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Abstract. Horseshoe (Rhinolphidae) and Old World leaf-nosed (Hipposideridae) bats are high duty cycle (HDC)
echolocators sharing a suite of adaptations including long duration signals relative to their signal periods, peak energy
concentrated in a narrow spectral band dominated by a constant frequency (CF) component, ‘auditory fovea’ (over-
representation and sharp tuning of neurons responsible for frequencies at or around the CF) and ability to compensate
for Doppler shifts in echoes. HDC bats separate signals from returning echoes in the frequency domain. Rhinolophids
are more specialised neurobiologically than hipposiderids, producing longer duration signals at higher duty cycles, and
have narrowly tuned auditory fovea and almost full Doppler shift compensation. Here, I examine whether these
differences have produced ecological divergence between the families by testing predictions of differences in prey
perception, prey capture behaviour, foraging habitat and diet. I found no discernible differences in these variables
between the two families. Rhinolophids and hipposiderids both forage close to vegetation, capture prey by aerial
hawking and gleaning from surfaces, and consume mostly flying insects with spiders and terrestrial, flightless
arthropods taken occasionally. The data presented here show that the two families are similar in foraging ecology
despite differences in echolocation and audition.
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Introduction

Echolocation is a sensory system involving the tight coupling
of signal production and echo reception that is used by species
in four orders of mammals and two orders of birds.
Echolocating animals orient by collecting information from
the difference between signal pulses and returning echoes to
form an acoustic image of their environment (Fenton et al.
2012). While all echolocators use the system for orientation,
echolocation is also used for prey detection by bats and
odontocete whales (Fenton et al. 2012).

Among bats (Chiroptera) several distinct approaches to
echolocation have evolved, with each approach differing in the
structure of the echolocation calls and in how the calls are
separated from echoes. Each approach has resulted in the
evolution of a unique set of auditory adaptations that enable
signals to be received and processed by the brain (Neuweiler

1990; Fenton et al. 2012). Most echolocating bats avoid
forward masking, the process by which louder outgoing
signals mask or reduce the sensitivity of the animal to the
weaker returning echoes, by separating pulse and echo in the
time domain (Fenton et al. 1995). An alternative strategy is
found in high duty cycle (HDC) echolocators that separate
pulse and echo in the frequency domain (Schuller 1974). The
duty cycle (DC) is the percentage of time that a bat is
producing sound (Fawcett et al. 2015). Duty cycles of HDC
bats range between 25 and 70%, whereas those of other
echolocating bats typically range between 5 and 20% (Fenton
et al. 1995).

Fenton et al. (2012) state that HDC echolocators share a
unique combination of four adaptations. First, they emit
echolocation signals with long durations relative to their signal
periods. Second, the peak energy of each signal is concentrated
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in a narrow spectral band dominated by a constant frequency
(CF) component. These signals typically consist of two or
more harmonics each composed of a long constant frequency
component terminated by a brief frequency modulation (FM)
(Neuweiler 2003). The most intense harmonic is the second
harmonic (CF2). The resting frequency of CF2 is very stable
and shows little deviation from the mean value. Third, they
possess an ‘auditory fovea’, a spatial over-representation and
sharp tuning of the neurons responsible for frequencies at or
around the second harmonic of the CF call component, both on
the basilar membrane within the cochlear of the inner ear and
in the neurons of the centres of the ascending auditory pathway
of the brain. Narrow tuning is achieved via several pronounced
anatomical adaptations within the fovea, including structural
specialisation of the basilar and tectorial membrane of the
inner ear (Neuweiler 2003). Last, they show Doppler shift
compensation (DSC), an adaptation to overcome Doppler
shifts, the change in sound frequency associated with the
movement of the sound source (nostril of the bat) relative to
the receiver (ears of the bat). Typically, Doppler shifts result in
the frequency of returning echoes being higher than the narrow
frequency range to which the auditory fovea is tuned,
therefore, DSC involves lowering the frequency of the next
outgoing signal to compensate for the Doppler-shifted increase
in frequency of the echo from the previous signal resulting
from the bat’s flight (Neuweiler 2000, 2003). DSC is a precise
behavioural mechanism that operates at exceptional speed
(Grinnell 1989).

HDC echolocation, as defined above, is known from
~200 species of echolocating bats. All except one species
are in three families in the suborder Yinpterochiroptera:
Rhinolophidae (horseshoe bats, 103 species in a single genus),
Hipposideridae (leaf-nosed bats, 88 species in seven genera)
and Rhinonycteridae (trident-nosed bats, nine species in four
genera) (Mammal Diversity Database as at May 2020:
American Society of Mammalogists 2020). The only other
known HDC echolocator, Pteronotus parnellii (Mormoopidae)
is within the suborder Yangochiroptera.

The features of the echolocation system of HDC bats are
clearly interconnected and appear to have evolved in response
to the same selective pressures, thus representing a complex
adaptation (sensu Walter 2003). The auditory fovea could not
function effectively without the ability to compensate for
Doppler shifts. In turn, these auditory adaptations enable bats
to call at high duty cycles because they can cope with temporal
overlap between signals and echoes. Although HDC
echolocators share the four characters outlined above, there are
differences in these characters among the families of HDC
echolocators. The functioning of the HDC echolocation system
has been examined in most detail in the Rhinolophidae where
a close link has been established between the use of HDC
echolocation and foraging within dense vegetation, which has
high levels of acoustic clutter (i.e. echoes from background
objects that interfere with the perception of echoes from the
target). This work indicates that the rhinolophid echolocation
system is adapted for coping with clutter while enabling
horseshoe bats to detect and capture flying insects
(e.g. Neuweiler et al. 1987). Because of this understanding the
rhinolophid approach to echolocation is described as a flutter

detection and clutter rejection system (Schnitzler and
Denzinger 2011).

Multiple studies suggest that rhinolophids are the most
specialised HDC echolocators in terms of neurobiological
characters, with the hipposiderids and rhinonycterids the least
specialised and Pteronotus parnellii in between (Fenton et al.
2012, and references therein). Jacobs et al. (2007) expanded
this perspective and questioned whether the neurobiological
differences meant that rhinolophid and hipposiderid bats had
diverged in foraging ecology and, therefore, should not be
regarded as belonging to the same foraging guild. The purpose
of this review is to examine the proposition of Jacobs et al.
(2007) that the differences in neurobiological adaptations
among the two families has resulted in differences in foraging
ecology, i.e. to address whether Rhinolophidae and
Hipposideridae belong to the same foraging guild. I have
excluded Rhinonycteridae from this analysis. Formerly included
within the Hipposideridae, Rhinonycteridae was recently
separated into its own family (Foley et al. 2015) and little
information is available for most species. The Rhinolophidae and
Hipposideridae both possess an ornate noseleaf and have broad
mobile ears (Hall 1989a, 1989b). The two families broadly
overlap inwingmorphology, havingwing designs suited for slow
and manoeuvrable flight (Norberg and Rayner 1987).

The review first provides a summary of HDC echolocation
in rhinolophid bats focussing on explanations of how
neurobiological adaptations influence important aspects of
foraging, including prey perception, prey capture behaviour,
habitat and diet. Next, I summarise differences in echolocation
signals and neurobiological structures between rhinolophids
and hipposiderids and make specific, testable predictions of
how these differences could influence foraging ecology. I then
test the predictions by summarising published information
on prey perception, prey capture behaviour, habitat and diet
of the two families.

The HDC echolocation system in rhinolophid bats

Rhinolophid bats frequently forage around vegetation
(e.g. Neuweiler et al. 1987; Jones and Rayner 1989; Pavey
1998a). While foraging around vegetation, rhinolophid bats
are able to reject acoustic clutter and detect the wingbeats of
fluttering insects (Schnitzler et al. 1985; Neuweiler et al. 1987;
Neuweiler 1990). The pure tone echoes from the calls of these
bats are highly noise resistant, being able to maintain their
structure despite the movement of foliage (Neuweiler 1989,
1990). Rübsamen et al. (1988) proposed that the requirement
for clutter rejection led to bats, which already had pure tone
signals, developing narrow auditory foveae. A pure tone signal
is more resistant than any other type of signal provided the
receiver is tuned to the frequency of the signal. The fovea
provides such auditory tuning. The use of such a narrow
receiving filter requires a long duration signal. Therefore, a
byproduct of the evolution of a narrow auditory fovea was the
use of long duration pure tone signals. Thus the narrowly tuned
auditory filter can be seen as an evolutionary adaptation for
clutter resistance (Neuweiler 1989).

The Doppler-shifted long pure tone signals of rhinolophids
allow the detection of glints from fluttering insects, thus being
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effective in the detection of fluttering targets but not targets in
other situations. Rhinolophids are able to use both positive
and negative DSC and therefore are able to deal with increases
and decreases in the frequency of returning echoes (Metzner
et al. 2002). The echoes carry distinct ‘acoustical glints’ from
fluttering targets such as flying insects. The glints are brief
frequency and amplitude modulations superimposed on the CF
component of the echo by reflections from the moving wings
of an insect. The glints are generated by the rhythmic motion
of the insect’s wings relative to the direction of sound
propagation from the bat (Schnitzler 1987; Kober and
Schnitzler 1990). Amplitude glints are produced by changes in
the reflective area of the fluttering insect; when the insect’s
wings are perpendicular to the direction of sound propagation
it presents a larger reflective surface compared with the body
of the insect than when the wings are horizontal. Frequency
glints are spectral broadenings in the CF component of the
echo produced by the movement of the insect’s wings towards
or away from the bat. Frequency glints provide information on
the direction of travel of the insect and are superimposed on the
overall CF echo from the insect’s body (Fenton et al. 2012, and
references therein). In comparison to the high level of detail
obtained from an insect moving its wings, the Doppler-shifted
echoes do not carry glints from insects that do not move their
wings.

The information on wingbeats of insects available to
rhinolophid bats from amplitude and frequency glints in
returning Doppler-shifted echoes raises the possibility that the
bats can recognise particular types of insects (Schnitzler 1987;
von der Emde and Schnitzler 1990; Kober and Schnitzler
1990). Rhinolophid bats in the laboratory are able to classify
insects on the basis of their wingbeat frequency and,
consequently, may be able to actively select prey in the wild
(von der Emde and Menne 1989). A higher duty cycle
increases the probability that a glint is contained in an
echo coming from fluttering prey and only bats with CF
durations >40 ms will frequently receive multiple acoustic
glints over several wingbeat cycles of a fluttering insect in a
single echo (von der Emde and Schnitzler 1986; Fenton et al.
2012).

The ability of rhinolophids to detect fluttering targets is not
confined to areas with high levels of acoustic clutter. However,
because flutter detection is advantageous in a highly cluttered
environment, rhinolophid bats are at a competitive advantage
in areas of dense vegetation. Insects flying around vegetation
at night are a rich, underexploited food resource, particularly
in the Old World where a small proportion of bat species
forage in cluttered settings (Fenton et al. 1995). Therefore,
rhinolophid species are expected to favour such foraging
habitat.

Comparison of HDC echolocation in rhinolophids and
hipposiderids

Here I examine differences in echolocation signals and
neurobiological structures between rhinolophids and
hipposiderids. I summarise information on signal duration
and duty cycle, Doppler shift compensation and the degree of
tuning of the auditory fovea.

Signal duration and duty cycle

Data on signal duration and duty cycle were collated for those
studies that recorded resting frequency of hand-held bats, to
avoid Doppler-shift effects (e.g. Jacobs and Bastian 2018), or
search phase signals of flying bats (i.e. feeding buzzes were
excluded). Data on signal duration are available for a sample of
25 rhinolophid and 10 hipposiderid species (Fig. 1). No
overlap in signal duration occurs between the two families.
Rhinolophid species have longer duration calls (range of
20.8 to 53.5 ms) than hipposiderids (range of 5.4 to 12.0 ms)
(Fig. 1).

Data on duty cycle are available for 24 rhinolophid and
6 hipposiderid species (Fig. 2). The data summarised in the
figure disagree with a previous summary (see table 1 of
Jones 1999), which showed that the duty cycles of the two
families did not overlap and variation within families was not
great. After Jones (1999), a wider sample of rhinolophid
species has been assessed. Evidence has emerged of overlap in
duty cycles across the two families and of intraspecific
variation in signal frequency across geographic ranges and
depending on the task being undertaken and the habitat
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Fig. 1. Signal duration of rhinolophid (filled circles, n = 25 species) and
hipposiderid (open triangles, n = 10 species) bats plotted against maximum
frequency of the CF component of calls.
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Fig. 2. Duty cycle of rhinolophid (filled circles, n = 24 species) and
hipposiderid (open triangles, n = 6 species) bats plotted against maximum
frequency of the CF component of calls.
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(e.g. Pavey et al. 2001a). Intrafamily variation in duty cycles
can be noticeable. For example, hand-held individuals of
R. macrotis (forearm length, 41.8 mm) and R. lepidus (forearm
length, 41.5 mm) that roosted in the same cave had duty cycles
of 39.23% and 54.70%, respectively, when measured using
identical methods (Shi et al. 2009).

In general, duty cycles of rhinolophids are greater than
those of hipposiderids. Typical duty cycles of rhinolophid bats
in flight are over 50%, whereas those of hipposiderid species
are 35% or less (Fig. 2). Fullard et al. (2008) recorded the
highest duty cycle for a hipposiderid bat so far. In their study,
H. ater recorded flying inside a roost had a duty cycle of 54.2%
with an interpulse interval of 4.6 ms and a signal duration of
5.0 ms. In the same study, R. megaphyllus had a duty cycle of
51.7% with an interpulse interval of 55.4 ms and a signal
duration of 52.9 ms. In this case the duty cycles of the two
species were similar despite the much longer duration signals
of R. megaphyllus. Hipposideros ater had a high duty cycle as
a result of a shorter interpulse interval and higher pulse
reputation rate.

Doppler shift compensation

Accurate measurement of DSC requires experimentation on
captive animals under controlled conditions. Therefore, data
are available only for a small sample: two rhinolophids, and
three hipposiderid species. Both R. ferrumequinum and
R. rouxi (Schuller 1980) exhibit close to full compensation
(100%) of Doppler-shifts in returning echoes. In comparison,
H. speoris and H. bicolor exhibit 55–56% compensation
(Habersetzer et al. 1984), whereas H. lankadiva had a higher
capacity to compensate at 77% (Pillat and Schmidt 1998).

Auditory fovea and stability of the resting frequency

The degree of tuning of the auditory fovea has been measured
with respect to tonotopic organisation of brain centres.
Audiograms of rhinolophid and hipposiderid species allow
comparison of the auditory fovea. A finely tuned auditory
fovea was first demonstrated in R. ferrumequinum (Schuller
and Pollak 1979). In this species the auditory fovea is
considered to consist of a 1.5 kHz band from 83.0 to 84.5 kHz.
A total of 16% (96 neurons) of all neurons had best frequencies
within this band (Schuller and Pollak 1979). A similarly very
sharply tuned fovea has been shown in R. rouxi (Schuller
1980). By comparison, audiograms of three hipposiderid
species are not so narrowly tuned and less sensitive to emitted
frequencies. The species assessed have been H. speoris and
H. bicolor (Neuweiler et al. 1984) and H. lankadiva (Peters
1987 cited in Foeller and Kössl (2000)). Further, in H. speoris
and H. bicolor the neurons that process pure tone frequencies
occur in a smaller and more confined part of the inferior
colliculus (Neuweiler et al. 1984).

Measurements of otoacoustic emissions of the bat cochlea
also provide comparative data on the hearing abilities of bats.
Otoacoustic emissions are sound waves generated by the
cochlea that can be measured in the outer ear canal. If
stimulated with two tones (f1 and f2) the cochlea generates
distortion-product otoacoustic emissions (DPOAEs). The
threshold curves for these DPOAEs, the so-called distortion-

product audiogram, gives a close approximation to the
neuronal audiogram for a given species (Vater 1998). Using
this approach Foeller and Kössl (2000) demonstrated that
H. lankadiva has a broader cochlear fovea than R. rouxi. The
DPOAE threshold curves showed the threshold increase to
CF2 inH. lankadiva amounted to ~20 dB compared with 40 dB
in R. rouxi. Further, H. lankadiva lacked a sharply tuned
threshold minimum slightly above CF2 (Foeller and Kössl
2000).

Stability of the resting frequency of calls has been
measured in several species of rhinolophid and hipposiderid.
Bats at rest do not experience Doppler shift and emit calls at
the resting frequency, which can be used as an indirect
measure of the auditory fovea (Jacobs et al. 2007). The resting
frequency of rhinolophid bats is kept with high accuracy;
standard deviation of calls around the resting frequency
was 0.20% in R. rouxi (Schuller 1980) and 0.113% in
R. ferrumequinum (Zhang et al. 2019). By comparison, resting
frequency of hipposiderid species shows more variation.
Standard deviation of the resting frequency was 0.50% for
H. speoris and 0.75% forH. bicolor (Schuller 1980). However,
Zhang et al. (2019) reported a high precision in H. armiger
of 0.165%, similar to the results of Schoeppler et al. (2018) for
the same species (0.17%).

Pattern of variation in HDC echolocation between
rhinolophids and hipposiderids

The data summarised here show differences in signal and
auditory characters between the two families. Rhinolophid
bats typically call at high duty cycles by giving long duration
signals with low pulse repetition rates, have narrowly tuned
auditory fovea, and almost full DSC. In contrast, hipposiderid
bats typically call at lower duty cycles by producing moderate
duration signals with high pulse repetition rates. The auditory
fovea of hipposiderids is more broadly tuned than that of
rhinolophids and they perform less well at DSC.

Prediction of ecological consequences of differences in
HDC echolocation

The evidence presented in the previous section indicates
that the HDC echolocation system of rhinolophids is adapted
to enable them to exploit insects flying within areas of dense
vegetation, a resource that is underexploited. Long duration
pure tone signals produced at high duty cycles and a very
narrowly tuned auditory fovea facilitated by DSC allow
these bats to capture fluttering insects while overcoming
environmental clutter. Following the logic for the functioning
of the specialised HDC system in rhinolophid bats, the shorter
CF signals, more broadly tuned auditory filter, individual
variation in CF2 frequency and only partial compensation
for Doppler-shifts demonstrate that hipposiderids are not
restricted to focus the CF2 echo in a very narrowly tuned
auditory fovea (Foeller and Kössl 2000). As a result, if
the interpretation of the consequences for foraging of HDC
echolocation in rhinolophids is correct, hipposiderids
should not be restricted to hunting fluttering insects in dense
vegetation. Based this understanding, predictions of expected
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differences in aspects of foraging ecology between the two
families are outlined in Table 1.

Hipposiderids may have an entirely unique approach to
foraging. Recently, Zhang et al. (2019) suggested that the
broader auditory fovea and DSC of hipposiderids could
provide higher tolerance to changes in Doppler shifts. This, in
turn, may enable them to more effectively capture fast evasive
prey in relatively open habitats without needing to
significantly adjust their vocalisations to overcome Doppler
shift changes in echoes (Zhang et al. 2019).

Comparison of prey capture behaviour, foraging habitat
and diet in rhinolophids and hipposiderids

Most research on HDC echolocators has occurred in controlled
environments, including the laboratory and flight tents/rooms
(e.g. Fawcett et al. 2015; Schoeppler et al. 2018; Zhang et al.
2019). Field-based research has been comparatively limited,
with most data coming from studies of bat assemblages
(e.g. Aldridge and Rautenbach 1987; Rakotoarivelo et al.
2007). Relatively few single-species studies have been carried
out on rhinolophid and hipposiderid bats foraging in the wild.
However, sufficient information is available to provide a
preliminary assessment of the predictions given in Table 1.

Prey perception

The sensory cues involved in prey capture have been assessed
for three species each of Rhinolophidae and Hipposideridae
(Table 2). Observations were carried out in the laboratory
(Link et al. 1986), a field tent (Siemers and Ivanova 2004) or
on free-flying bats (Bell and Fenton 1984). Each species was
able to detect flying and fluttering insects; however, only
H. bicolor captured walking insects (Table 2). Cockroach
nymphs were gleaned from the ground by H. bicolor during
24 of 33 trials (Link et al. 1986). These observations support
the prediction that hipposiderid bats can use a wider range of
sensory cues than rhinolophid bats, including the capture
of non-flying prey.

Prey capture behaviour

Quantified observations of prey capture behaviour in wild bats
are available for seven species of Rhinolophus and eight
hipposiderid species (Table 3). The majority of studies have
used radio-telemetry as the method to track bats; however,
light tagging and repeated observation of known individuals at
foraging sites have also been used.

Rhinolophids and hipposiderids both forage using
continuous flight and/or perch hunting with continuous flight

Table 1. Predicted differences in prey capture behaviour, foraging habitat and diet between rhinolophid and hipposiderid bats

Variable(s) Prediction Explanation

Prey perception and prey
capture behaviour

Rhinolophids will use a restricted number of, or show
a decreased frequency of use of, some prey capture
behaviours compared with hipposiderids.

Long duration signals and more narrowly tuned auditory fovea of
rhinolophids are efficient at detection of flying/fluttering prey but
may not enable detection of non-fluttering prey. The less
specialised system of hipposiderid bats may allow them to detect
non-fluttering targets or may be used in combination with other
sensory cues (e.g. prey-generated sounds).

Foraging habitat Rhinolophids will select foraging areas with high
levelsof acoustic clutterwhereashipposideridswill
use a wider range of microhabitats.

Rhinolophid echolocation is optimised for clutter resistance.
Although not restricting foraging to clutter, they should have a
competitive advantage exploiting insects close to vegetation and,
therefore, select these areas. Hipposiderids, which are less
specialised for clutter resistance, should forage away from clutter
more often.

Diet Rhinolophids will take a narrower prey base and/or
show prey selectionmore often than hipposiderids.

Long pure tone signals of rhinolophids, enabling detection of
amplitude and frequency modulations in glints, should allow
classification and selection of fluttering insects but may not enable
capture of wingless or non-fluttering insects. Shorter duration
signals of hipposiderids are not so effective at prey classification so
a larger range of prey should be captured.

Table 2. A summary of insect activities that initiated an attack response in three species each of Rhinolophus and Hipposideros

Species Prey activity Source
Flight Flutter Walk Stationary

Rhinolophus rouxi � � � � Link et al. (1986)
R. blasii � � not tested � Siemers and Ivanova (2004)
R. euryale � � not tested � Siemers and Ivanova (2004)
Hipposideros bicolor � � � � Link et al. (1986)
H. speoris � � � � Link et al. (1986)
H. cafferA � � not tested � Bell and Fenton (1984)

AListed as H. ruber.
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being the dominant behaviour of each species, except for the
two largest hipposiderid species (forearm length >78 mm).
Rhinolophids and hipposiderids captured prey by aerial
hawking or by gleaning from surfaces, including the ground
(Table 3). All species, except for Asellia tridens, captured prey
mostly by aerial hawking. Asellia tridens hunted mostly by
gleaning from vegetation with occasional aerial hawking
(Amichai et al. 2013). Four species from each family captured
insects by gleaning from vegetation. Three rhinolophid species
and two hipposiderid species captured prey from the ground.
In addition, ground gleaning has been observed or inferred
from dietary data for R. ferrumequinum (Ransome 1990;
Ahmim and Moali 2013), R. euryale (Ahmim and Moali 2013)
and R. blasii (Ahmim and Moali 2013). No other method of
prey capture has been recorded for these families.

In summary, the available data on prey capture behaviour
provide no support for the prediction that hipposiderid bats use
a larger range of behaviours than rhinolophids. Although the
experimental data presented in Table 2 indicated that only
H. bicolor could capture walking prey, species of Rhinolophus
are clearly able to glean prey from the ground.

Foraging habitat

Research on foraging by HDC bats in the wild enables a
comparison of foraging habitat on the basis of the amount of
clutter within foraging habitat (Table 4). For those studies
where foraging areas were based on microhabitat use, as
defined by Aldridge and Rautenbach (1987), areas within 2 m
of vegetation or water surfaces were considered to be high in

clutter. These included the following microhabitats of
Aldridge and Rautenbach (1987); Zone 2, within 0.5 m of
water surface; Zone 4, within stands of vegetation but >0.5 m
from foliage; Zone 5, within stands of vegetation but �0.5 m
from vegetation; Zone 6, surfaces of foliage; and Zone 7,
within foliage. The classification of ‘open space’ used by
Pavey and Burwell (2000) referred to foraging areas within
stands of vegetation that were >0.5 m but <2.0 m from
vegetation; therefore, such areas are classified as being high in
clutter for the purposes of the current assessment.

Of a sample of seven species of Rhinolophus, each species
favoured foraging areas that were classified as having high
levels of clutter (Table 4). Only three of these species were
observed foraging in areas classified as having low levels of
clutter. Rhinolophus ferrumequinum showed seasonal
variation in use of clutter, avoiding low clutter foraging areas
in spring but using them frequently in autumn (Jones and
Morton 1992) or summer/autumn (Bontadina et al. 1995).

The same pattern of foraging in areas with high levels of
clutter is shown in studies that do not quantify habitat use and
in studies that measure activity using bat detectors. Cluttered
areas are not necessarily restricted to stands of continuous
vegetation, with some Rhinolophus species exploiting edge
habitat such as hedgerows, edges of stands of forest and
internal forest edges (e.g. Bontadina et al. 2002; Law and
Chidel 2002; Russo et al. 2002, 2005; Goiti et al. 2008; Jiang
et al. 2008; Lee et al. 2012, 2020; Law et al. 2020).

As with rhinolophid bats, each species in the sample of
hipposiderid bats favoured foraging areas that were classified
as having high levels of clutter (Table 4). Similar to

Table 3. Prey capture behaviour of rhinolophid and hipposiderid bats in the wild
Species are arranged in decreasing order of size within genera. Data for R. philippinensis, R. hipposideros and H. caffer are the number of prey captures
observed, whereas data for the other species are the number of foraging bouts (or bat passes) during which the particular prey capture behaviour was

observed. NS, sample size not stated in source; �, prey capture method used but not quantified; �, prey capture method not used

Species No. of prey
captures or

foraging bouts

% of all prey captures/bouts Reference
Aerial
hawk

Glean:
vegetation

Glean:
ground

Rhinolophidae
Rhinolophus ferrumequinum NS 100 0 0 Jones and Rayner (1989)
R. philippinensis large form 7 86 0 14 Pavey (1999)
R. rouxi NS 100 0 0 Neuweiler et al. (1987)
R. blasii NS � � � Siemers and Ivanova (2004)
R. euryale NS � � � Siemers and Ivanova (2004)
R. megaphyllus 71 98.6 1.4 0 Pavey and Burwell (2004)
R. hipposideros 8 50 37.5 12.5 Jones and Rayner (1989)

Hipposideridae
Macronycteris commersoniA 119 83 17 0 Vaughan (1977)
Hipposideros diadema 14 100 0 0 Pavey and Burwell (2000)
H. speoris 736 100 0 0 Habersetzer et al. (1984)
H. speoris 42 95.2 0 4.8 Pavey et al. (2001a)
H. cervinus 39 97.5 2.5 0 Pavey and Burwell (2000)
H. cafferB NS � � � Bell and Fenton (1984)
H. bicolor 3581 75–78 22–25 0 Habersetzer et al. (1984)
H. ater 11 100 0 0 Pavey and Burwell (2000)
Asellia tridens NS � � � Amichai et al. (2013)

AListed as H. commersoni.
BListed as H. ruber.
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Rhinolophus, three species were also observed foraging in
areas classified as having low levels of clutter.

The preference for areas with high levels of clutter by
hipposiderid species is demonstrated by assessments of habitat
preference. For example, Hipposideros aff. ruber foraging in a
mosaic of agricultural land and remnant forest in Ghana, West
Africa, selected seminatural habitats and wooded savannah
while avoiding cocoa farms and grass savannah (Nkrumah
et al. 2016). The preference for high levels of clutter is also
shown by the large species ofMacronycteris and Hipposideros
that forage solely or mostly by perch hunting (e.g. Pavey
1998b; Razafimanahaka et al. 2016). Macronycteris
commersoni foraging in a forest–agricultural mosaic in eastern
Madagascar selected sheltered littoral forest over agricultural
land and sea-inundated forest (Razafimanahaka et al. 2016).

In summary, the information collected to date does not
show a difference in use of habitat by the two families based on
the levels of clutter. Hipposiderid bats, including the larger
species, which have no similar sized equivalents among
Rhinolophus, show a preference for foraging in areas of high
clutter as do rhinolophid species. Although Pavey et al.
(2001a) suggested that hipposiderid bats may spend more time
foraging in edge habitats, at a microhabitat scale they select
areas of high clutter within habitat mosaics.

Diet
Studies that assessed the diet of rhinolophid and hipposiderid
bats were collated to compare the diets of the two families.
I used published research that reported a sample size of at least
20 faecal pellets (or at least five stomachs of individual bats)
per species, providing a dietary sample for 15 Rhinolophus
species and 12 hipposiderid bats. Some species were covered
by multiple studies. For example, I found eight papers on the
diet of Rhinolophus hipposideros that matched my criteria
(Supplementary Material).

All species assessed captured predominantly flying insects
(Fig. 3 and Supplementary Material). Apart from flying insects,
several other prey groups were captured by both families but
always in low numbers (Fig. 3). Rhinolophus species captured
spiders, centipedes and isopods. Four species (R. ferrumequinum,
R. euryale, R. blasii, R. hipposideros) captured centipedes, all in
the Great Kabylia region of north-east Algeria (Ahmim and
Moali 2013). Rhinolophus hipposideros also captured spiders
and isopods. Isopod predation was restricted to one study in
Britain and Ireland (Williams et al. 2011), whereas spider
predation took place in four of eight studies (Supplementary
Material) and an additional three studies listed by Mitschunas
and Wagner (2015). The other species recorded taking spiders
was R. ferrumequinum (Ahmim and Moali 2013).

Table4. Thepercentageof foraging timespentbyrhinolophidandhipposideridbats inareaswithhigh (withinandat edgeof standsofvegetation)and
low (open) levels of clutter

Ticks and crosses are used to show use or avoidance, respectively, of areaswith high or low levels of clutter where there is no quantification. ‘Amount of clutter’
category is based on total foraging time

Species Vegetation type Amount of clutter Source
High Low

Rhinolophidae
Rhinolophus hildebranti Woodland and riparian forest 100 0 Fenton and Rautenbach (1986);

Aldridge and Rautenbach (1987)
R. ferrumequinum – spring Woodland–farmland mosaic 99 1 Jones and Morton (1992)
– autumn Woodland–farmland mosaic 63 37 Jones and Morton (1992)
R. ferrumequinum – spring Forest–farmland mosaic � Bontadina et al. (1995)
– summer/autumn Forest–farmland mosaic � � Bontadina et al. (1995)
R. rouxi Rainforest 100 0 Neuweiler et al. (1987)
R. euryale Woodland–pasture mosaic � � Goiti et al. (2003)
R. megaphyllus Woodland–farmland mosaic 100 0 Pavey (1998a)

Open forest 100 0 Pavey and Burwell (2004)
Rainforest (two sites combined) 100 0 Pavey and Burwell (2004)

R. clivosus/R. capensisA Forest and scrubland 90 10 McDonald et al. (1990)
R. hipposideros Along a river bank � � Jones and Rayner (1989)
R. hipposideros Woodland–farmland mosaic 100 0 Schofield (1996)

Hipposideridae
Hipposideros diadema Rainforest 100 0 Pavey and Burwell (2000)
H. speoris University campus 58 42 Habersetzer et al. (1984)
H. speoris Forest and forest–farmland mosaic 100 0 Pavey et al. (2001a)
H. cervinus Rainforest 100 0 Pavey and Burwell (2000)
H. ruber Not stated 100 0 Jones et al. (1993)
H. caffer Woodland 100 0 Aldridge and Rautenbach (1987)
H. bicolor University campus 72 28 Habersetzer et al. (1984)
H. ater Rainforest 100 0 Pavey and Burwell (2000)
Asellia tridens Not stated 81 19 Jones et al. (1993)

ACombined data given in McDonald et al. (1990).
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Hipposiderid species were recorded consuming insect
larvae, spiders and scorpions. Insect larvae were prey of
H. caffer in a single study (Whitaker and Black 1976).
Likewise, scorpion predation was noted only for
Macronycteris commersoni in Madagascar (Rakotoarivelo
et al. 2009). However, spider predation was noted for seven of
the 12 hipposiderid species (Fig. 3): H. diadema (Pavey and
Burwell 1997), H. khasiana (Thabah et al. 2006), H. speoris
(Pavey et al. 2001a, 2001b), H. cervinus (Pavey and Burwell
2000), H. caffer (Bowie et al. 1999), H. ater (Milne et al.
2016) and Asellia tridens (Loumassine et al. 2019). One
species of Hipposideros also captured birds (Pavey and
Burwell 1997).

The dietary information summarised here provides the
unexpected result that species of Rhinolophus are not restricted
to capturing winged insects. While spiders may be captured
aerially while they are ballooning this behaviour is mostly
restricted to small individuals (Sutter 1999) and bats are most
likely to glean them from webs, foliage or the ground.
Centipedes and isopods are terrestrial and flightless and must
be gleaned from the ground. There appears to be no alternative
situation in which Rhinolophus could encounter these two
groups of invertebrates.

Although further investigation is needed, the dietary data
summarised here do not indicate that rhinolophid bats have a
restricted prey base. Species from both families captured flying
and flightless invertebrates. While this range of prey is lower
than the extreme diversity shown by, for example, the
terrestrial foraging New Zealand lesser short-tailed bat
(Mystacina tuberculata) in wet forests (Czenze et al. 2018),
both families captured a range of arthropods.

Summary

An important premise in interpretations of the evolutionary
ecology of insectivorous bats is that both their echolocation
signals and auditory capacities are adapted to the acoustical
constraints of their foraging environment (Neuweiler 2000).
Based on this relationship, it is expected that the echolocation
and neurobiological differences between rhinolophid and
hipposiderid bats, identified above, should result in differences
in their prey capture behaviour, foraging habitat and diet. The
major finding from this review is that there is no discernible
difference in prey capture behaviour, foraging habitat and diet
based on available information. Rather, the data summarised
here indicate that rhinolophids and hipposiderids occupy
similar foraging habitat and exploit the same prey base, but
each family uses a distinct approach to echolocation to enable
it to do so. Further insights on this issue will require more
field-based investigations that combine assessment of
echolocation and foraging ecology (prey capture, foraging
habitat and diet) of species from both families. An
understanding of the echolocation and foraging ecology of the
little known and enigmatic species in the Rhinonycteridae may
also prove fruitful. There is a need to seek further clarification
on how laboratory assessments of audition translate into
foraging performance in the wild. Evidence of predation on
centipedes by four species of rhinolophid demonstrates that
these bats do capture non-fluttering prey (Ahmim and Moali
2013) and challenges explanations of the importance of
fluttering target detection in prey capture by this family.
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