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OPEN ACCESS 

Context. Management actions that suppress introduced predator densities can benefit the 
population recovery of native species. Nevertheless, ensuring that predator management produces 
measurable population-level benefits can be influenced by multiple factors affecting species 
detection. Monitoring designs using multiple survey methods may perform better than increasing 
sampling effort with single-method protocols. Aims. This study aimed to estimate individual and 
cumulative detection probabilities and site occupancy estimates from the use of five different 
monitoring methods to survey a native mesopredator, the lace monitor (Varanus varius). Second, we 
assessed the effect of lethal red fox (Vulpes vulpes) baiting on lace monitor detection probabilities 
and site occupancy estimates collected from each monitoring method. Methods. Multi-method 
sampling for Varanus varius occurred at 76 sites across lethal fox baited and non-baited 
habitats in East Gippsland, Victoria. Bayesian site occupancy models were used to estimate the 
effects of detection method and fox-baiting treatments on Varanus varius detection probability 
and site occupancy. Key results. Method-specific detection probabilities (P = 0.00–0.12) and site 
occupancy estimates (Ψ = 0–0.53) varied considerably among methods, but combinations of multi-
method monitoring improved lace monitor detection probability (P = 0.11–0.18) and site occupancy 
(Ψ = 0.87 ± [0.66–0.93]−0.91 ± [0.76–0.97] mean ± [95% credible intervals]) above any single 
method. However, there was extreme heterogeneity in the size and direction of the introduced 
predator baiting effect on method-specific lace monitor detection. Three methods (box traps 
and two different visual search surveys) all indicated lace monitor detection probabilities increased 
in fox-baited sites. However, sand pads reported a decrease in lace monitor detection at fox-baited 
sites, whereas pipe traps obtained no detections. Conclusions. Combining detection data from all 
methods led to the inference of a positive fox-baiting effect, albeit with a smaller magnitude and 
better certainty than that estimated using a reduced method monitoring design, which had fewer 
detection data after excluding biased detection from sand pads. Implications. Using a multi-method 
monitoring approach improved lace monitor detection and reduced sampling effort. However, 
depending on sampling methodology, the management effects on lace monitors can change. 

Keywords: biodiversity monitoring, detection method evaluation, detection probability, lace 
monitor, lethal fox baiting, management inference, site occupancy, Varanus varius. 

Introduction 

Introduced mammalian predators have caused globally significant ecological impacts, 
including the decline and extinction of native species (Doherty et al. 2016). For instance, 
the 19th century introduction of the European red fox (Vulpes vulpes) into Australia has 
had well documented and continental-scale biodiversity impacts (Glen and Dickman 
2008; Saunders et al. 2010; Woinarski et al. 2019). Since the 1980s, landscape-scale 
poison baiting programmes have been a key management action used to suppress 
the density of introduced fox populations across Australia (Kinnear et al. 2002; 
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Hayward and Somers 2012; Braysher 2017; Legge et al. 
2018). Fox baiting has produced measurable biodiversity 
benefits for both threatened and non-threatened native 
species, and helped restore ecological processes (Kinnear 
et al. 1998; Dexter and Murray 2009; Claridge et al. 2010; 
de Tores and Marlow 2012). However, it is also sometimes 
evident that fox baiting may have weak, absent, or 
unintended (e.g. introduced mesopredator or herbivore 
release) biodiversity consequences (Walsh et al. 2012; 
Marlow et al. 2015; Lindenmayer et al. 2018; Jessop et al. 
2021). Evaluating the processes underpinning ineffective or 
unforeseen native biodiversity responses from fox-baiting 
outcomes is essential for innovating and guiding future 
management plans, and helps ensure that scarce conservation 
funds can best achieve positive conservation benefits (Walsh 
et al. 2012; Lindenmayer et al. 2018). Not discounting 
that environmental, ecological, or baiting protocol-related 
processes could affect the magnitude and direction of 
native biodiversity responses to fox-baiting programmes. 
It is also important to recognise that the monitoring method(s) 
and associated experimental designs used to measure native 
species responses can have significant implications for data 
quality, survey success, and arising population response 
estimates used to evaluate wildlife management effectiveness 
(Thompson and Thompson 2007; Nichols et al. 2008; 
Lindenmayer et al. 2020). For example, indirect or direct 
population estimates for a target species obtained from 
different monitoring methods may be poorly correlated and 
indicate method-specific detection biases (Long et al. 2007, 
2012; Hayward et al. 2015). Similarly, monitoring methods 
that use baits, lures or traps can affect animal behaviour 
that may positively or negatively influence detection, and 
consequently bias population-level estimates (Thompson 
2013; Comer et al. 2018; Stewart et al. 2019). Ultimately, any 
monitoring method that achieves poor, or biased, detection 
probability could obscure environmental managers from 
accurately assessing their actions on wildlife populations 
(Yoccoz et al. 2001; Kéry and Schmidt 2008). 

Population monitoring designs that use multiple concurrent 
methods have been advocated to reduce uncertainty produced 
by low detection probability from single method monitoring 
designs (Bailey et al. 2004; Nichols et al. 2007; Otto and 
Roloff 2011). Multi-method monitoring protocols can be 
particularly advantageous if they increase sampling oppor-
tunities to reduce imperfect detection (MacKenzie et al. 
2017; Einoder et al. 2018). Similarly, through improved 
detection, such designs might reduce sampling effort compared 
with single method sampling designs. Additionally, one 
monitoring method may have relatively high detectability, 
but may be biased if it only detects part of the population. 
Then integration with other methods can allow concurrent 
methods to better obtain unbiased estimates (Descalzo et al. 
2021). Using multiple methods is not without problems, 
including that different methods can achieve dissimilar 
detection of target species, or if one method is far better, it 

can produce inefficient monitoring (Nichols et al. 2008; 
Mattfeldt et al. 2009). Similarly, if multiple methods within 
a sampling site lack spatial independence, they may produce 
overlapping and correlated detections that produce inefficient 
monitoring (Clare et al. 2017). Also, method-specific biases  
can increase or decrease detection probability relative to the 
population’s actual  occurrence (Bailey et al. 2004). In such 
cases, method-specific biases may propagate uncertainty in 
estimates of environmental management effects on popula-
tion responses (Nichols and Williams 2006; MacKenzie 
et al. 2017). 

This study’s objective was to use a multi-method 
monitoring design to address two aims: (1) compare how 
survey methods vary in their individual and combined ability 
to influence detection and site occupancy of a varanid lizard, 
the lace monitor (Varanus varius); and (2) evaluate how red 
fox removal (via poison baiting) influenced lace monitor 
detectability and site occupancy. The lace monitor is a 
sizeable semiarboreal monitor lizard that can weigh up to 
14 kg and attain a maximum body length of approximately 
2 m  (Guarino 2002; Jessop et al. 2010; Anson et al. 2014; 
Fig. 1a). It is distributed throughout the non-arid regions of 
eastern Australia (Smissen et al. 2013). As a generalist 
predator, lace monitors consume a broad array of prey, 
including insects, small to medium-sized mammals, and 
carrion (Guarino 2002; Jessop et al. 2012). These monitor 
lizards are expected to provide an important trophic influence 
in Australia’s terrestrial ecosystems (Doody et al. 2015; Feit 
et al. 2020). However, the way different monitoring methods 
influence lace monitor detection and site occupancy (and thus 
their potential to benefit from lethal fox-baiting programmes) 
remains poorly understood. 

The first goal was to assess how the use of multi-
method monitoring design would allow us to measure the 
extent to which different survey methods varied in their 
ability to detect lace monitors and influence method-
specific site occupancy estimates. It was presumed that 
methods could vary substantially in their detection of lace 
monitors, but overall, a multi-method monitoring design 
would better reduce the total survey effort needed to 
conduct population monitoring and achieve good estimates 
of site occupancy. A reduced survey effort was considered 
especially important given our study area experiences a 
highly seasonal climate that restricts reptile activity (and 
hence detection) to a relatively short summer period 
(Jessop et al. 2013). Similarly, demonstrating method-
specific differences in detection is essential to inform how 
to best allocate survey effort in future monitoring of lace 
monitor populations. 

The second goal was to determine if different monitoring 
methods consistently produced results that inform whether 
fox removal is an effective tool for promoting native wildlife. 
Here we compared the effect of a large-scale introduced fox 
lethal baiting programme on method-specific lace monitor 
detection probabilities and site occupancy. Prior studies have 
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Fig. 1. This study estimated the detection probability and site occupancy of (a) lace monitors across 76 sites in East Gippsland in 
Eastern Victoria, Australia. (b)Yellow squares represent monitoring sites in red fox baited areas (i.e. deployment of 1080 poison) 
with low fox population densities. Green squares represent sites in control areas without lethal fox baiting and have high fox 
population densities. (c) We deployed a multi-method monitoring design within each site that used a ground-based box trap, 
two arboreal pipe traps, two sand pads, and two different visual survey transects to detect lace monitors. 

demonstrated that monitor lizard populations can sometimes 
benefit from fox baiting, possibly because it releases these 
native predators from predation or competition (Anson et al. 
2013; Anson et al. 2014; Hu et al. 2019; Jessop et al. 2021). 
However, it remains unclear if different monitoring methods 
also allow reporting consistency in how fox baiting influences 
monitor lizard detection and site occupancy. If all methods 
are relatively effective and unbiased, they should produce 
consistent detection responses to fox baiting (Read and 
Scoleri 2015). Conversely, the effect of fox baiting could lead 
to method-specific lace monitor sampling biases. For example, 

different fox densities between baited and non-baited 
landscapes could influence how lace monitors (i.e. a native 
mesopredator) competitively interact with this apex predator 
(Ritchie and Johnson 2009; Anson et al. 2013). One 
consequence could be that lace monitors alter behaviour, 
such as risk-sensitive foraging or daily activity patterns, 
in unbaited habitats with higher fox densities (Moll et al. 
2017). Differences in lace monitor foraging activity could 
allow sampling biases in monitoring methods that use food-
based baits to detect individuals (Anson et al. 2013; Moll 
et al. 2017). If so, method-related detection biases could 
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affect site occupancy estimates and thus weaken evidence to 
deduce if fox baiting benefits this lace monitor population. 

Methods 

Study area 

The study area comprised 42 000 ha of coastal forest located 
within the Cape Conran Coastal Park (37°490S, 148°440E) 
and Murrungowar State Forest (37°568S, 148°753E) in 
East Gippsland, Victoria, Australia. Mean maximum and 
minimum temperatures ranged from 27.0°C (January) to 
4.7°C (July), and annual rainfall for the region averages 
~846 mm (http://www.bom.gov.au/climate/averages/tables/ 
cw_084030.shtml, accessed 12 February 2021). Within the 
area, study sites were primarily located in two widespread 
vegetation types: (1) coastal woodland dominated by Banksia 
integrifolia, and Banksia serrata; and (2) lowland forest 
dominated by Eucalyptus globoidea and Eucalyptus sieberi 
(see Anson et al. 2013). A minority of sites consisted of 
heathland or vegetation ecotones. Generally, the habitat 
transitioned from Banksia woodland near the coast into 
eucalypt forest further inland. 

Introduced predator management 

The study area was overlaid onto the Southern Ark 
programme’s experimental fox population management 
treatments. This programme is a large-scale and ongoing 
fox suppression programme managed by the Department of 
Environment, Land, Water and Planning, Victoria, Australia 
(Murray et al. 2006; Dexter and Murray 2009). It was 
initially established to examine fox suppression effects on 
native threatened mammals. The programme area comprised 
two management treatments, each with two replicate blocks 
(~6000 ha each). Two blocks were assigned as areas of lethal 
fox baiting to cause fox population density suppression, 
and two replicates were assigned as control block areas (i.e. 
deployment of poison-free baits). To avoid any potential 
‘halo effect’ where lethal fox baiting can decrease fox 
or increase native animal densities in non-baited habitat 
immediately adjacent to the baited area (Glen et al. 2013), 
a minimum boundary area of 2 km was used to promote 
spatial independence between and within each management 
treatment. Before the commencement of this study, poison 
and control baits had been deployed consistently within 
their respective blocks since May 1999 (Murray et al. 2006; 
Dexter and Murray 2009). 

Fox suppression was achieved using Foxoff Econobaits 
(Animal Control Technologies, Melbourne), a commercially 
available manufactured bait, pre-poisoned with 3 mg of 
sodium fluoroacetate (‘1080’ poison). This sodium fluoroac-
etate dose is lethal to canids but not toxic to varanid lizards 
(Mcilroy et al. 1985; Twigg and King 1991). 

Study design and monitoring methods 

In the summer of 2008/2009, we established 76 multi-
method monitoring sites over the study area (Fig. 1b). We 
allocated 38 monitoring sites each to the lethal fox-baited 
treatment and the non-lethal baited control treatment. 
Each sampling site (15 ha, 500 m long × 300 m wide) 
was accessed using unsealed management or logging tracks. 
All sites were at least 2 km apart to promote spatial 
independence in lace monitor detections among sites 
(Jessop et al. 2013). Monitoring at each site was conducted for 
six consecutive days and only during periods with consistently 
warm days (>25°C) and clear sky (<25% cloud cover), to limit 
false absences due to unfavourable climatic conditions 
reducing lizard activity (Jessop et al. 2013). At each site, 
five concurrent monitoring methods (Fig. 1c) were used to 
detect lace monitors: 

1. Visual drive survey: Two observers in a vehicle travelling 
at 10 km/h searched for lace monitors along 500 m 
of management track, which comprised the midline 
of each site (Fig. 2a). The search area consisted of 
searching forward from the vehicle’s mid-line out to 90° 
on either side of the observer’s position. The search area 
was constrained to a maximum distance of 30 m on 
either side of the vehicle. This was considered the 
maximum distance one could reliably see a monitor 
lizard in forested habitats. Visual drive surveys were the 
first method used to detect lace monitors in each daily 
survey. Furthermore, we always surveyed from the first 
to the last site before we returned to assess for 
additional lace monitor detections from the remaining 
four monitoring methods within each site. This method 
resulted in a standard area (i.e. 500 m × 60 m) being 
sampled on each census; 

2. Mixed visual search: This type of search comprised 
driving through each site at 40 km/h and then stopping 
the vehicle at regular intervals to walk into the forest to 
check each site’s box trap, sand pads and pipe traps. 
Monitor lizards observed either from the vehicle or on 
foot within a site during these searches (15 min/site) 
were recorded. To reduce the potential for repeated 
detections of any lace monitors encountered at a site 
during the aforementioned visual drive survey, we 
waited for 30 min before conducting the mixed visual 
search method; 

3. Box traps: One aluminium box trap (2 × 0.3 × 0.3 m) for 
lace monitors was positioned randomly within each site to 
allow direct capture of individual lizards (Fig. 2b). Traps 
were baited with raw beef infused with tuna emulsion 
oil. Meat baits were replaced if removed or on the 
morning of the 4th day of the survey if not consumed. 
Replacement of unused baits on the morning 
of the 4th day was done to limit variation in bait 
attractiveness (i.e. mass and odour) and reduce 
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(a) (b) 
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Fig. 2. Different monitoring methods were used to detect lace monitors at each site in the study area. (a) Illustrates a 500-m 
vehicle base visual search method conducted along management tracks that bisected each site. Here a lace monitor (red circle) can 
be seen moving along the track. (b) To capture lace monitors directly, we used purpose-built box traps placed on the ground at 
each site. (c) Two baited sand pads were also constructed at each site and were used to indirectly detect lace monitors from their 
distinctive claw marks and tail drag marks left imprinted in the sand. (d) Two arboreal pipe traps were baited and secured to trees 
within each site in an attempt to capture arboreal juvenile lace monitors. 

heterogeneity in daily bait detection by lace monitors 
across the survey period. This step was informed from a 
similar study that demonstrated that monitoring 
methods that do not replace meat baits after 3 days had 
reduced varanid lizard detections (Ariefiandy et al. 
2013). All individual lizards were microchipped to 
provide a means to record the potential for repeat 
captures (i.e. non-independent detections); 

4. Sand pads: Two sand pads (75 cm in diameter and 10 cm 
high) were constructed from beach sand (Fig. 2c). A small 
piece of cow heart covered in tuna oil was buried to a 
10 cm depth in each pad’s centre. Meat baits in sand 
pads were replaced if removed or on the morning of the 
4th day of the survey if not consumed. Because lace 
monitors are the only large lizard in the study area, 
their presence on sand pads was determined from their 
diagnostic claw and tail drag marks (Jessop et al. 2013); 

5. Pipe traps: Two PVC pipes (1.5 m length × 15 cm diameter) 
closed-off at one end were placed vertically on two large 
trees and secured with rubber strapping (Fig. 2d). Traps 
were baited with raw beef. Meat baits were replaced if 
removed or on the morning of the 4th day of the survey 

if not consumed. The size of pipe traps and their 
placement were identical to those used to successfully 
capture arboreal juveniles of another large varanid 
lizard, the Komodo dragon (Varanus komodoensis) 
(Purwandana et al. 2021). 

The locations of box and pipe traps and sand pads were 
assigned using a random number table to give x (0–500 m) 
and y (−150–150 m) coordinates within each site. All 
monitoring methods were positioned a minimum of 50 m 
away from the nearest edge of the management track. Each 
monitoring method was separated by a minimum distance 
of 100 m from any other method to reduce the likelihood 
of overlapping detections among methods. The spacing 
interval among each method was based on a pilot study 
conducted in 2006/2007, which indicated limited overlap 
in lace monitor detections between box traps deployed at 
100-m intervals. In the current study, we further conducted 
a two-tailed Pearson correlation test with 1000 bootstraps 
to statistically assess the extent of correlations among 
method-specific detection patterns within sites. 
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Estimating detection and site occupancy 
estimates 

Hierarchical occupancy models (MacKenzie et al. 2006; 
Nichols et al. 2007) were used to estimate method-specific 
lace monitor detectability and site occupancy, and the 
effect of introduced predator baiting on these estimates. An 
integrated monitoring design assumes that each sampling 
method is sufficiently separated to produce independent 
detections (Clare et al. 2017; Descalzo et al. 2021). A conse-
quence of non-independence between methods is expected 
to inflate the overall detection probability of a species and 
produce a negative bias in state parameters (Clare et al. 
2017). Although our sampling methods were spatially 
discrete, we did not explicitly test this assumption by using 
occupancy models that can accommodate observation 
covariance among each survey method (Clare et al. 2017). 
However, we did qualitatively assess the capacity of our 
sampling design to result in non-independence of detections 
via assessing the recapture rate of lace monitors within and 
between sites, and by assessing the degree of correlation 
between detection methods across sampling sites. 

To address our aims, we modelled the occurrence of lace 
monitors at site i as a draw from the Bernoulli distribution 
with parameter ψ, which is the probability that the lace 
monitors occupies site i: 

zi ∼ BernoulliðψÞ: 

An occurrence is represented by zi, = 1, and an absence is 
represented by zi, = 0. 

It was assumed that a site was either occupied or not across 
all sampling occasions and that the probability that a site was 
occupied was the same for all sites. 

We modelled the probability of detecting lace monitors 
given that they were present using method j for n surveys 
at site i as a draw from the Bernoulli distribution with 
parameters d,j, which is the probability of detecting lace 
monitors using method j on a single sampling occasion 
given they were present. Thus, we calculated: 

yi,j,n ∼ Bernoulliðd, j, nÞ, 

where a detection is represented by yi,j,n = 1, and non-
detection is represented by: 

yi,j,n = 0. 

Combining these two processes produced the observation 
model that modelled the observations as the product of 
occupancy and detection: 

yi,j,njzi = BernoulliðzipÞ: 

An observation is represented by yi,j,n |zi = 1, and a failure 
to observe lace monitors is represented by yi,j,n|zi = 0. 

The model was run using Winbugs 1.4.2 (Lunn et al. 2000) 
called from programme Presence 2.12.36 (Hines 2006). A 
uniform prior distribution for occupancy and detection 
probabilities was used to represent a lack of prior information 
and ensure that the parameter estimates were driven by 
the data. Parameter estimates were based on 1000 samples 
subsampled from 5000 samples after a 5000 burn in, which was 
more than sufficient for WinBUGS to stabilise convergence. 

Following Descalzo et al. (2021), we first ran occupancy 
models that combined all five sampling methods as a 
reference to then compare the mean posterior distribution 
estimates [±95% credible intervals (CI)] for detection 
probabilities and site occupancy against models that were 
evaluated for each individual method and combinations of 
the four, three and two best lace monitor sampling methods. 
To compare individual and combined sampling method 
performance, we used an accuracy index that combines 
measures of bias and precision through estimating the 
mean square error (MSE) to assess the performance of each 
individual, or the combinations, of sampling methods: 

MSE = σ2 + Bias2 

Thus, we estimated for each lace monitor sampling method 
and combinations therein the probability of detection (mean 
and s.d.), occupancy (mean, s.d. and coefficient of variation), 
and the MSE. 

Next, we ran occupancy models that tested the effect of fox 
baiting on the individual method-specific probability of lace 
monitor detection reported. Similarly, we tested the effect of 
fox baiting on combinations of methods used to estimate lace 
monitor site occupancy. The strength of evidence for meaning-
ful differences between posterior mean detection probabilities 
from the different monitoring methods was evident when their 
95% CIs did not overlap. Similarly, evidence for a strong 
posterior effect of introduced predator management on lace 
monitor detection and site occupancy was obtained when 
their 95% CIs did not overlap (McCarthy 2007). 

Ethical standards 

The protocols used were approved by the Animal Ethics 
Committee of the University of Melbourne (Permit Number: 
0911328). The research was carried out on public land 
under a Victorian Department of Sustainability Wildlife and 
National Parks Act (1975) research Permit 10005037. 

Results 

Method specific detection probability and site 
occupancy 

We surveyed 76 composite monitoring sites for six 
consecutive days, resulting in 109 lace monitor detections 
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at 52 sites. Box traps, sand pads, mixed visual searches, visual 
drive surveys, and pipe traps reported 43, 43, 13, 10 and 0 lace 
monitor detections respectively. At least from box trap-related 
detections (i.e. direct capture), there was little evidence (two 
of 43 individuals) that the same individual was detected on 
multiple occasions (i.e. false positives) within the sampling 
period. There was no evidence of significant correlations 
among detections reported from box traps, sand pads, 
mixed visual search or the visual drive survey within sites 
(Pearson two-tailed test: all P-values > 0.05; pairwise 
Pearson R2 = −0.060–0.190) (Supplementary Table S1, 
available online as Supporting Information). 

The method-specific estimates of lace monitor detection 
probability (P) ranged from 0.000 to 0.121 (Table 1). Box 
traps (P = 0.120 ± [0.086–0.162] [mean ± 95% credible 
intervals (CI)]) and sand pads (P = 0.121 ± [0.086–0.160]) 
performed similarly and substantially better than the visual 
search (P = 0.030 ± [0.015–0.049]) and mixed visual 
search surveys (P = 0.038 ± [0.021–0.060]). Because 
pipe traps failed to detect lace monitors, no estimates of 
detection were possible. Overall, pending the combination 
of multiple sampling methods, the detection probability of 
lace monitors could be increased above estimates obtained 
from any single best method. 

The method-specific lace monitor site occupancy (ψ) 
estimates ranged from 0.00 to 0.53 (Table 1). Box traps 
(ψ = 0.53 ± [0.03–0.73] [mean ± 95% credible intervals 
(CI)]) and sand pads (ψ = 0.49 ± [0.03–0.660]) produced 
higher occupancy estimates that the mixed visual search 
(ψ = 0.28 ± [0.07–0.68]) and visual search surveys 
(ψ = 0.24 ± [0.06–0.60]). Because pipe traps failed to detect 
lace monitors, no occupancy estimates could be obtained. It 
was evident that different combinations of multi-method 
monitoring designs substantially increased the lace monitor 
site occupancy estimate compared with any single method 
used (Table 1). Indeed, all individual methods reported a 

strong negative bias and higher MSE scores than sampling 
designs that incorporated two or more sampling methods 
(Table 1). Furthermore, it was evident that reduced combi-
nations of different sampling methods could lead to a 
similar performance in site occupancy estimates compared 
with the full method sampling design (Table 1). 

Lethal fox-baiting effects on method-specific lace 
monitor detection probability and site occupancy 

The magnitude of the fox-baiting effect on detection 
probabilities varied depending on the monitoring method 
used to make the assessment (Fig. 3a). Baiting resulted in a 
positive effect on lace monitor detectability reported from 
box traps (P baiting effect = 0.045 ± [−0.024–0.120]), visual 
search (P baiting effect = 0.035 ± [0.001–0.072]) and mixed 
visual search (P baiting effect = 0.038 ± [−0.002–0.079]) 
methods (Fig. 3b). However, the lace monitor detection 
probability on sand pads exhibited a strong negative baiting 
effect (P baiting effect = −0.150 ± [−0.235 to −0.074]), 
indicating that lace monitor detections increased on sand 
pads in unbaited control sites compared with sites sampled 
in fox-baited sites. There was no effect of fox baiting 
on pipe trap detection probability (P baiting effect = 
0.000 ± [0.010 to −0.010]). 

The use of combined detection methods indicated that 
lace monitor site occupancy was higher at fox-baited sites 
(ψ = 0.867 ± [0.543–0.994]; naive occupancy = 30 of 38 
sites occupied) than at unbaited sites (ψ = 0.645 ± [0.323– 
0.904], naive occupancy = 22 of 38 sites occupied) (Fig. 4a). 
To further consider the influence of the negative fox-baiting 
effect on lace monitor detection probability estimated 
from sand pads, we removed these data and reanalysed our 
estimates using the remaining four methods. Removal of sand 
pad data reduced estimates of lace monitor site occupancy by 
~8% across the study area (four methods – sand pad detection 

Table 1. Detection probability (P) and occupancy (ψ) posterior estimates (mean; s.d., standard deviation and CV, coefficient of variation) using 
occupancy models for different survey methods of lace monitors and best method combinations. 

Method P s.d. ψ s.d. CV Bias MSE 

All methods (BT + SP + VDS + MVS + PT) 0.11 0.02 0.87 0.09 10.05 – 0.01 

Best four methods (BT + SP + VDS + MVS) 0.10 0.03 0.90 0.09 10.47 0.02 0.01 

Best three methods (BT + SP + MVS) 0.17 0.04 0.91 0.09 10.08 0.04 0.01 

Best two methods (BT + SP) 0.18 0.06 0.75 0.11 15.39 −0.13 0.03 

Box trap 0.12 0.03 0.53 0.20 38.36 −0.34 0.16 

Sand pad 0.12 0.03 0.49 0.19 38.61 −0.38 0.18 

Mixed visual search 0.04 0.01 0.28 0.18 64.29 −0.59 0.39 

Visual drive survey 0.03 0.01 0.24 0.17 69.79 −0.63 0.43 

Pipe trap 0.00 0.00 0.00 0.00 – −0.87 0.76 

We used as reference the combined use of all survey methods [Box trap (BT) + Sand pad (SP) + Mixed visual search (MVS) + Visual drive survey (VDS) + Pipe trap (PT)] 
to calculate the bias for each lace monitor sampling method or best method combinations. Methods are ranked according to the mean square error (MSE) as a criterion 
of the accuracy of an estimator. 
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Fig. 3. (a) Method-specific lace monitor detection probabilities 
estimated for lethal fox baited or control (i.e. non-lethal fox-baited) sites. 
(b) The effect sizes of fox bating on method-specific detection probability. 
All estimates report the posterior mean and 95% credible intervals. 

data ψ = 0.794 ± [0.665–0.923], naive occupancy = 52 of 76 
sites occupied vs five methods ψ = 0.711 ± [0.486–0.870], 
naive occupancy = 43 of 76 sites). This effect was most 
evident in unbaited sites where site occupancy was reduced 
by 15% compared with that estimated using all five 

Fig. 4. (a) Multi-method site occupancy estimates of lace 
monitors for the entire study area and at fox-baited and unbaited 
(i.e. control) sites. Bars with hatching indicate the site occupancy 
estimates in which detection data from sand pads (i.e. SP) has 
been excluded. (b) The effect sizes of fox baiting on lace monitor 
site occupancy under the full method monitoring design and 
where detection data from sand pads have been excluded (i.e. 
drop SP). All estimates report the posterior mean and 95% credible 
intervals. 
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methods combined (Fig. 4b). This in turn caused the mean fox-
baiting effect on lace monitor site occupancy to increase by 
~50% (B = 0.479 ± [−0.012–0.973] vs 0.241 ± [0.080– 
0.442]). However, this revised estimate had much larger 
credible intervals (i.e. spanned zero), meaning evidence of 
a fox-baiting effect on lace monitor site occupancy was 
weakened relative to the original estimate (Fig. 4b). 

Discussion 

Introduced mammalian predators, such as the red fox, remain 
a significant threat to Australia’s biodiversity (Radford et al. 
2018; Hradsky et al. 2019). As important native Australian 
predators, varanid lizards are expected to benefit in land-
scapes where management actions have caused adequate 
exclusion or suppression of fox populations (Anson et al. 
2014; Read and Scoleri 2015; Hu et al. 2019). This study 
assessed how five different monitoring methods and lethal 
fox baiting influenced lace monitor detection and site 
occupancy estimates. 

Our results indicated that different monitoring methods 
varied considerably in their capacity to detect lace monitors 
and influence site occupancy estimates. Box traps and 
sand pads were 3–4-fold more effective in obtaining lace 
monitor detections than either of the visual search methods, 
and pipe traps were entirely ineffective. These detection 
differences similarly translated into a two-fold increase in 
site occupancy estimates for box traps and sand pads over 
both visual search methods. Higher detection and site 
occupancy estimates obtained at baited box traps and sand 
pads likely occurred because both methods use meat baits 
to attract lace monitors (Ariefiandy et al. 2013; du Preez 
et al. 2014; Comer et al. 2018). Visual survey methods 
had lower detection and site occupancy, possibly due to a 
reliance on random encounters, less sampling effort (i.e. 
time duration) and the difficulty of sighting lace monitors 
in forest (Griffiths and McKay 2007; Ariefiandy et al. 2014; 
Boback et al. 2020). Unlike other varanid lizard studies, 
pipe traps failed to capture any juvenile lace monitors, which 
are presumably a significant fraction of the population 
(Imansyah et al. 2008; Jessop et al. 2020). 

A key advantage of multi-method monitoring protocols 
was to improve combined estimates of lace monitor detection 
and site occupancy over any single method (i.e. high bias, 
low detection) (MacKenzie et al. 2017; Einoder et al. 2018; 
Descalzo et al. 2021). It is assumed that our multi-, relative 
to single, method monitoring protocols increased lace 
monitor detections and site occupancy estimates by multiple 
processes. First, having additional detectors within a sampl-
ing site would increase the sampling effort (i.e. total 
detection area and sampling duration) relative to using any 
single method. Increased site-specific sampling effort would 
thus increase the probability that lace monitors are detected 

during the survey. Second, each sampling device is expected 
to be associated with detection biases that favour or preclude 
different individuals (e.g. life stages, behavioural phenotypes) 
of the lace monitor population to be detected. Thus, 
when different methods are combined, they are expected to 
increase the overall proportion of individuals available 
for detection (Clare et al. 2017; Descalzo et al. 2021). For 
example, as discussed below, sand pads could detect 
neophobic or wary individuals that might otherwise avoid 
entering box traps. Thus, the combined use of sand pads 
and box traps within sites is expected to sample a more 
significant proportion of the lace monitor population than 
each method alone. 

Additionally, there was no substantial evidence of 
correlated lace monitor detections within or among methods, 
suggesting the improved efficacy of different methods to 
record largely independent site lace monitor detections. 
Thus, multi-method monitoring considerably reduced sampl-
ing effort compared with the single best method (e.g. box 
traps) for detecting this native predator (Nichols et al. 
2008; Martin et al. 2009). Similarly, just using the single 
best sampling method would have required a greatly 
expanded survey effort that would have been both costly 
and potentially unfeasible, given that a highly seasonal 
climate reduces annual lace monitor activity in the study 
area (Michael et al. 2012; Jessop et al. 2013; McGrath et al. 
2015). Furthermore, it was possible to ascertain the most 
effective sampling design by comparing how different 
combinations of methods influenced the accuracy and 
precision of lace monitor detection and site occupancy 
estimates. It was evident that using the three best methods 
(box traps, sand pads and mixed visual search) could 
produce similar results with similar accuracy (i.e. low bias) 
and precision (i.e. low CV) to that obtained from all five 
methods. Consequently, future studies that used this 
reduced design would benefit from less survey effort and 
cost without loss of monitoring performance. 

This study’s second aim was to assess how different 
monitoring methods could influence inference due to the 
effect of fox baiting on lace monitor detection and site 
occupancy. A multi-method monitoring design demonstrated 
that fox baiting was associated with method-specific 
heterogeneity in lace monitor detection probabilities 
(Boback et al. 2020). Of the four successful detection 
methods, three (i.e. box traps and two visual survey methods) 
indicated small positive effects of fox baiting on lace monitor 
detection. Positive increases in detection with fox baiting are 
consistent with lace monitors experiencing mesopredator 
release, resulting in higher population densities in fox-
suppressed landscapes (Anson et al. 2014; Read and Scoleri 
2015; Jessop et al. 2016; Hu et al. 2019). 

In contrast, the lace monitor detection probability 
estimated from sand pads was higher at unbaited sites, 
indicating a strong negative fox-baiting effect. This reversed 
detection probability effect on sand pads is possibly the 

24 



www.publish.csiro.au/wr Wildlife Research 

consequence of the interplay between food rewards (i.e. meat 
bait within sand pads) and introduced predator-mediated 
influences on lace monitor foraging behaviour (Anson et al. 
2013; Jessop et al. 2015). In particular, risk-sensitive foraging 
theory predicts that prey depletion by competitors is likely to 
affect food-based reward–risk ratios influencing the foraging 
decisions of inferior competitors (Caraco et al. 1980; Barnard 
and Brown 1985). So if lace monitors exhibit stronger 
competition-induced reward-motivated foraging behaviour 
for novel meat baits, it could explain this positive bias in 
sand pad-based detections in non-fox-baited sites compared 
with fox-baited sites (Phillips and Winchell 2011; Willson 
et al. 2011). Behavioural studies of monitor lizards in areas 
with and without baiting for foxes could help clarify this 
scenario. 

How could method-specific sampling biases affect the 
capacity to determine if fox baiting benefited the lace 
monitor population within the study area? For example, 
because sand pads produced a positive detection bias, this 
inflated lace monitor site occupancy in non-fox baited sites. 
This result reduced the overall fox-baiting effect on lace 
monitor site occupancy estimated across the study area. 
Re-analysis excluding the sand pad data produced a more 
significant mean fox-baiting effect on lace monitor site 
occupancy. However, removal of the sand pad detection 
data produced an estimate with larger credible intervals, 
reducing the evidence of a fox-baiting effect on the lace 
monitor population. Thus, these results highlight how the 
use of multiple monitoring methods, while producing better 
overall detection, may nevertheless influence the assess-
ment of target species population management (Nichols 
et al. 2008). 

Since this study was undertaken, we note that camera traps 
have been demonstrated to be a highly effective monitor-
ing tool for some larger reptile species, including monitor 
lizards, with high and unbiased detection probabilities 
reported (Ariefiandy et al. 2013, 2014; Einoder et al. 2018; 
Moore et al. 2020). Therefore, replacing sand pads with 
baited camera traps in our multi-method approach could 
retain high, but less biased, detection that would increase 
the magnitude and certainty that fox baiting had a positive 
effect on lace monitor populations (Ariefiandy et al. 2013; 
Jessop et al. 2013; Purwandana et al. 2014). Noting that 
camera traps can be placed in the environment for relatively 
long periods, without checking, extending the time during 
which detections can be obtained. 

Management implications 

There are two broader outcomes for management from this 
study. First, integrating different monitoring methods can 
improve detection and site occupancy estimates for target 
wildlife species because it inherently increases the number 

of detections and reduces the influence of species-specific 
detection biases or method failures (Stokeld et al. 2015; 
Boback et al. 2020). This result is significant because it can 
often be challenging to infer target species responses to 
management actions if they have poor detection. Second, 
even when individual methods detect target species well, 
they might not accurately report management effects on 
wildlife due to detection biases that affect site occupancy 
estimates. Thus wildlife ecologists must be aware of the 
strengths and limitations of different detection methods, and 
associated sampling biases, to best demonstrate the benefits 
of wildlife management for biodiversity (Lindenmayer 
and Likens 2010; Hayward et al. 2015). 

Supplementary material 

Supplementary material is available online. 
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