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and Holly SittersC   

ABSTRACT 

Context. Monitoring spatial and temporal change in relative abundance using statistically 
powerful designs is a critical aspect of wildlife management. Many indices of relative abundance 
are available, but information regarding their influence on statistical power is limited. Aims. We 
compared the statistical power associated with occurrence-based and frequency-based indices 
derived from faecal pellet counts and camera trapping to detect changes in the activity of five 
mammalian herbivores. Methods. We deployed camera traps and counted faecal pellets in native 
vegetation subjected to four management treatments in south-eastern Australia. We used 
simulation coupled with generalised linear mixed models to investigate the statistical power 
associated with a range of effect sizes for each combination of species, survey method and data 
type. Key results. The index derived from camera frequency data provided the greatest 
statistical power to detect species’ responses and was the only index capable of detecting 
small effect sizes with high power. The occurrence index from camera trapping did not provide 
the same level of statistical power. Indices derived from faecal pellet frequency data also detected 
spatial and temporal changes in activity levels for some species, but large numbers of plots were 
required to detect medium to large effect sizes. High power to detect medium to large effects 
could be achieved using occurrence indices derived from pellet presence–absence data, but 
required larger sample sizes compared to the camera frequency index. Conclusions. Both 
camera trapping and pellet counts can be applied to simultaneously monitor the activity of 
multiple mammalian herbivore species with differing activity patterns, behaviour, body size and 
densities, in open and closed habitat. However, using frequency indices derived from camera 
trapping may improve management outcomes by maximising the statistical power of monitoring 
programs to detect changes in abundance and habitat use. Implications. Frequency indices 
derived from camera trapping are expected to provide the most efficient method to detect 
changes in abundance. Where the use of cameras is cost prohibitive, occurrence indices derived 
from pellet presence–absence data can be used to detect medium to large effect sizes with high 
power. Nonetheless, the cost-effectiveness of camera trapping will improve as equipment costs 
are reduced and advances in automated image recognition and processing software are made.  

Keywords: Axis porcinus, cost-effective, Macropus giganteus, mammal, management, monitoring, 
Oryctolagus cuniculus, sampling methods, survey methods, Vombatus ursinus, Wallabia bicolor. 

Introduction 

Efficient and reliable methods to monitor spatial and temporal changes in wildlife 
populations are essential to inform and evaluate management decisions (Månsson et al. 
2011) and increasingly, these methods need to be applied in multi-species assemblages 
(Pfeffer et al. 2018). Simple indices that reflect a change in abundance can be useful for 
wildlife management, but choices need to be made about which of the alternative indices 
to use (Engeman 2005). Selection of the most appropriate index can be informed by a 
formal evaluation of the efficacy and efficiency of candidate methods in the context of 
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management objectives and resources (Garden et al. 2007;  
Månsson et al. 2011; Swan et al. 2014; Seidlitz et al. 2021). 

Indices based on non-invasive sampling methods enable 
monitoring of animals that are difficult to capture or detect, 
occur at low densities, or occur in dense vegetation where 
direct counts are not feasible (Southwell 1989; O’Connell 
et al. 2011). Indices are commonly based on counts of 
animal sign (Caughley 1977) and faecal pellets are the 
most obvious sign of the presence of many species. The 
faecal pellet count method uses pellet density as an index 
of herbivore abundance and activity (Bailey and Putman 
1981). It can also provide an indicator of spatial or temporal 
habitat use, because pellet density is expected to be propor-
tional to the time spent in a habitat (Hannan and Whelan 
1989). Pellet count methods have been validated against 
known population densities for many species, revealing 
both linear and non-linear relationships (Barnes 2001;  
Hayward et al. 2005; Forsyth et al. 2007; McCann et al. 
2008; Rönnegård et al. 2008; Ariefiandy et al. 2013). Faecal 
pellet counts can be applied simultaneously to multiple 
species with differing activity patterns and behaviour (e.g.  
Lunney and O’Connell 1988), and are suitable for use over 
large areas in most habitats (Mayle et al. 1999). Compared 
with many other monitoring methods, pellet counts are 
considered to be relatively accurate (Dinerstein 1980;  
Bailey and Putman 1981), time efficient and cost effective 
(Caughley 1977), and are frequently used to derive abun-
dance indices for research and management (McCann et al. 
2008; Forsyth et al. 2012). 

An alternative sampling method is remote photography 
using camera traps (O’Connell et al. 2011). Camera traps 
contain heat and motion sensors that activate a camera 
when animal movement is detected (O’Connell et al. 
2011). Camera trap data can index changes in population 
abundance (Rovero and Marshall 2009; Bengsen et al. 2011;  
Latham et al. 2012), activity patterns (Hossain et al. 2016) 
and habitat use (Augustine 2004; Claridge et al. 2004). Like 
pellet counts, camera traps can simultaneously monitor 
multiple species (Wacher and Attum 2005) in many habitat 
types, under varied environmental conditions (Vine et al. 
2009). Camera traps are easy to use and, once deployed, do 
not require manual operation, allowing remote sampling 
over extended periods (Bridges and Noss 2011). Compared 
to a number of traditional methods, camera traps are rela-
tively effective at detecting mammal species (Silveira et al. 
2003; De Bondi et al. 2010; Paull et al. 2012; Swan et al. 
2014; Wearn and Glover-Kapfer 2019), and are increasingly 
used for population monitoring (Karanth et al. 2004; Nichols 
et al. 2011). Importantly however, camera trapping does not 
always outperform traditional survey methods, providing 
lower or similar probabilities of detection and estimates of 
species richness and composition for some faunal groups 
(Silveira et al. 2003; Gompper et al. 2006; Espartosa et al. 
2011; Seidlitz et al. 2021). Camera trapping also requires a 
substantial investment in equipment (Silveira et al. 2003) 

and time for post-processing of data (Latham et al. 2012) 
compared to traditional methods such as pellet counts. 

Studies comparing camera trapping and pellet counts for 
mammalian herbivores suggest that indices from the two 
methods can be correlated (Lucherini et al. 2009; Li et al. 
2014; Morgan et al. 2018a) but camera trapping can index 
activity in situations where pellet counts are too low to be 
useful (Kuijper et al. 2009), and can more accurately esti-
mate density (Roberts 2011). For carnivores, studies have 
demonstrated that camera and pellet-based indices of abun-
dance were correlated for some species (Garrote et al. 2014) 
but not others (Gompper et al. 2006), likely influenced by 
variation in factors such as densities, ranging behaviour and 
the ability to identify individuals (Barea-Azcón et al. 2007;  
Jhala et al. 2011). While these studies provide general 
support for agreement between camera and pellet-based 
indices, they are limited to a small number of species and 
environments. 

Assessment of the ability of monitoring methods to detect 
changes in animal populations also requires consideration of 
the type of data collected (Bengsen et al. 2014). Count data 
are common in ecological studies (Fordyce et al. 2011) and 
are used in wildlife monitoring to measure spatial and tem-
poral variation in abundance (Archaux et al. 2012). Faecal 
pellet indices are usually based on counts (Mayle et al. 
1999) and camera indices calculated as frequencies (e.g. 
counts of the number of observations standardised over 
time; Kawanishi et al. 1999; Negrões et al. 2010), but col-
lection of count data is resource intensive (Gompper et al. 
2006; Torney et al. 2019). An alternative is to collect species 
detection versus non-detection (i.e. presence–absence) data, 
which can be used to measure the probability of occurrence 
at a site. Presence–absence data are widely used for mon-
itoring (Wintle et al. 2005; Steenweg et al. 2016) and may 
be easier to collect than count-based data enabling improve-
ments in efficiency (Nichols et al. 2011). For example, in the 
context of remote camera surveys and faecal pellet counts, 
deriving presence–absence data sets removes the need to 
process all images or count all pellets, likely saving substan-
tial time and cost. Despite this there is little information 
about the relative performance of count and 
presence–absence data for monitoring abundance change. 

To ensure monitoring programs are rigorous and to opti-
mise return on effort and expenditure, it is essential to eval-
uate the capacity of monitoring methods to detect change 
(Smart et al. 2004; Field et al. 2007). However, little infor-
mation is available to compare the relative performance of 
indices from faecal pellet count and camera trapping meth-
ods, based on presence–absence and count data. We con-
ducted a field-based comparison of faecal pellet counts 
(both faecal accumulation and faecal standing crop) and 
camera trapping. Our objective was to compare the statistical 
power of these methods, using indices derived from both 
occurrence (presence–absence) and frequency (count) data, 
to detect spatial and temporal changes in the relative activity 
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levels of five mammalian herbivore species that differed in 
body size, behaviour, activity patterns and densities. 

Materials and methods 

Study area 

We conducted the study on Yanakie Isthmus (38°53′S; 
146°14′E), Wilsons Promontory National Park, Victoria, 
Australia. Indices of herbivore activity inform decisions regard-
ing management of grazing pressure at this site as part of an 
adaptive management approach to the restoration of Coastal 
Grassy Woodland invaded by a native woody shrub, coast tea- 
tree Leptospermum laevigatum (Morgan et al. 2018b). 

The study area consisted of 200 ha of Coastal Grassy 
Woodland containing dunes and inter-dune swales with an 
open structure. L. laevigatum biomass in the shrub and 
canopy layers had been reduced using mechanical slashing 
(Davis et al. 2016) 4 years prior to the study, and/or pre-
scribed burning in December 2012, 4 months prior to the 
study. The area also contained swales with a partially open 
structure, in which L. laevigatum was regenerating following 
prescribed burning 4 years prior to the study. 

We focussed on five mammalian herbivore species (eastern 
grey kangaroo Macropus giganteus, swamp wallaby Wallabia 
bicolor, common wombat Vombatus ursinus, hog deer Axis 
porcinus and European rabbit Oryctolagus cuniculus) that 
require monitoring to guide management of grazing impacts 
(Morgan et al. 2018b). These species differed in behaviour, 
activity patterns and body size (ranging from 1 kg to 45 kg;  
Menkhorst and Knight 2011) and densities (Davis et al. 2018). 

Experimental design 

We tested camera trapping and faecal pellet counts concur-
rently using the same experimental design and sampling 
locations to maximise comparability of data collected 
using the two survey methods. We counted pellets in circu-
lar 3-m radius plots (n = 201) to estimate faecal standing 
crop (FSC; Mayle et al. 1999) from 9 April to 2 June 2013, 
and simultaneously cleared pellets from plots in preparation 
for estimation of faecal accumulation rate (FAR; Mayle et al. 
1999). We conducted the FAR survey from 15 to 18 July, 
approximately 3 months after the mid-point of the plot 
clearance period, with the accumulation period for plots 
ranging from 80 to 97 days. We deployed cameras at a 
subset of the 3-m radius plots (n = 36) for the duration of 
the FSC and FAR survey periods (9 April–18 July). We 
placed cameras on the northern boundary of plots so that 
the detection zone encompassed most of the plot but moved 
cameras 5 m from the northern boundary if vegetation clip-
ping in the detection zone was required, to ensure that 
clipping did not interfere with the test of pellet counts in 
dense regrowth. 

We used both pellet counts and camera trapping to sample 
12 swales (0.18–4.18 ha; x̅ = 1.74 ha) separated by 
~0.05–2 km because managers aimed to restore open vege-
tation and were interested in monitoring herbivore responses 
to management interventions at this scale. To test monitoring 
methods in vegetation with varied structure, which we 
expected would result in spatial differences in herbivore 
activity, we sampled four treatments (three swales per treat-
ment): (1) slashed unburnt – swales opened by mechanical 
slashing alone; (2) slashed burnt 2012 – swales opened by 
mechanical slashing and burning; (3) unslashed burnt 2012 – 
swales opened by burning alone in 2012; and (4) unslashed 
burnt 2009 – swales opened by burning alone in 2009, but 
which had partially closed following vegetation regeneration 
(Fig. 1). All swales were flat to slightly undulating. Slashed 
unburnt swales were predominantly open in structure, with 
high (60–70%) ground layer vegetation cover and small 
patches of dead fallen L. laevigatum branches (20–30% 
cover). Slashed burnt 2012 swales were similarly open in 
structure with less (30–50%) ground layer vegetation cover, 
and the remainder of the ground surface was bare. Unslashed 
burnt 2012 swales were largely open but dominated by dense 
burnt L. laevigatum stems in places, the ground was predom-
inantly bare, and there was little (5–30% cover) ground layer 
vegetation. Unslashed burnt 2009 swales had dense ground 
(80–90%) and shrub (0.6–2 m; 40–90%) cover dominated by 
L. laevigatum. Vegetation cover values were estimated visu-
ally within each treatment. 

To select sampling locations within each swale we applied 
a 10-m buffer around swale boundaries to reduce edge effects, 
then randomly selected locations from 20-m grid intercept 
points generated by geographic information system (GIS) 
mapping. We allocated plots to swales in approximate propor-
tion to area: slashed unburnt (n = 50); slashed burnt 2012 
(n = 59); unslashed burnt 2012 (n = 60); and unslashed 
burnt 2009 (n = 32). For camera traps, we divided samples 
equally among swales (n = 9 per treatment) to ensure that 
each swale was sampled in the event of camera malfunction. 

Camera trapping 

We used Reconyx HC600 Hyperfire H.O. covert infrared 
cameras, which have passive infrared (PIR) capability to 
detect the difference between the ambient air temperature 
and the animal’s body temperature. We used a passive 
survey approach (i.e. no lure), so that herbivore behaviour 
was not altered (Meek et al. 2012). 

We standardised camera placement and settings to mini-
mise differential detection probabilities (O’Brien 2011) and 
maximise detection of target species. We mounted cameras 
on wooden stakes at a height of 50 cm, set horizontally with 
the PIR sensor aimed 6 m away at the smallest species core 
body zone (i.e. ~20 cm above the ground) (Meek et al. 
2012). Cameras were set to high sensitivity and three 
images per trigger with no delay, facing south to improve 
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image quality and prevent triggering by direct sunlight 
(Meek et al. 2012). 

To allow comparisons across open and closed habitats we 
standardised camera detection zone size by placing cameras 
on flat ground with a post 6 m in front of cameras to mark the 
limit of the detection zone. In addition, we clipped vegetation 
to 15 cm above the ground using a brush-cutter within the 
conical shaped detection zone extending 6 m in front of the 
camera and 40° either side of that central line of sight. 

For each day during the survey period, we recorded whether 
each camera detected the target species within the 6-m detec-
tion zone. For marsupials, we counted young-at-foot, but not 
pouch young, based on the assumption that only young-at-foot 
contribute directly to grazing pressure and because detectabil-
ity of pouch-young would be highly variable. 

Faecal pellet counts 

We used faecal accumulation rate (FAR) counts to reduce 
the lag between changes in animal activity and the ability of 

faecal pellet counts to detect that change (Davis and Coulson 
2016), and reduce bias associated with pellet decay 
(Campbell et al. 2004). In addition, we used faecal standing 
crop (FSC) counts, which can provide a precise index of 
changes in herbivore activity (Mayle et al. 1999). 

We counted individual pellets for the three marsupial 
species (eastern grey kangaroo, swamp wallaby, common 
wombat), given their small pellet group sizes and difficulties 
that can arise in distinguishing groups (Southwell 1989). We 
counted pellet groups for hog deer, because the number of 
pellet groups produced daily is a more reliable index of deer 
density than the number of individual pellets produced 
(Smith 1964), and counting is more efficient for species 
that deposit large numbers of small pellets. Following  
Hickling (1986), we defined hog deer pellet groups as ≥6 
pellets of the same defecation, with at least one visible 
above the ground litter. Rabbit pellets are also commonly 
deposited in groups, so we also applied this definition to 
rabbit pellet groups. If rabbit pellet groups could not be 
defined within latrines containing large deposits of pellets, 

(a) (b)

(c) (d )

Fig. 1. Photographs demonstrating treatment variation within the study site, Yanakie Isthmus, Wilsons Promontory National 
Park, Victoria, Australia, 2013: (a) slashed unburnt swales; (b) slashed burnt 2012 swales; (c) unslashed burnt 2012 swales; 
(d) unslashed burnt 2009 swales.    
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we approximated groups as consisting of c. 20 pellets (Davis 
and Coulson 2016). We counted pellet groups if >50% of 
pellets fell inside the plot (Mayle et al. 1999). 

We identified pellets based on size, shape and colour 
(Triggs 2003). We systematically searched plots for pellets 
by pushing the vegetation aside, but not disturbing the litter 
except to look for additional deer or rabbit pellets when one 
was visible above the litter (Hickling 1986). 

Statistical analyses 

We used faecal pellet and camera trapping data to index 
spatial and temporal changes in species activity. Two activity 
indices were derived from each method, using occurrence 
(presence–absence) and frequency (count) data (Table 1). 
Because statistical power to detect change is inversely related 
to the variance of the response variable, we undertook pre-
liminary analyses to explore the variance associated with 
different forms of the camera trapping frequency index, as 
numerous options exist (Burton et al. 2015). We selected a 
camera frequency index based on counts of the number of 
days on which each species was recorded as present as a 
proportion of the maximum number of survey days because it 
resulted in lower variance associated with outliers (large 
numbers of images at some plots) and overdispersion than 
did other options examined. Similar approaches using indices 
based on the number of days of detection have been applied 
by others (e.g. Geary et al. 2018; Nalliah et al. 2022). 

We compared indices using data collected during the 
same sampling periods because herbivore activity patterns 
may change seasonally. FSC counts were conducted at the 
end of autumn to predominantly reflect autumn activity 
levels (Davis and Coulson 2016), whereas FAR counts 
reflected winter activity levels. We then subsampled camera 
data from two 14-day survey periods and compared camera 
and FSC data collected in autumn between 9 April and 
2 June, and camera and FAR data collected in winter 
between 30 June and 18 July. 

We used generalised linear mixed models (GLMMs) and 
simulated datasets to investigate the statistical power asso-
ciated with a range of effect sizes for each combination of 
species, survey method and data type. Initially we built 
GLMMs for each species with treatment included as a fixed 
effect and swale specified as a random effect to accommo-
date variance associated with the spatial nestedness of the 
study design resulting from sampling of plots within swales 
(Zuur et al. 2009). We also included an individual-level 
random effect to correct for overdispersion where necessary 
(Zuur et al. 2009). Models of species’ occurrence and fre-
quency indices (Table 1) were applied with a logit link 
function and binomial errors, allowing us to standardise 
effect-size tests across all data types. The rabbit FSC fre-
quency index model failed to converge so we excluded it 
from the analysis. 

Power analyses were conducted in R version 3.6.3 
(R Core Team 2020) using the package simr, which calculates 
power for GLMMs using Monte Carlo simulation (Green and 
MacLeod 2016). Calculations involved three steps: (1) new 
response-variable values were simulated 1000 times based on 
the GLMM; (2) the model was fitted to the simulated response 
data; (3) a likelihood ratio test was applied to the simulated 
fit. The power estimate was derived from the number of 
successes and failures to detect a statistically significant effect 
(P ≤ 0.05) in step 3. 

For each combination of species, survey method and data 
type, we adjusted the effect size of interest using the fixef 
function in the simr package (Green and MacLeod 2016). 
Retrospective observed power calculations, where the target 
effect size is determined by the data, can generate misleading 
results (Hoenig and Heisey 2001), so we considered a range 
of ecologically plausible effect sizes representing small 
(0.10), medium (0.30) and large (0.50) differences in the 
probability of occurrence (occurrence indices) or proportions 
(frequency indices) (Table 2). Greater statistical power is 
required to detect a given effect size at the extreme ends of 
the binomial distribution (for example, a difference in the 

Table 1. Activity indices derived from faecal accumulation rate (FAR) counts, faecal standing crop (FSC) counts and camera trapping data to 
index spatial and temporal changes in species activity.     

Survey method Data type Description   

FSC Occurrence Probability of occurrence based on the presence–absence of pellets (marsupials) or pellet groups (deer and rabbit) 
during the FSC survey period 

Frequency Counts of the number of pellets or pellet groups during the FSC survey period as a proportion of the maximum count 
per species 

FAR Occurrence Probability of occurrence based on the presence–absence of pellets (marsupials) or pellet groups (deer and rabbit) at 
the end of the accumulation period 

Frequency Counts of the number of pellets or pellet groups at the end of the accumulation period as a proportion of the 
maximum count per species 

Camera trapping Occurrence Probability of occurrence based on the presence–absence of each species over a 14-day period 

Frequency Camera frequency index (counts of the number of days on which each species was recorded as present as a 
proportion of the maximum number of 14 days)   
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probability of occurrence between 0.2 and 0.1, or between 
0.9 and 0.8) relative to the centre (a difference between 0.55 
and 0.45), so we examined each of three effect sizes (small, 
medium and large) at both the centre and upper end of the 
range. To investigate the trade-off between sample size and 
power, we used the powerCurve function in simr to estimate 
power associated with a sample size of 0–300 plots. 

Results 

Species’ responses to time and treatment were generally 
similar for the alternative activity indices (Supplementary 
Figs S1, S2). However, the survey effort required to detect 
significant effects of treatments during both autumn and 
winter varied between indices from different survey methods, 
and between indices derived from frequency and occurrence 
data (camera trapping compared to FSC; autumn: Fig. 2) and 
(camera trapping compared to FAR; winter: Fig. 3). 

Indices based on frequency 

For all species, the activity index derived from camera 
frequency data was able to detect treatment effects with 
greater power using fewer plots than the other activity indi-
ces (Figs 2, 3). For example, in considering power resulting 
from up to 300 plots, camera frequency data delivered the 
only index capable of detecting small effect sizes with high 
power, and fewer than 50 plots were sufficient to detect 
medium to large effect sizes for most species using this index. 

In contrast to the activity index derived from camera 
frequency data, power to detect small effects using indices 
derived from pellet count frequency data was low (Figs 2, 3). 
Power associated with the FSC frequency index was consis-
tently low, with greater than 100 plots required to detect all 
but large effect sizes for most species (Fig. 2). For the FAR 

frequency index, power to detect medium to large effects 
varied among species (Fig. 3). FAR frequency data had 
high power to detect large effects in swamp wallaby and 
wombat activity levels (Fig. 3). However, the number of 
plots required to detect medium to large effect sizes for 
most species was similarly large (>100) to that required 
for the FSC frequency index, and for species such as deer, 
even very large sample sizes (>300 plots) were not adequate 
to detect large effect sizes with high power (Figs 2, 3). 

Indices based on occurrence 

Occurrence indices from the three alternative methods per-
formed similarly, requiring fewer plots than pellet count 
frequency indices, but a greater number of plots than the 
camera frequency index to detect small-large effects for 
most species (Figs 2, 3). Overall, power to detect small 
effects was low for indices derived from occurrence data. 
However, there was interspecific variation in the number of 
plots required to detect effects using occurrence indices, and 
the performance of the camera occurrence index varied over 
time. Medium-large effect sizes could be detected with high 
power for several species using occurrence indices: FSC 
occurrence index for all species except rabbit; and FAR 
and camera occurrence indices for kangaroo, deer and rab-
bit. Further, small effects sizes could be detected with 
medium to high power for some species using pellet occur-
rence indices if a large number of plots was used. 

Discussion 

Increasingly, it is recognised that the objectives of monitor-
ing programs can be met using indices of relative abundance 
(Engeman 2005; Johnson 2008), yet there is limited infor-
mation on the performance of different indices to help 

Table 2. Scenarios (species, method, sampling effort, data type and effect size) used for power analysis.     

Categories/scenarios   

Data type Stage 1: Cameras, faecal standing crop 

Stage 2: Cameras, faecal accumulation rate 

Species Eastern grey kangaroo, swamp wallaby, common wombat, hog deer, rabbit 

Response variables Presence–absence, frequency (for cameras data, this was the number of days a species was detected out of the total number 
of days the camera was deployed; for FSC and FAR data, this was the number of pellets counted in a plot relative to the 
maximum number of pellets recorded in plot) 

Effect size Small (0.10): centre (0.55–0.45), upper end (0.90–0.80)  

Medium (0.30): centre (0.65–0.35), upper end (0.90–0.60)  

Large (0.50): centre (0.75–0.25), upper end (0.90–0.40) 

Number of plots per 
treatment (fixed effect) 

5, 10, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300 

Total number of swales 
(random effect) 

5, 10, 20, 40, 60, 80, 100   
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Fig. 2. Statistical power for three effect sizes (small, medium and large) at both the centre and upper end of the binomial 
distribution. Power was calculated using Monte Carlo simulation for combinations of species (eastern grey kangaroo, swamp 
wallaby, common wombat, hog deer, rabbit), data type (Faecal Standing Crop and camera activity indices derived from occupancy 
and frequency data collected at Wilsons Promontory National Park during autumn; 9 April–2 June 2013) and response variable 
modelled using generalised linear mixed models (GLMM). No output was obtained for the rabbit activity index derived from 
Faecal Standing Crop frequency data due to computational problems.    
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Fig. 3. Statistical power for three effect sizes (small, medium and large) at both the centre and upper end of the binomial 
distribution. Power was calculated using Monte Carlo simulation for combinations of species (eastern grey kangaroo, swamp 
wallaby, common wombat, hog deer, rabbit), data type (Faecal Accumulation Rate and camera activity indices derived from 
occupancy and frequency data collected at Wilsons Promontory National Park during winter; 30 June–18 July 2013) and response 
variable modelled using generalised linear mixed models (GLMM).    
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managers choose between the range of survey methods and 
metrics available. Our study compared the statistical power 
of faecal pellet count and camera trapping methods for 
detecting changes in the relative activity levels of mamma-
lian herbivores using indices based on frequency and occur-
rence data. We demonstrated that an activity index derived 
from camera frequency data detected treatment effects with 
greater power and fewer plots compared to the other activ-
ity indices and was the only index capable of detecting small 
effect sizes with high power. 

Our results support the work of Latham et al. (2012) who 
showed that medium to large changes in rabbit numbers 
could be detected using count data from small camera sam-
ple sizes and short deployment times with good statistical 
power. In line with others (Silveira et al. 2003; Balme et al. 
2009; Roberts 2011) we, therefore, advocate camera trap-
ping as providing high power and rigour for monitoring 
change in relative abundance in a range of species. Some 
studies have noted that a combination of methods may be 
required to ensure that different species are detected 
(Catling et al. 1997; Swan et al. 2014), yet our camera set- 
up was effective for detecting species with different body 
sizes and behaviours, maximising the monitoring potential 
of this method (Engeman 2005). 

While the camera-based frequency index gave the highest 
statistical power, it is important to evaluate monitoring 
methods relative to their cost (Perkins et al. 2013). We did 
not undertake a cost-benefit analysis because costs vary 
widely between projects due to factors such as travel times 
and whether paid staff or volunteers conduct field work, and 
because costs change over time and among regions. 
Nonetheless, it is known that the initial outlay required for 
camera trapping equipment is greater than that required for 
low-tech sign survey methods (Gompper et al. 2006;  
Lucherini et al. 2009; Garrote et al. 2014; Paton et al. 
2021). This can make camera trap monitoring cost prohibi-
tive if equipment costs cannot be spread across multiple 
projects, even with decreases in the cost of camera equip-
ment and the time involved in post-processing of images 
(Latham et al. 2012) as camera trapping technology such as 
automated image recognition and processing software 
advance (Norouzzadeh et al. 2018; Weinstein 2018). 
Therefore, when cameras cannot be purchased or borrowed, 
but labour resources are readily available and detection of 
medium to large effect sizes is adequate to meet monitoring 
objectives, indices derived from FAR or FSC occurrence data 
(depending on the species) are more appropriate choices. 
Moreover, while detection of small effect sizes may be 
essential for some programs (e.g. threatened species mon-
itoring) (Smart et al. 2004), the small effect sizes detected 
using camera trapping frequency indices may not be ecolo-
gically meaningful or relevant to management of many wild-
life populations (Di Stefano 2003). Other indices may, 
therefore, provide adequate statistical power to detect spe-
cies’ responses with equivalent effort and lower costs. 

All six indices considered told a similar ecological story, 
and any could be applied to monitor herbivore activity in 
open or closed habitat. Occurrence data are appealing 
because they are relatively simple and cost-effective to col-
lect (De Bondi et al. 2010; Steenweg et al. 2016) compared 
to frequency data (Latham et al. 2012). Overall, we found 
that the performance of all occurrence indices was similar, 
and while their power to detect small effect sizes was low, 
medium-large effect sizes were detected with high power for 
several species. 

For some species, pellet occurrence indices resulted in 
greater power than the camera occurrence index, and an 
equivalent investment in equipment and labour may provide 
a similar level of power to that achieved using a camera 
frequency index. Further, our results showed that a large 
number of plots are generally required to detect medium to 
large effect sizes using pellet frequency indices, challenging 
the common preference for collecting pellet frequency data. 
If simple occurrence metrics can detect meaningful effect 
sizes, they are likely to be more cost-effective than time- 
consuming counts (Latham et al. 2012). FSC counts are 
particularly cost-effective, as they do not require plot clear-
ance, although they did not perform well for some species 
(e.g. a large number of plots were required to detect 
medium-large effect sizes for rabbit). Occurrence data 
from scat detections may be particularly useful for rare 
and elusive species (Seidlitz et al. 2021). 

Some variation in the spatial and temporal trends detected 
by the different methods was evident, in line with work by  
Paton et al. (2021), suggesting that they measure slightly 
different aspects of activity and are subject to different 
biases. Nonetheless, the influence of such factors appears to 
be smaller than the magnitude of real change and we show 
that techniques that sample in different ways, at different 
scales, can provide comparable indices of activity, as has 
been found during comparisons of other techniques (e.g. 
camera trapping and track counts; Espartosa et al. 2011). 

The applicability of our results to other systems and 
monitoring programs will depend on objectives and resour-
cing (Garden et al. 2007) and factors that influence the 
suitability, efficiency and power of monitoring using pellet 
counts and camera trapping, including species characteris-
tics and population densities, survey timing, habitat type 
and climate (Towerton et al. 2011; Perry and Robertson 
2012; Perkins et al. 2013). The experimental design, logis-
tics and procedures involved in pellet counts and camera 
trapping were simple, so either could be implemented with-
out sophisticated training, however, the ability of observers 
to accurately identify pellets versus images will depend on 
the target species. If supplementary data, such as animal 
behaviour observations are required, camera trapping is 
recommended (Silveira et al. 2003; Paull et al. 2012), but 
in areas of high human visitation, pellet counts may be 
necessary due to the risk of camera theft (Espartosa et al. 
2011). Occurrence indices may not be suitable where a 
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species is abundant and ubiquitous due to ‘oversaturation’ 
(i.e. not enough absences) (Bengsen et al. 2014), 
in situations where abundance or activity are reduced with-
out causing local extinctions (Bengsen et al. 2014), or when 
a species is rare (Fithian et al. 2015). On the other hand, 
precision of frequency indices from the FAR method is 
improved when levels of pellet accumulation are high 
(Campbell et al. 2004; Smart et al. 2004) and counts from 
cameras may successfully index visitation at sites where 
pellet counts are too low to be useful (Kuijper et al. 2009). 
Further, methods can be adjusted according to local condi-
tions to improve the utility of the data. For example, when 
species are uncommon, camera deployment times (Latham 
et al. 2012) or FAR accumulation times can be increased 
(Campbell et al. 2004; Smart et al. 2004) to improve preci-
sion and statistical power, without additional costs. 

We demonstrated that an activity index derived from 
camera frequency data was the most powerful wildlife mon-
itoring method for detecting species’ responses to manage-
ment, providing the only index capable of detecting small 
effect sizes with high power. Our study was restricted to five 
species at a single location, yet their activity patterns, beha-
viour, body size and densities varied, and habitat structure 
varied across the four management treatments examined. 
Therefore, we believe our results have broader applicability, 
and advocate camera trapping as a powerful method that 
can be applied to simultaneously monitor multiple species to 
improve management outcomes. However, in monitoring 
programs where funding for cameras is inadequate, but 
labour resources are readily available, and detection of 
medium to large effect sizes is adequate to meet objectives, 
indices derived from pellet count occurrence data should be 
considered. Occurrence indices derived from FSC and FAR 
outperformed pellet-based frequency indices in most 
instances, showing that simple metrics have the potential 
to detect ecologically important change and improve the 
cost-effectiveness of monitoring. Nonetheless, with the 
rapid evolution of camera trapping technology, the effi-
ciency of camera-based methods is likely to increase further 
as equipment costs are reduced and advances in automated 
image recognition and processing software are made. 

Supplementary material 

Supplementary material is available online. 
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