Quantifying imperfect camera-trap detection probabilities: implications for density modelling

T. McIntyreA,B,E, T. L. MajelantleB, D. J. SlipC,D and R. G. HarcourtD

ADepartment of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida, 1710, South Africa.

BMammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.

CTaronga Conservation Society Australia, Bradley’s Head Road, Mosman, NSW 2088, Australia.

DMarine Predator Research Group, Department of Biological Sciences, Macquarie University, North Ryde, NSW 2113, Australia.

ECorresponding author. Email: trevmcnt@gmail.com
Figure S1: Predicted detection probabilities (model 1) in relation to distance from camera trap for individual camera traps.
Figure S2: Predicted detection probabilities (model 1) in relation to animal model movement speed for individual camera traps.
Figure S3: Predicted detection probabilities (model 1) in relation to differences between ambient temperature and model surface temperature (Δtemp) for individual camera traps.
Figure S4: Relationship between temperatures recorded by camera traps and ambient temperature simultaneously (and independently) recorded using a Eutech EcoScan Temp 6 thermoprobe (Thermo Fisher Scientific Inc.).