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Ground-based counting methods underestimate true numbers
of a threatened colonial mammal: an evaluation using drone-
based thermal surveys as a reference
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ABSTRACT
For full list of author affiliations and
declarations see end of paper Context. Accurate and precise monitoring practises are key for effective wildlife conservation

management; providing reliable estimates of spatiotemporal changes in species abundance on
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which sound decision-making can be based. Advancements in drone and satellite technology areEliane D. McCarthy
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trees, where they are difficult to census accurately and precisely by human observers. Globally,
35 of the 64 flying-fox species are listed as threatened under the IUCN Red List of ThreatenedHandling Editor:

Aaron Wirsing Species, and reliable monitoring methods are needed for the effective management of this
ecologically important group. Aims. Recently, we showed that drone-acquired thermal imagery
can be used to count flying-foxes in their roost with high accuracy and precision. In the present
study, we aimed to assess the accuracy and precision of whole colony counts derived from
ground-based counting methods against reference counts derived from drone-acquired thermal
imagery. Methods. We evaluated the relationship between ground-based counts by two groups
of human observers to highly accurate and precise counts derived from drone-acquired thermal
orthomosaics for 25 counts conducted across seven flying-fox roosts throughout the Greater
Sydney region, Australia. Key results. We found that ground-based counts by human observers
were positively correlated with those obtained from concurrent drone-acquired thermal
imagery. However, drone-acquired estimates of colony size were 2.05 and 1.92 times higher than
ground-based counts by the experimenter and Australian government counters respectively. When
compared against drone-acquired reference counts, the precision (coefficient of variation) of
ground-based counts was 26.3% when conducted by a single counter and 55.1% when conducted
by multiple counters. Conclusions. Our research indicates that ground-based counting methods
underestimate true population sizes by substantial margins and have limited precision. Drone-based
monitoring provides highly accurate and precise population estimates, and thus is expected to yield
more reliable information on flying-fox abundance and allow for trends to be established over
shorter timescales. Implications. Using ground counting methods alone, population trends can
only be established with significance after protracted periods of monitoring. Incorporating the
use of thermal drones into current monitoring practises would enhance the capacity to detect
population trends earlier and more accurately, so that conservation management can more
effectively respond.
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species over time can elucidate trends and alert researchers 
and policy makers to species declines, so that conservation 
measures can be taken (Goldsmith 1991; Sutherland 2006; 
Westcott et al. 2012; Woinarski 2018). However, population 
survey methods are subject to many sources of error, 
including but not limited to site accessibility (Wagner 1981; 
Reddy and Dávalos 2003), animal detectability (Otto and 
Pollock 1990), and between-observer variability (Erwin 
1982). A fundamental limitation of imprecise counting 
methods is the potential failure to detect changes in species 
population trajectory, potentially with detrimental implica-
tions for species conservation and management (Elphick 
2008; McKelvey et al. 2008; Martin et al. 2012). 

With populations of known size, researchers have 
previously been able to test the accuracy and precision of 
ground-based observer methods (Elphick 2008). For 
example, using a physical model of a wading bird colony it 
was found that observer counts were 29% lower than true 
counts on average, and undercounting occurred for 81% of 
estimates, with high variation between and within individual 
counters, irrespective of experience (Frederick et al. 2003). 
Conversely, distance sampling methods have been shown 
to produce large positive biases in predicted population 
density as a result of counting errors (Alldredge et al. 
2008). Therefore, emerging technologies are increasingly 
being employed with the aim to collect more accurate and 
precise wildlife monitoring data (Fretwell et al. 2012; 
Cilulko et al. 2013; Wich and Koh 2018). 

Thermal cameras detect radiation emitted by animals 
in the thermal infrared region of the electromagnetic 
spectrum, and infrared technology has been used for remotely 
censusing animals for more than half a century (Croon et al. 
1968). Advances in infrared technology and improvements 
in the resolution and portability of thermal cameras allow 
for surveillance of increasingly smaller animals and for 
surveys to be conducted further from target species, minimis-
ing disturbance (Cilulko et al. 2013; Chabot and Bird 2015). 
Infrared population surveys have now been conducted for 
many species, such as elk (Cervus elaphus) (Dunn et al. 
2002), using thermal sensor equipped manned aircraft, and 
the greater glider (Petauroides volans) (Vinson et al. 2020) 
and Brazilian free-tailed bats (Tadarida brasiliensis) (Betke 
et al. 2008) using ground mounted thermal sensors. 

Remotely piloted aircraft systems (RPAS; hereafter 
‘drones’) equipped with thermal sensors enable researchers 
to collect high resolution imagery closer to target animals 
than is possible by piloted aircraft (Anderson and Gaston 
2013). Population counts conducted from drone-acquired 
imagery in the visible spectrum have been shown to be more 
accurate and precise than ground counts of target species 
(Hodgson et al. 2018; Witt et al. 2020). Drones equipped 
with thermal sensors have been used to monitor mammal 
species such as grey seals (Halichoerus grypus) (Seymour 
et al. 2017) and common hippopotami (Hippopotamus 
amphibius). In Australia, drones have been used to monitor 

the arboreal koala (Phascolarctos cinereus) (Witt et al. 
2020; Beranek et al. 2021). Importantly, these studies show 
that drone-based thermal surveys can improve the detection 
and quantification of less conspicuous and inaccessible 
animal populations. 

The family Pteropodidae comprises approximately 
200 Old-World fruit bat species, distributed throughout 
Africa, the eastern Mediterranean, south and southeast 
Asia, Australia and the Pacific Islands (Simmons 2020). 
Within these regions, species in this family perform key 
roles as pollinators and plant propagators (Fujita and Tuttle 
1991; Aziz et al. 2021). One hundred and nine of the 
species in the Pteropodidae family are considered threatened 
or data deficient according to the IUCN Red List of Threatened 
Species (International Union for Conservation of Nature and 
Natural Resources (IUCN) 2020). Threats are wide ranging 
and include overhunting (Mildenstein et al. 2016), climate 
change (Welbergen et al. 2008; Dey et al. 2015) and habitat 
loss (Mohd-Azlan et al. 2001). Within the Pteropodidae, 
flying-foxes of the genus Pteropus tend to rest by day in 
arboreal roosts that may contain colonies of many thousands 
of individuals (Hall and Richards 2000) with complex social 
dynamics and architecture (Welbergen 2005; Klose et al. 
2009a, 2009b). However, due to the physical structure and 
inaccessibility of their roosts, flying-fox colonies are difficult 
to survey with accuracy and precision (Westcott et al. 2015). 
This is important as 35 of the 64 Pteropus species globally 
are listed as threatened with extinction (International 
Union for Conservation of Nature and Natural Resources 
(IUCN) 2020). 

In mainland Australia, the grey-headed flying-fox 
(Pteropus poliocephalus) and the spectacled flying-fox 
(Pteropus conspicillatus) are listed respectively as ‘Vulnerable’ 
and ‘Endangered’ on the IUCN Red List and under the Australian 
Environment Protection and Biodiviersity Conservation 
Act 1999 (Commonwealth of Australia Department of 
Environment and Energy 2019a; Roberts et al. 2020; Eby 
et al. 2021). Like some other Pteropus species, the grey-
headed and spectacled flying-fox can now increasingly be 
found in urban and peri-urban habitats (Tait et al. 2014; 
Meade et al. 2021; Timmiss et al. 2021; Yabsley et al. 2021), 
which exposes them to a range of novel threats including 
human-wildlife conflict, electrocution on power  lines  and  
entanglement in fruit tree netting in gardens (Mo et al. 
2021). Australian flying-foxes are also susceptible to 
extreme heat stress events, notably, an extreme heat event 
in November 2018 that killed ~23 000 spectacled flying-
foxes, representing approximately one-third of the species’ 
population in Australia at the time (Mao 2019). Given the 
threats to and status of Pteropus species in Australia and 
elsewhere, rigorous long-term population monitoring is 
warranted. 

It is well established that the various ground based flying-
fox counting methods have their limitations. By comparing 
live fly-out counts to reference counts from slowed down 
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recorded footage of fly-outs, research has shown that 
fly-out counter error decreases with observer experience, 
and increases with increasing width, speed and number of 
animals in fly out  streams  (Westcott and McKeown 2004; 
Forsyth et al. 2006). Furthermore, live fly-out counts can 
both under and overestimate the true number of animals 
in a fly-out stream (Forsyth et al. 2006). To date, there has 
been less focus on evaluating the sources of error for 
ground counting, especially considering no methods are 
currently available for determining the true abundances of 
flying-foxes in their roosts. Prior work acknowledges that 
ground counts can be impractical if the colony is 
inaccessible or situated in dense vegetation (Eby et al. 
1999). Furthermore, counters passing through the colony 
conducting ground counts are known to cause a high 
degree of disturbance to flying-foxes, which would also 
affect ground count accuracy (Westcott et al. 2011). 
Despite this, ground and fly-out counts remain widely 
used for flying-fox population monitoring. 

Australia’s National Flying-Fox Monitoring Program 
(NFFMP), is a government-run programme that aims to 
survey all known flying-fox roosts quarterly to generate 
population estimates, by either ground or fly-out counts, to 
establish long term population trends, particularly of the 
grey-headed and spectacled flying-fox (Westcott et al. 
2015). While data collected quarterly under the NFFMP do 
not provide accurate estimates of the absolute national 
population sizes of the species, they are meaningful 
indicators of long-term population trends. Nevertheless, 
limited precision, combined with the low quarterly survey 
rates and overall inconsistency in survey efforts, means that 
population trends can only be established with significance 
after many years of monitoring (e.g. Westcott et al. 2012) 
limiting the capacity for conservation management to 
respond quickly and proactively to threats. 

Recently, a method was developed for quantifying the 
abundance of flying-fox in their colonies, through counting 
individuals in drone-acquired thermal orthomosaics 
(McCarthy et al. 2021).  The method was  shown to yield  
highly accurate and precise estimates of flying-fox 
abundance at roosts, and without significant effects of 
between-observer variability (McCarthy et al. 2021), thus 
potentially greatly enhancing the capacity for monitoring to 
detect significant population trends over shorter timeframes. 
In  the present  study  we  use colony size estimates  obtained  
from drone-acquired thermal orthomosaics as a reference 
to assess the accuracy and precision of ground counts 
conducted by the experimenter as well as by NFFMP 
counters over 13 months. By directly comparing paired 
sets of ground counts to highly accurate and precise 
reference counts derived from drone-acquired thermal 
orthomosaics, we measure the error associated with 
ground counts. 

Materials and methods

Study area

This study was conducted within the Greater Sydney Region 
in south-eastern Australia (Fig. 1). The remnant vegetation 
within this urban/peri-urban area consisted mainly of 
Eucalypt open forests and woodlands, with an understory of 
grass, shrubs, ferns, and herbs (Geoscience Australia 2001). 
This region comprises approximately 30 known flying-fox 
roosts (Commonwealth of Australia Department of 
Environment and Energy 2019b) that were continually or 
periodically occupied by the grey-headed flying-fox, the 
black flying-fox (P. alecto) and the little-red flying-fox 
(P. scapulatus) (E. McCarthy, Western Sydney University, 
personal observation). Within the study area, the grey-
headed flying-fox is the most common species by far but 
black flying-foxes (Pteropus alecto) and little red flying-
foxes (Pteropus scapulatus) can be present as well. 

Drone survey procedure

A DJI Inspire 1 ver. 2.0 drone (DJI, Shenzhen, China) 
equipped with Zenmuse XT 19 mm radiometric thermal 
camera (DJI, Shenzhen, China) was used to conduct all 
surveys. The drone was fitted with one lithium polymer 
battery (TB48, 130.0 Wh), giving a maximum flight 
duration of approximately 15 min. The FLIR longwave 
infrared thermal sensor in the Zenmuse XT has a sensitivity 
of 50 mK @nf/1.0 at a resolution of 640 × 520 pixels. 

For this study, flying-fox roosts were selected based on the 
airspace regulations for flying drones, their accessibility for 
safe flights (the drone needed to be visible at all times 
while in flight, in keeping with Australian regulations), and 
access for ground counting. Colony-wide drone surveys 
were conducted between October 2019 and August 2020 at 
seven roosts including: Camellia Gardens (n = 3 surveys), 
Campbelltown (n = 5), Emu Plains (n = 2), Kareela (n = 5), 
Macquarie Fields (n = 2), Warriewood (n = 1), and 
Yarramundi (n = 7) (shown in Fig. 1; exact locations given 
in Supplementary material Table S1). These roosts were 
predominantly inhabited by grey-headed flying-foxes but 
have been known to have lower numbers of black flying-
foxes and little red flying-foxes (Commonwealth of Australia 
Department of Environment and Energy 2019b). 

All flights were mapped in the Pix4D Capture iOS 
application (Pix4D, 2017) prior to flight. Flight plan mapping 
was conducted on location, after a visual inspection of the 
extent of the flying-fox colony. Drone surveys commenced 
in the early morning, between 0 and 2 h after sunrise, with 
air temperature ranging between 10.3 and 24.3°C (median 
air temperature was sourced from nearest weather station; 
Bureau of Meteorology 2020), in low wind conditions 
(<10 km/h; data sourced from nearest weather station). 
The drone was launched from a cleared area, at a minimum 
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Fig. 1. (a) Locations of known grey-headed flying-fox colonies along the east coast of Australia (blue points), and locations of colonies
that were surveyed in this study (red points). Red box shows location of Sydney, Australia, where this study was conducted. (b) Locations of
known flying-fox colonies throughout the greater Sydney region (blue points), and colonies included in this study (red points). Colony
locations derived from Timmiss et al. (2021).

of 20 m from the colony, which caused no visible disturbance 
to the roosting flying-foxes. During flight, the drone flew at a 
speed of 2 m/s and captured images with a forward and lateral 
overlap of 90% in a lawnmower pattern. For larger colonies 
where the battery life of the drone was not sufficient to 
complete the entire survey on a single battery, the drone 
was returned to base and the batteries changed midway 
through the survey (up to five battery changes were 
required for colonies with a large area (up to ~1.5 ha), 
with changes taking <5 min each) after which the drone 
resumed the survey from the point at which the last thermal 
image was taken. Following drone surveys, all survey images 
were saved as radiometric JPEGs, with embedded EXIF 
data providing latitude, longitude, and altitude. Agisoft 
Metashape Professional ver. 1.5 was used to generate 

orthomosaics (Supplementary material Table S2; orthomosaics 
are viewable in Supplementary material 2, available at https:// 
figshare.com/s/00084845b1e3c628f9d4) (LLC Agisoft 2019). 
Flying-foxes in orthomosaics were then manually counted by 
the experimenter using Fiji 1.8.0_172 (Schneider et al. 2012; 
McCarthy et al. 2021). Previously, there was shown to be a 
high concordance between counts derived from drone-
acquired imagery and exhaustive visual counts of flying-
foxes in single trees, demonstrating the high accuracy of 
counts derived from drone-acquired imagery (McCarthy 
et al. 2021). Furthermore, the precision of counts from drone-
acquired thermal orthomosaics was very high (6.8 ± 6.0%; 
McCarthy et al. 2021). Therefore, for the purposes of the 
present study, the counts derived from thermal orthomosaics 
were assumed to provide ‘true’ counts of the number of 
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flying-foxes present in colonies, and counts derived from 
thermal orthomosaics were used as a reference to assess the 
accuracy and precision of ground counts. In addition, counts 
derived from thermal orthomosaics have been shown to be 
highly precise and not subject to observer bias (McCarthy 
et al. 2021); therefore, in the present study, a single trained 
observer conducted all counts of the number of flying-foxes 
in thermal orthomosaics. 

Animal ethics considerations

In this study, the drone was flown at a height at least 30 m 
above roosting flying-foxes over a period of up to 2 h for 
each survey, and our visual observations indicated that the 
presence of the drone did not disturb the roosting flying-
foxes. Prior to commencing surveys, we established a 
disturbance threshold, whereby if more than 20 individuals 
took flight for more than 1 min, we would end a survey. 
However, this threshold was never reached. During the 
surveys, flying-foxes remained where they were roosting 
while the drone flew above them, and did not seek to leave 
the roost or to relocate within the roost. 

Ground count procedure

In Australia, daytime ground counts were used to conduct 
94% the NFFMP quarterly counts between February 2018 
and February 2020 (A. McKeown, Commonwealth Scientific 
and Industrial Research Organisation, pers. comm.). Hence, 
the focus of our study was on assessing the performance of 
this method against counts from drone surveys. 

In each of the seven roosts, the experimenter conducted a 
ground count estimate of the total number of flying-foxes on 
the same day as each drone survey, replicating the procedures 
routinely performed by NFFMP counters. Ground-based 
counts are necessarily not exhaustive, as roosts are made up 
of 10–100 of trees over a large area (ranging from 0.13 to 
1.48 ha in this study; Supplementary material Table S1) 
with many roosting individuals obscured by foliage; 
and exhaustive, single tree based counts as conducted by 
McCarthy et al. (2021), are generally not an option for 
NFFMP counters due to time and accessibility constraints 
and the risk of disturbing roosting individuals. Therefore, 
ground based counts rely on counters extrapolating an 
estimate for the total number of individuals in a colony, as 
described below. For the Camellia Gardens colony, where 
flying-foxes exhibited a high tolerance to human presence, 
the experimenter slowly walked through the accessible 
areas of the colony counting all visible individuals, 
recording each lot of 10 sighted individuals using a hand 
tally counter. All other roosts were either difficult to access 
or entering would have caused a high degree of disturbance 
to the colony of flying-foxes. Therefore, for these roosts, 
whole or part of the colony boundary was traversed, and 
counts were performed from positions where animals were 

visible. Following this, the proportion of the colony area 
surveyed was estimated, and a figure for the total number 
of flying-foxes in the roost extrapolated based on the partial 
count for the colony and the area which was not visible. 
Note, this is one of the formal counting methods used 
routinely as part of the NFFMP (Westcott et al. 2011). 

For 16 of the 25 surveys, within 7 days (average 2 days) 
of each drone survey and accompanying ground count by 
the experimenter, another ground count was conducted as 
part of the NFFMP quarterly counts (NFFMP surveyed 
colonies listed in Supplementary material Table S1; 
Westcott et al. 2015). Of the 16 NFFMP counts which 
contributed to this study, five counters conducted to these 
counts. 

Statistical analyses

All statistical analyses were two-tailed, employed an α value 
of 0.05, and were conducted in R (R Core Team  2018) 
interfaced via RStudio Desktop (v. 1.2.5042). General 
linear mixed models (GLMMs) were constructed using the 
nlme package (Pinheiro et al. 2022). All models had a 
Gaussian distribution and were fitted with an identity link 
function. We standardised response and predictor variables 
using the standardise function in the arm package (Gelman 
2008; Gelman et al. 2021). First, GLMMs were fit to  
determine the relationship between colony size estimates 
from drone-acquired orthomosaics (reference counts) and 
ground counts conducted by the experimenter and NFFMP, 
to determine the accuracy of ground counts. Two GLMMs 
were fit with (1) the experimenter ground count, and (2) 
NFFMP ground count as the response variable in each 
model, and thermal image point count as the fixed effect. 
Both models had roost ID (colony location) as a random 
effect. For each model, the effect of the response variable 
was tested through a likelihood ratio test (ANOVA). The 
significance of the random effect was tested through 
parametric bootstrapping with one thousand iterations. 
For GLMM 2), we conducted the analysis both with and 
without an extreme outlier, the Emu Plains NFFMP ground 
count from 24 February 2020, where the drone-acquired 
thermal orthomosaic count was 21.4 times higher than 
the corresponding NFFMP ground count. To provide a 
measure of precision for the ground counts, the coefficient 
of variation (CV) of the response variable was calculated 
for each model, using the sjstats package (Lüdecke 2019). 

Then, we assessed the relationship between ground counts 
by the experimenter and ground counts by NFFMP counters, 
by fitting a GLMM with NFFMP ground count as the response 
variable, and experimenter ground count as a fixed effect, 
with roost ID as a random effect. 

This research was approved by Western Sydney University 
Animal Research Authority no. A12217 and NPWS scientific 
licence SL102047. 
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Results

The numbers of flying-foxes counted roosting in colonies 
ranged between 550 and 7290 individuals for those 
counted by the experimenter, and between 530 and 7670 
for those counted by NFFMP counters. The numbers of 
flying-foxes counted roosting in these colonies from drone-
acquired thermal orthomosaics ranged between 1115 and 
12131 (Supplementary material Table S1, see Fig. S1 for an 
example of a thermal orthomosaic output). 

Whole colony ground counts by the experimenter were 
positively correlated with counts from drone-acquired 
thermal orthomosaics (GLMM: F1,17 = 50.61, P < 0.001, 
marginal R2 = 0.60, n = 25; Fig. 2a). Counts from drone-
acquired thermal orthomosaics were higher than ground 
counts conducted by the experimenter in 22 of 25 
comparative counts for an average 2.05 times higher than 
ground counts conducted by the experimenter. The random 
effect, roost ID, explained significant variation in counts 
from drone-acquired thermal orthomosaics (P = 0.009). 
The CV (precision) of the experimenter’s ground counts as 
assessed against counts from drone-acquired thermal 
orthomosaics was 26.3%. 

Whole colony ground counts by the NFFMP counters were 
also positively correlated with counts from drone-acquired 
thermal orthomosaics (GLMM: F1,9 = 14.51, P = 0.002, 
marginal R2 = 0.50, n = 15; Fig. 2b). Counts from drone-
acquired thermal orthomosaics were higher than NFFMP 
ground counts in 13 of 16 comparative counts for an average 
1.92 times higher than NFFMP counts overall (excluding the 

24 February 2020 Emu Plains outlier). The random effect, 
roost ID, did not explain significant variation in counts 
from drone-acquired thermal orthomosaics (P = 0.895). 
The CV of NFFMP ground counts as assessed against counts 
from drone-acquired thermal orthomosaics was 55.1%. 
When we included the outlying NFFMP count of the Emu 
Plains colony on the 24 February 2020 (see Methods), 
NFFMP ground counts were no longer significantly correlated 
with counts from drone-acquired thermal orthomosaics 
(F1,9 = 3.20, P = 0.073 marginal R2 = 0.18, n = 16; 
Supplementary material Fig. S2) and the CV of NFFMP 
ground counts was 78.5%. 

Whole colony ground counts by the experimenter and 
by NFFMP counters were positively correlated (GLMM: 
F1,9 = 9.46, P = 0.004, marginal R2 = 0.39, n = 16; 
Supplementary material Fig. S3). The random effect, roost 
ID, did not significantly explain variation in counts from 
drone-acquired thermal orthomosaics (P = 0.999). 

Discussion

In this study we compared accurate and precise flying-fox 
colony size estimates derived from drone-acquired thermal 
imagery to results from ground-based counts by human 
observers to assess the accuracy and precision of routinely 
performed ground-based counts. We found that drone-
acquired estimates of colony size were approximately twice 
as large as those from ground-based counts, indicating 
that ground-based counting methods tend to severely 

Fig. 2. Comparison of grey-headed flying-fox ground counts conducted by the experimenter (a) at seven roosts (n= 25) and theNational
Flying-Fox Monitoring Program and (b) at five roosts (n = 15), both are compared to concurrent counts derived from drone-acquired
thermal orthomosaics. Grey shaded area indicates standard error. Blue lines show fits from linear models. Black lines are lines of equality.
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underestimate true population sizes. In addition, ground-
based estimates had limited precision, and more so when 
they involved multiple human counters, implying that with 
ground counting methods, population trends can only be 
established with significance after protracted periods 
of monitoring. Our findings are important as the sound 
management and conservation of the world’s threatened 
pteropodid species are critically dependent on rapid and 
reliable information about trends in populations. 

Daytime ground counts are currently recommended as one 
of the preferred methods for monitoring and quantifying 
flying-fox colony size in Australia (Westcott et al. 2015) 
and globally (Worthington et al. 2001; Cousins and Compton 
2005; Rahaingodrahety et al. 2008; Chaiyes et al. 2017; 
Manandhar et al. 2018; Sharma and Rai 2020). However, 
the accuracy of ground counts was hitherto unknown 
(Westcott et al. 2015) because no methods were available 
for determining the true abundances of flying-foxes in 
their roosts to assess the accuracy of the counts against. 
Recently, McCarthy et al. (2021) showed that the number 
of flying-foxes observed in drone-acquired thermal imagery 
provides highly accurate quantification of the true abundance 
of flying-foxes in single roost trees, and by extension, roost 
sites as a whole. In our present study, we found that 
while ground counts by both the experimenter and NFFMP 
counters were positively related to drone-based counts, 
when assessed against drone-based counts, neither gave 
accurate estimates of the number of individuals present 
(Fig. 2a, b). We found that colony size estimates from 
thermal orthomosaics averaged approximately two times 
higher than ground counts conducted by the experimenter 
and NFFMP counters. Considering colony counts derived 
from drone-acquired thermal orthomosaics as ‘true’ counts, 
this indicates that population estimates based on ground 
counts at roosts underestimate the true size of the species 
population by substantial margins. 

The most recently available population estimate of the 
grey-headed flying-fox in Australia is 467 000 individuals 
(November 2019), estimated mainly through ground 
counts (Commonwealth Scientific and Industrial Research 
Organisation (CSIRO) 2019). In contrast, when using the 
parameter estimates obtained from our models (Fig. 2a, b), 
we predict the abundance of the species to be between 
684 812 and 1 205 524 (±95% CI; x̄ = 873 860) from 
experimenter counts, and between 643 685 and 2 012 248 
(±95% CI; x̄ = 972 321) from NFFMP counts (see 
Supplementary material Item S1). Importantly, the grey-
headed flying-fox is listed nationally (Australian Government 
Department of Agriculture, Water and the Environment 2020) 
and internationally (Eby et al. 2021) as  ‘vulnerable to 
extinction’ because of ‘continuing population decline’. While 
our study indicates that ground-based counting methods 
underestimate the true size of the grey-headed flying-fox 
population, colony counts derived from drone-acquired 
thermal imagery are still positively correlated with ground 

counts, meaning the ground counting method is still able to 
capture population trends, Therefore, any conclusions about 
the species’ continuing population decline remain unaffected. 
Thus, care should be taken in interpreting our findings in the 
context of the conservation status of flying-foxes. 

Lack of precision in animal counting due to between-
observer variability and other factors is well documented 
(Harris and Lloyd 1977; Erwin 1982; Short and Bayliss 
1985; Forsyth et al. 2006; Hanger et al. 2017), but is 
problematic because it hampers the ability for conservation 
management to quickly detect and respond to population 
declines (Elphick 2008). In this study, precision (CV) of 
ground counts as assessed against the counts from drone-
acquired thermal orthomosaics was 26.3% for single-
observer ground counts and 55.1% (78.5% with outlier) for 
multiple-observer NFFMP counts. Due to limited precision 
of the NFFMP ground count methodology, the time taken to 
reach 80% statistical power in detecting rates of population 
declines that would warrant listing under Australia’s 
Environment Protection and Biodiversity Conservation Act 
1999 and IUCN’s Red List Criteria, has previously been 
modelled to be ~13.5 years (Westcott et al. 2012). 
However, here the authors assumed a very high baseline 
precision (CV) for ground counts of 10%. Clearly, the much 
lower precision for ground counts reported in our study 
would substantially extend the time by which declines 
could be detected with significance. Subsequent to their 
study, Westcott et al. (2015) reported a precision of ground 
counts (defined as the absolute difference between counts 
expressed as a percentage of the mean) of 28 ± 21% 
(mean ± s.d.). In contrast, the CV of counts from drone-
acquired thermal orthomosaics has previously been shown 
to be much lower at 6.8 ± 6.0%, meaning they have higher 
precision (McCarthy et al. 2021), and hence the drone-
based method can detect more subtle fluctuations in true 
colony size than ground count methods allowing conservation 
practitioners to detect population trends with significance 
over shorter timeframes, and so respond with greater 
immediacy to threats. 

While drone-acquired thermal imagery provides highly 
accurate and precise estimates of flying-fox numbers at a 
roost, there is likely to remain a need for ground-based 
counts in the foreseeable future. Importantly, more research 
is needed to understand the sensitivity of flying-foxes to 
drones. While in our study flying-foxes did not visibly react 
to the drone, responses may be species-specific, and/or 
dependent on other external factors such as overall levels 
of human disturbance, including from hunting. Also, the 
accuracy of drone-based counts has yet to be assessed 
particularly in more tropical locations where higher 
temperatures and vegetation densities may adversely affect 
the detectability of animals in drone-derived thermal 
imagery (Kays et al. 2019; McCarthy et al. 2021), so the 
effectiveness of drone-based counts under such conditions 
remains unproven. In addition, drone-acquired imagery 
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does not yet allow the identification of flying-fox species (or 
sex or age). Mixed species roosting occurred in 62% of the 430 
flying-fox roosts monitored as part of the NFFMP (Timmiss 
et al. 2021), and the relative presence of different species 
can be dynamic (Welbergen 2005; Westcott et al. 2015). 
Thus, ground truthing via visual surveys remains essential 
to ensure that population estimates are species specific. 
Finally, given the extreme mobility of flying-foxes among 
roosts (Welbergen et al. 2020), to obtain meaningful 
population estimates, roosts must be surveyed within a 
short period (days) across the species range, requiring a 
fleet of drones and skilled drone pilots to be deployed at 
a landscape scale, which may be prohibitively expensive, 
especially in developing countries where most of the world’s 
flying-foxes occur. Alternatively, drone-acquired colony size 
estimates could be used to periodically calibrate ground 
count accuracy, as has been suggested for other species, 
such as turtles (Dunstan et al. 2020). Drone-acquired colony 
size estimates could also be used to benchmark the 
accuracy of automated counts obtained from weather radar 
data, which could then in principle generate accurate daily 
estimates of the numbers of flying-foxes in roosts (Meade 
et al. 2019). In summary, drone based-monitoring practises 
have their limitations and can only supplement rather than 
supplant current monitoring practises. 

More than half of the members of the Pteropodidae 
family and of the Pteropus genus are listed as threatened, 
and reliable monitoring of their population trends is essential 
for facilitating sound conservation actions (International 
Union for Conservation of Nature and Natural Resources 
(IUCN) 2020). Drone-based monitoring can yield both more 
accurate and precise colony size estimates than ground-
based counting methods, and as such, incorporating the use 
of drones into current monitoring practises would enable 
conservation practitioners to respond with greater immediacy 
and so more effectively to population declines. Thus, while 
drones currently cannot fully replace traditional monitoring 
practises, we anticipate that they will soon help set a new 
standard for evidence based conservation and management 
of these ecologically important threatened species. 

Supplementary material

Supplementary material is available online. 
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