPAS II can be run with higher temporal resolution 
of meteorological data (e.g. hourly) if available. 

We considered the vegetation density in KAPAS II (see  
Fig. 4). We classified the vegetation density based on 
Normalized Difference Vegetation Index data (NDVI, a sur
face vegetation greenness index) as shown in Fig. 4a, which 
are commonly used to estimate vegetation density (Camps- 
Valls et al. 2021), obtained from Sentinel-2 (Copernicus 
2022). However, we considered only three classes of vege
tation density, recently burned, regrown or intact vegeta
tion, corresponding to the methods of Alexandridis et al. 
(2008). Therefore, the values shown in Fig. 4a were reclas
sified into three classes: values ranging from 0 to 0.2 corre
sponded to recently burned vegetation, 0.2–0.4 indicated 
regrown vegetation, and 0.4–0.65 indicated intact vegeta
tion (as shown in Fig. 4b). Recently burned vegetation 
corresponds to vegetation that was burned in recent previ
ous wildfires; regrown vegetation corresponds to previously 
burned vegetation that has started to regrow; and intact 
vegetation refers to fuel that has not been affected by recent 
wildfires (see Fig. 3a, in which the green colour in the 
landscape consists of dark and light greens). Fig. 4c shows 
the vegetation density classification used in the model. 
Although the entire region in the landscape under study 
consists of peatlands, the black region in Fig. 4c was not 
considered in the model because it is completely separated 
by firebreaks (see Fig. 3a), inhibiting flame spread into the 
black region. We selected NDVI data collected at the start of 
the wildfire (on 21 September 2018), and therefore, the data 
represented the actual ground conditions. 

(a) (b)

Fig. 3. (a) Satellite image of a landscape in Borneo (3.087°S, 
113.991°E) in September 2018 before the flames began; this image 
was obtained from Sentinel-2 ( Copernicus 2022). The white lines 
highlight firebreaks. (b) Remote sensing-based vegetation types identi
fied in the peatlands in the Borneo landscape (3.087°S, 113.991°E), as 
obtained from  Ferraz et al. (2019). We considered three vegetation 
types: dry shrubs (red), wet shrubs (grey) and trees (blue). The yellow 
lines show firebreaks, corresponding to the white lines in panel (a).  
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(b) (c)
Fig. 4. (a) The NDVI data of a landscape in Borneo 
(3.087°S, 113.991°E) on 21 September 2018; these 
data were used to estimate the vegetation density, 
and were obtained from Sentinel-2 ( Copernicus 
2022). (b) Reclassified NDVI data in the same land
scape at the same date; these data were used to 
simplify the vegetation density classification scheme 
and were adapted from  Alexandridis et al. (2008). 
(c) The vegetation density data characterising the 
same landscape at the same date, which were used 
in the model; these data were based on the NDVI 
data and classified as recently burned (rec. burned), 
regrown, or intact. The black region was not con
sidered because it was separated by a firebreak.   
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The peat MC data were obtained from simulations con
ducted with the peat-specific land surface model in Apers 
et al. (2022), using the tropical version of the peat-specific 
land surface model developed by Bechtold et al. (2019). The 
model in Apers et al. (2022) was specifically developed and 
extensively evaluated for tropical peatland conditions and 
was shown to perform best over southeast Asian peatlands. 
This model was based on the Catchment Land Surface Model 
(CLSM) of the NASA GEOS (Goddard Earth Observing 
System) Earth System Modelling framework and has two 
modules, one for drained tropical peatlands (PEATC
LSMTrop,Drain) and one for natural tropical peatlands (PEAT
CLSMTrop,Nat); these different peatland types have distinct 
hydrological conditions and thus have different peat MC 
characteristics (Apers et al. 2022). Canal construction had 
been under way in central Kalimantan since the 1990s 
(Ritzema et al. 2014), and we found a number of canals 
inside our study area based on the canal map produced by  
Dadap (2020); therefore, we assumed that the peatland 
under the study area was drained. From this assumption, 
the PEATCLSMTrop,Drain model in Apers et al. (2022) was 
used to obtain the peat MC data for KAPAS II. We used the 
soil surface MC (0–5 cm depth) instead of a deeper MC, 
because the ignition of smouldering wildfires most of the 
time occurs at the surface. 

The MC information obtained from the model in Apers 
et al. (2022) was volumetric (volume-based), whereas that 
used in KAPAS II is gravimetric (mass-based). Thus, to 
obtain gravimetric MC data, we divided the volumetric 
MC by the peat bulk density (in g/cm3). The peat bulk 
density is a function of the peat solid density and porosity. 
We assumed the peat solid density to be 1.5 g/cm3, adopting 
the value reported by Huang and Rein (2017). The porosity 
of peat in natural peatlands varies significantly with depth; 
at the surface, porosity can exceed 0.8, whereas at deeper 
points (~50 cm), it can be less than 0.5 (Rezanezhad et al. 
2016). Although the peat porosity described in Rezanezhad 
et al. (2016) corresponds to non-tropical peat, a study in 
Indonesian tropical peatlands revealed that the peat poros
ity at a 50 cm depth was approximately 0.41 (Islami et al. 
2018). In KAPAS II, we selected the average of surface (0.8) 

and deep (0.41) peat porosity values; thus, a porosity of 
0.61. This value is lower than 0.9 (Huang and Rein 2015), 
the commonly used value in smouldering models that focus 
on the porosity of surface peat. However, the peat porosity 
used in KAPAS II is similar to that used in Apers et al. (2022) 
(0.68). From these selected values, the peat bulk density in 
KAPAS II is 0.585 g/cm3; thus, the obtained volumetric MC 
was divided by 0.585 to convert to gravimetric MC. 

Whereas we used satellite burn scar data to validate the 
flaming component in the KAPAS II model, we used a remote 
sensing algorithm developed by Sofan et al. (2020), called 
Tropical Peatland Combustion ALgorithm (ToPeCAL), to 
detect smouldering hotspots to validate the smouldering 
model component. ToPeCAL performs arithmetic and logic 
operations on short-wave infrared (SWIR) data from Sentinel- 
2 to detect smouldering wildfires that are separated from 
flaming wildfires. Fig. 5 shows the smouldering hotspots 
that were detected using ToPeCAL and used to validate the 
smouldering component of the KAPAS II model. However, we 
consider only the number of smouldering hotspots, rather 
than the shape of the smouldering burn scar (which is the 
output of ToPeCAL) when validating our model. This indi
cates that we validated the model based only on the ignition 
of smouldering without considering smouldering spread. We 
did not validate the spread because it can occur undetected 
and even in the subsurface, thus invalidating detection results 
obtained via satellite remote sensing. 

Model calibration 

KAPAS II predictions are dependent on the values of the 
main probabilities (Pf, Pt, Ps and Pe). Pf (Eqn 1) is a function 
of the flaming spread rate (R), spatiotemporal resolution 
(λ), vegetation density factor (αd) and wind factor (αw). 
The λ term contains the information of the cell size (Δx) 
and time step (Δt) and is formulated in Eqn 2. R is formu
lated based on the Rothermel model for flame spread 
(Rothermel 1972) under no-wind conditions. Table A1 in 
the appendix lists the values of input parameters used to 
calculate R. R is translated into a probability value depend
ing on λ, which then becomes the base value of Pf (i.e. if αd 

Day 3 Day 8 Day 20

Fig. 5. The smouldering hotspots (yellow circles) 
in a landscape (in  Fig. 3) in Borneo (3.087°S, 
113.991°E) in 2018 detected by the algorithm devel
oped by  Sofan et al. (2020) and applied on Sentinel-2 
data ( Copernicus 2022). The increase in the number 
of hotspots corresponds to the progression of the 
flaming wildfire (see  Fig. 2).   
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and αw are equal to 1). This translation was performed by 
optimising the probability value to have KAPAS II predict 
flaming spread rate of R given the cell size and time step.  
Fig. 6a clearly shows that R and the base Pf value reflect a 
log–log relationship with slopes independent of λ. With this 
method, any cell size and time step can be used in the model 
with a less than 15% relative absolute error, thus signifi
cantly improving the previous model (KAPAS) developed in  
Purnomo et al. (2021). 
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KAPAS II considers the effect of wind (αw) as formulated in  
Eqn 3. αw is based on the wind factor formulation by 
Rothermel for the maximum downwind spread rate and on 
the 2D propagation behaviour (Rothermel 1972; Alexander 
1985; Finney 1998). αw is a function of the wind coefficient 
(Φw), the direction of flame spread relative to the wind 
direction (θ), the ellipse parameters: semiminor axis (a), 
semimajor axis (b), and linear eccentricity (c), and the 
correction factor (φ). Φw is determined based on the 

Rothermel model, whereas the ellipse parameters are for
mulated using Eqns A1–A3 in the appendix and depend on 
the wind speed (U) following Finney (1998). These formu
lation represent an improved version of the wind effect in 
KAPAS (Purnomo et al. 2021), because KAPAS did not 
maintain an elliptical shape under high wind speeds. 
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The correction factor of the wind effect (φ) is required to 
maintain agreement in the downwind spread rate with 
Rothermel. Without this correction factor, the spread rate 
differs significantly, up to 90%. From the calibration, we 
found that φ is linearly correlated with U, as shown in Eqn 
4, and the variations that arise owing to different λ values 
remain within 10% (see Fig. 6b). 

U= 0.41 + 0.94 (4)  

The effect of the vegetation density (αd), which was not 
considered in KAPAS, is determined by calibrating the 
model against satellite-derived burn scar data. KAPAS II 
considers three different vegetation density classes (intact, 
regrown and recently burned), and the αd value for regrown 
vegetation was calibrated. The αd value for intact vegetation 
was set to 1, and that for recently burned vegetation was set 
to 0 for the sake of simplicity. From the calibration process, 
we found that for αd = 0.01 for the regrown vegetation, 
flame spread predictions provide good agreement with the 
satellite-derived burn scar data (<25% relative absolute 
error). 

The flaming to smouldering transition probability (Pt) 
and smouldering extinction probability (Pe) values in 
KAPAS II were set following KAPAS. Pt is a function of 
peat MC, as in Eqn 5, using the ignition probability formu
lated in Frandsen (1997) (see Fig. 6c), and Pe is selected to 
be 5 × 10−10, sustaining a smouldering fire for approxi
mately 3 months (the typical duration of the wildfire season 
in Indonesia; Huijnen et al. 2016). The formulation of 
smouldering spread probability (Ps) in KAPAS II was also 
adapted from KAPAS and the values fit the experiments of  
Huang et al. (2016) and Prat-Guitart et al. (2016); however, 
different spatiotemporal resolution values (λ) were input 
into KAPA1S II to enable modelling at any spatial or tempo
ral resolution of the computational domain (thus improving 
the KAPAS model). We found that Ps is linearly correlated in 
log–log axis with MC (R2 = 0.89) and has a slope indepen
dent of λ (see Fig. 6d); Ps is formulated in Eqn 6. The MC 
values used in Eqns 5, 6 change daily based on the model in  
Apers et al. (2022); thus, Pt and Ps also change daily. KAPAS 
II considers temporal variations in peat MC but assumes it is 
spatially uniform across the entire landscape. Peat MC also 
varies spatially (Prat-Guitart et al. 2017); however, whereas 
the spatial peat MC variations can be considered in KAPAS 
II, there are currently no reliable peat moisture data at fine 
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Fig. 6. The calibration of variables in KAPAS II at different spatio
temporal resolutions (cell size per time step) of the computational 
domain (λ). (a) The translation of the flame spread rate, based on the 
Rothermel model calculation, into a probability value, Pf, at different λ 
values. (b) The correlation between the wind speed (U) and the 
correction factor of the wind effect (φ) at different λ values. (c) The 
correlation between the probability of a transition from flaming to 
smouldering occurring and the MC, adapted from  Frandsen (1997). 
(d) The relationship between smouldering spread probability and the 
MC at different λ values, calibrated against experimental data ( Huang 
et al. 2016;  Prat-Guitart et al. 2016).  
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spatial resolution and the resolution of the model in Apers 
et al. (2022) was too coarse for the landscape under study 
(5-km resolution). 

P = (1 + 0.17e )t
0.12MC 1 (5) 

P = 0.01MCs 0.71 1.02 (6)  

In this work, we used a domain with a 45-m cell size and a 
1200-s time step (λ = 135 m/h). To limit computational 
costs, we selected the coarsest cell size that still gave a 
higher than 80% accuracy on flaming and smouldering 
spread rate predictions, resulting in the domain having 
~200 000 cells. The time step was determined based on 
the stability criteria of Courant–Friedrichs–Lewy to avoid 
the diffusion of any entity exceeding one cell at one time 
step (Lautenberger 2013). 

We verified the KAPAS II predictions in a simpler domain 
of uniform fuel with constant wind. We compared KAPAS II 
spread rate predictions of the flames for different wind 
speed with the Rothermel model (Fig. A1a) and of the 
smouldering at different moisture content with the experi
ments of Huang et al. (2016) and Prat-Guitart et al. (2016) 
(Fig. A1b). We found that for both flaming and smouldering 
spread, KAPAS II predictions are within 20% relative abso
lute error of the benchmarks. 

Results and discussions 

Fig. 7 shows snapshots of KAPAS II predictions at four 
different times from Day 3 to Day 90. Fig. 7a–c corresponds 
to the spread of flames, whereas Fig. 7d corresponds to the 
spread of smouldering. On Day 3 after the start of the wild
fire (Fig. 7a), flames had burned a relatively small area of 
surface vegetation, and the shape of the burn scar was quite 
circular, with non-smoothness at the perimeter caused by 
the stochastic approach of KAPAS II. The south-eastern wind 
of 7 km/h had only a slight effect on the burn scar. On Day 8 
(Fig. 7b), the western wind (see Fig. 4) caused eastward 
spread of the flames. The low vegetation density caused 
the formation of an unburned patch in the north of the 
burn scar. Smouldering hotspots began to form at this 
stage. We refer to the smouldering hotspots formation by 
flames as nucleation, and smouldering spread grows these 
hotspots. On Day 20 (Fig. 7c), all flames had become extin
guished, and the nucleation of smouldering hotspots 
stopped. KAPAS II predicted that the flames were extin
guished on Day 15. For comparison purposes, Fig. 7c 
shows a snapshot of Day 20, a day for which a clear satellite 
image was available (on the other days, satellite images 
were either unavailable or significantly cloud-covered). 
The extinction of the flames corresponded with 14.7 mm 
of precipitation on Day 15. This precipitation continued 
for 3 days. Therefore, we argue that the flames and hotspot 
nucleation lasted for 16 days (Day 0–15). From Day 16, 

hotspots started to spread and grew larger, and at the end 
of the simulation on Day 90, the hotspots had significantly 
enlarged, and some had merged (Fig. 7d). 

Fig. 8a–c shows a comparison between the satellite-based 
burn scars in Fig. 2 and those predicted by KAPAS II 
(Fig. 7a–c) at three different times (Days 3, 8 and 20). In 
the figure, the red lines represent the perimeter of the actual 
burn scar observed by the satellite. The true positive and 
true negative terms represent accurate predictions in which 
the burn scars observed by the satellite and predictions both 
indicated burned or unburned conditions, respectively. False 
positives correspond to an area that was predicted to be 
burned but was not burned in the satellite observation, and 
false negatives indicate regions that were not predicted to be 
burned but were observed to be burned by the satellite; both 
of these were considered inaccurate predictions. The flames 
burned approximately 8734 ha of vegetation in the 25 700- 

(a) Day 3

1 km 1 km

N N

1 km

Active !aming Exposed peat Firebreak

Surface vegetation Active smouldering

1 km

N N

7 km/h
wind

11 km/h
wind

7 km/h
wind

4 km/h
wind

(b) Day 8

(c) Day 20 (d) Day 90

Fig. 7. Snapshots of the peatland wildfire simulation in the Borneo 
landscape (in  Fig. 3, 3.087°S, 113.991°E) in 2018 at different stages: 
(a) early stage of surface flames on Day 3; (b) spread of surface flames 
and the nucleation of smouldering hotspots on Day 8; (c) extinction 
of surface flames and cessation of smouldering hotspot nucleation on 
Day 20; and (d) end of the simulation on Day 90, at which time the 
smouldering hotspots had enlarged and some merged. The surface 
vegetation (white) includes all three different vegetation types shown 
in  Fig. 3b. The blue arrows show the wind speed and direction. 
Firebreaks (shown in grey) stopped the spread of flames but could 
not stop the spread of smouldering.  
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ha study area. KAPAS II simulated the flame spread that 
resulted in burn scars with a 29.8% share of true positives, 
49.2% true negatives, 16.9% false positives and 4.1% false 
negatives compared with the burn scar observed by the 
satellite at the end of the wildfire (Fig. 8c). Therefore, a 
Cohen’s kappa value (a shape similarity indicator) of 0.57 
was achieved, corresponding to reasonable agreement 
between KAPAS II predictions and observations (Sun et al. 
2021). The main reason for the errors is the effect of wind. 
This can clearly be seen in Fig. 8a, b, where the burn scars 
observed by the satellite were elongated, whereas the simu
lated burn scars were significantly less elongated. We argue 
that this discrepancy resulted from KAPAS II considering the 
daily average wind speed and direction, whereas in reality, 

both the wind speed and direction vary significantly over 
the course of a day, especially when gusty winds occur. The 
flame spread predictions from KAPAS II were of similarly 
accuracy to the predictions from FARSITE (see Fig. 8d); 
FARSITE achieved a 32.9% share of true positives, 47.5% 
true negatives, 17.3% false positives and 2.3% false nega
tives, thus a Cohen’s kappa value of 0.61. 

We found that KAPAS II overestimated the burn scars by 
30%, as KAPAS II predicted that flames burned 11 143 ha of 
vegetation (see Fig. 9a). After 16 days, the area burned by 
flames did not change; thus, it is not presented in Fig. 9a. 
We considered that the flames only lasted for 16 days 
(owing to precipitation); thus, both predictions and obser
vations were compared based on Day 16 of flaming instead 
of Day 20 (Day 20 corresponds to the day clear satellite 
images were available). While flames spread, smouldering 
hotspots were nucleated, as shown in Fig. 9b. We validated 
the smouldering component of KAPAS II by comparing the 
number of smouldering hotspots at different times against 
satellite observations (see Fig. 5). The 61 predicted hotspots 
agreed well with the observed 53 hotspots, which means a 
relative error of 15%. KAPAS II is the only model that can 
predict nucleation accurately against satellite observations. 

The discrepancies in the locations of hotspots between 
the predictions and observations may have stemmed from 
the actual spatial non-uniformity of peat MC, which is not 
considered in KAPAS II. This is supported by the number of 
new smouldering hotspots observed on Day 8 (42 new hot
spots), which decreased over 75% on Day 16 (11 new hot
spots), as shown in Fig. 5, although the burn scar from 
flames was similar, indicating that the region where flames 
spread during Day 8 had drier peat compared with the 
region within the burn scar on Day 16. Day 20 in Fig. 5 
corresponds to Day 16 in this comparison because we argue 
that the flames stopped on Day 16. Meanwhile, KAPAS II 
predicted that the numbers of hotspots nucleated on Day 8 

(a) Day 3 Day 8

Day 20 FARSITE

(b)

(c) (d)

Fig. 8. Comparisons between the burn scars (exposed peat) 
derived from satellite detection ( Fig. 2) and from the predictions of 
KAPAS II at three different times (a–c) and FARSITE on day 20 (d) in 
the Borneo landscape (in  Fig. 3, 3.087°S, 113.991°E) in 2018. The red 
lines represent the perimeter of the actual satellite-detected burn 
scar. True negatives and true positives denote accurate predictions, 
indicating that the predicted and satellite-detected results both sug
gested not burned or burned regions, respectively. A false positive 
corresponds to a predicted burn region that was not burned in the 
satellite detection results, whereas a false negative indicates that an 
area was predicted to be a non-burned region but was found to be 
burned in the satellite detection results.  
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Fig. 9. (a) Comparisons between the flaming burned areas (areas 
of the exposed peat) derived from the satellite observations (based 
on Sentinel-2;  Copernicus 2022) and from the KAPAS II predictions 
at different times. (b) Comparisons between the of numbers of 
smouldering hotspots derived from the satellite observations 
(based on Sentinel-2;  Copernicus 2022) and the KAPAS II predictions 
at different times. The error bars represent the uncertainty of 
KAPAS II results after 10 repetitions.  
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(27 hotspots) and Day 16 (34 hotspots) only differed 
by 25%. 

Fig. 10a shows the evolution of the smouldering burned 
area. The magenta shade indicates the area under the smoul
dering nucleation regime (during flame spread), whereas 
the cyan shade indicates the area under the smouldering 
growth regime (after the flames were extinguished). Because 
of both nucleation and growth, the smouldering burned area 
increased exponentially with time, but this increase was 
slower during the growth regime than the nucleation 
regime. Overall, KAPAS II predicted that smouldering had 
burned a total of 54 ha of peat 90 days after the start of the 
wildfire. 

Peat MC could significantly change over short time; for 
instance, as shown in the error bars in Fig. 10b, which 
represent the range of daily peat MC variations within 
1 week. We analysed the importance of temporal peat MC 
variations by comparing the KAPAS II predictions with daily 
peat MC variations, a transient MC scenario, and the predic
tions with constant peat MC, a constant MC scenario. In the 
constant MC scenario, the peat MC was assumed to be 
constant at 83% kg water/kg dry peat (the average peat 
MC calculated over 90 days; see Fig. 10b). We found that the 
exponential increase of smouldering burned area in nuclea
tion and growth regimes prevailed in both transient MC and 
constant MC scenarios. However, the smouldering area was 
significantly smaller in the constant MC scenario (12 ha) 
than in the transient MC scenario (54 ha). This finding 
emphasises the importance of implementing temporal peat 
MC variations. 

We further used KAPAS II with transient MC to predict 
the smouldering burned area, nucleated over the same burn 
scar, if it happened in different months in the years 

2000–2019. Each individual case runs for 90 days. A total 
of 240 cases were considered; the first case goes from 
January 2000 to March 2000, whereas the last case is 
from December 2019 to February 2020. Each of the cases 
had different temporal peat MC variations that were esti
mated with the drained version of the model in Apers et al. 
(2022) (see Fig. A2 for examples). 

Fig. 11a shows that the smouldering burned area by 
growth regime is linearly proportional to the burned area 
by nucleation regime (R2 = 0.98). However, Fig. 11b shows 
that the burned area by growth regime decreases exponen
tially with the monthly averaged peat MC during the nucle
ation period (R2 = 0.93), but independent of the monthly 
averaged peat MC during the growth period (R2 = 0.05). 
Therefore, the peat MC during the nucleation period is the 
crucial factor determining the total smouldering area. This 
inverse exponential correlation between peat MC during the 
nucleation period and smouldering burned area, which is 
highly dependent on the number of hotspots, agrees with 
the experiments of Frandsen (1997) in which the probability 
of a smouldering nucleation exponentially decreases with 
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Fig. 10. (a) The predicted evolution of the smouldering burned 
area in the Borneo landscape (3.087°S, 113.991°E) over 90 days, 
under the assumptions of a constant peat MC (constant MC scenario, 
blue squares) or temporally varying peat MC (transient MC scenario, 
red circles). Under the nucleation regime (magenta), smouldering 
hotspot nucleation was found to be dominant over growth, whereas 
in the growth regime (cyan), smouldering spread (growth) was domi
nant. The error bars represent the uncertainty of the model results 
after 10 repetitions. (b) MC under the transient MC scenario aver
aged over 1 week and its range (error bars). The blue line denotes 
the MC averaged over 90 days, as used in the constant MC scenario.  
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Fig. 11. Predicted smouldering burned area in the Borneo landscape 
(3.087°S, 113.991°E) when the flames began in different months 
and years between 2000 and 2019, under continuous simulation runs 
(even after flames were extinguished) lasting 90 days (time in the 
simulation). (a) Correlation between the smouldering burned areas 
identified under the nucleation and growth regimes. (b) Correlation of 
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monds) regimes. (c) Evolution patterns of the smouldering burned 
areas in different months and years. The total smouldering burned 
area (red diamonds) represent the sums of the smouldering 
burned area under the nucleation (blue circles) and growth (green 
gradient) regimes. The Oceanic Niño Index (ONI) determines the 
occurrence of El Niño and its counterpart, La Niña ( Null 2021).   

www.publish.csiro.au/wf                                                                                                      International Journal of Wildland Fire 

831 

https://www.publish.csiro.au/wf


MC. The maximum difference of peat MC identified between 
the nucleation and growth periods shown in Fig. 11a, b is 
less than 20%. Thus, this finding might not apply when a 
very large difference of peat MC occurs. 

Fig. 11c shows the temporal evolution patterns of the 
smouldering areas predicted for different months and 
years. The smouldering area varied significantly and ranged 
from 0 to 93 ha. The smouldering area is minimal if the 
flames spread in the wet season, between November and 
May, and it significantly increases in the dry season. In the 
wet season, owing to the relatively high peat MC, smoulder
ing hotspots were less likely to be nucleated; thus, some 
cases exhibited a smouldering area of 0 ha, whereas in the 
dry season, the peat became drier and more vulnerable to 
nucleation. This temporal pattern is mainly controlled by 
peat MC, thus strongly indicating the importance of tempo
ral MC variations. 

When a strong La Niña event occurred, the smouldering 
area was smaller than 10 ha throughout the year (see 2008 
in Fig. 11c). During an El Niño event, the smouldering area 
significantly increased (see 2015 in Fig. 11c). The maximum 
smouldering area predicted for the dry season of a strong El 
Niño year (2015) was 93 ha, whereas in a year without El 
Niño (e.g. 2001), it was 48 ha (see Fig. 11c). The unique 
findings on the effect of different seasons on smouldering 
area indicate that seasonal peat MC variations, which are 
influenced by climate, determine the severity of smoulder
ing wildfires. 

Conclusions 

We integrated CA and field data to simulate flaming and 
smouldering wildfires in peatland at the field scale in KAPAS 
II, and for the first time, we considered temporal peat MC 
variations. We simulated a peatland wildfire that occurred 
in Borneo in September 2018 and found that within 90 days, 
54 ha of peat was affected by smouldering. When consider
ing a constant peat MC, the smouldering burned area was 
significantly underestimated (12 ha), emphasising the 
importance of temporal peat MC variations. 

We used KAPAS II to predict smouldering burned areas 
for fires that began in different months and years between 
2000 and 2019 (240 cases); each case simulates 90 days. 
The smouldering burned area varied significantly and ran
ged from 0 to 93.4 ha; the area was below 10 ha if the flames 
began during the wet season and above 40 ha if the flames 
began during the dry season. We found that the nucleation 
of smouldering hotspot by flames is crucial for determining 
overall damage to peatlands. Wet peat during the nucleation 
period prevents the formation of smouldering hotspots and 
greatly minimises the overall damage. 

In La Niña years, the smouldering burned areas are less 
than 10 ha throughout the year. In strong El Niño events, the 
smouldering burned area during the dry season would 

double compared with years without El Niño. For instance, 
in 2015 (a strong El Niño year), the smouldering burned 
area was 93 ha, whereas in 2001 (a year without El Niño), it 
was only 48 ha. These findings show that the significant 
seasonal peat MC variations, which are affected by climate, 
greatly determine the extent of smouldering wildfires. The 
modelling methods presented in this study provide a tool for 
predicting wildfire spread in peatlands, allow faster-than- 
real-time simulations, inform peatland management and 
thus can contribute to the mitigation of carbon emissions 
and haze-related adversities resulting from wildfires. 
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Appendix   

Ellipse parameters 

The formulation of the ellipse perimeter used in the model to estimate the effect of wind on flames (Eqn 3) is shown below:  
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where rL is length to breadth ratio, rH is head to back ratio, and U is wind speed. 

Recursive burning rule of flaming wildfires 

The cells with FV states transition to become either EP or SP after several time steps. If the transition happens after too few 
time steps, the spread of the flaming wildfire is not sustained, whereas if the transition happens after too many time steps, the 
flaming wildfires are sustained for too long, which violates the observed phenomena. We found that by using a probability of 
FV cells changing their state between 5Pf and 25Pf, flaming wildfires were sustained but not for too long. The long-sustained 
flaming wildfires are indicated by a wide flaming vegetation front. We determined that this width is less than 10 cells. This 
value was selected based on the width that facilitated a continuous flaming vegetation layer. With less than 10 cells flaming 
vegetation width, the perimeter of the flaming vegetation is disconnected at several locations, which correspond to the 
unburned vegetation. Therefore, once the width of flaming vegetation layer exceeds 10 cells, the flaming wildfire can be 
considered as being sustained for too long. Between 5Pf and 25Pf, the value of φ to maintain the accuracy of the model 
against Rothermel model calculations does not significantly change. Therefore, we selected the middle value, in which the FV 
cells transition to either EP or SP at the subsequent time step with a probability of 15Pf. However, this value changes to 
become 15Pfexp(0.2σ) when there is rain, where σ is precipitation, as adapted from Alexandridis et al. (2011).     
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Table A1. Values of input parameters used to calculate flaming spread rate of three surface vegetation classes present in the landscape under 
study.      

Input parameters Dry shrub Wet shrub Trees   

Particle surface area to volume ratio (1/m) 4921 4921 4921 

Oven-dry fuel loading (kg/m2) 0.45 0.45 0.89 

Fuel depth (m) 0.61 0.61 0.71 

Fuel MC 0.2 0.23 0.2 

Oven-dry particle density (kg/m3) 512 512 512 

Particle total mineral content 0.0555 0.0555 0.0555 

Particle low heat content (kJ/kg) 18 608 18 608 18 608 

MC of extinction 0.3 0.3 0.3 

Particle effective mineral content 0.01 0.01 0.01   
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Fig. A1. (a) Comparison of flaming spread rate with different wind speed between the Rothermel model and the KAPAS II simulations at 
different spatiotemporal resolutions (λ). (b) Comparison of smouldering spread rate with different moisture content between the experiments 
of  Huang et al. (2016),  Prat-Guitart et al. (2016) and the KAPAS II simulations at different spatiotemporal resolution (λ).  
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Fig. A2. Examples of the gravimetric MC of peat in Borneo in different years, as simulated with the model proposed by  Apers et al. (2022). 
Each bar represents the average peat MC in 1 month. The El Niño event that occurred in the year 2015 is clearly reflected in the low MC values 
identified during the dry season, as shown with green bars.  
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