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Abstract. Using single nucleotide polymorphisms and mitochondrial DNA sequences we find some evidence of
genetic structure within a widespread and naturally fragmented species, the purple-gaped honeyeater (Lichenostomus
cratitius), of southern Australian mallee shrublands. The very earliest stages of differentiation either side of the
Nullarbor Barrier may already have been arrested by gene flow, some of which may have been anthropogenically
induced.
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Introduction

Interest in the roles of biogeographical barriers in speciation
and differentiation arises from several sources. These include
whether present-day distributions of species and recognised
subspecies correlate with and can be explained by
biogeographical barriers. One approach to address these
interests is to test for molecular phylogeographic structure
within a species and link it to barriers. These approaches
underpin the ever-burgeoning phylogeographic literature on
the evolution of terrestrial and marine species. Examples from
across southern Australia, this paper’s area of interest, are
typical.

Two biogeographical barriers of interest in many southern
Australian phylogeographic studies are the Nullarbor and
Eyrean Barriers (Fig. 1). They have affected different species
at different times (Crisp and Cook 2007) and according to
different ecologies (e.g. diet: granivory, insectivory,
nectarivory; habitat: mesic or xeric: Dolman and Joseph 2012).
Some species with geographical ranges naturally fragmented
by these two barriers have no subspecies and no discernible
phylogeographic structure (e.g. tawny-crowned honeyeater,
Gliciphila melanops: Dolman and Joseph 2012). Others are
more continuously distributed across all of southern Australia.
They show contrasting taxonomic and phylogeographic
patterns, indicating a range of temporal and spatial effects of
these two barriers (cf. Alpers et al. 2016 in wombats;
Donnellan et al. 2009 in birds). More examples from the
growing body of literature relevant to these questions in
southern Australia now include work on reptiles (Edwards

et al. 2015; Ansari et al. 2019), mammals (Cooper et al. 2000,
2018; Pestell et al. 2008; Neaves et al. 2012), fish (Donnellan
et al. 2015), invertebrates (Pons et al. 2006; Rix et al. 2017)
and plants (Crisp and Cook 2007); birds have been especially
studied (Joseph and Wilke 2006; Dolman and Joseph 2015;
McElroy et al. 2020; Norman et al. 2014).

Here we contribute a phylogeographic study of another
southern Australian bird species, the purple-gaped honeyeater
(Lichenostomus cratitius) (Fig. 1). The species occurs in
semiarid habitats across southern Australia, specifically mallee
woodlands, tall heath and associated low eucalypt woodlands
(Menkhorst et al. 2017). Its range is naturally fragmented by
the Nullarbor and Eyrean Barriers. The Kangaroo Island
population (Fig. 1) is isolated by sea. The species is almost
phenotypically invariant. Two weakly differentiated
subspecies are currently recognised (Schodde and Mason
1999): L. c. cratitius on Kangaroo Island and L. c. occidentalis
for all other populations. L. c. occidentalis is thus isolated into
three groups of populations by the Nullarbor and Eyrean
Barriers. Isolation by the Nullarbor Barrier may well have
been partial. Pockets of suitable habitat do occur along
otherwise unsuitable coastal cliffs where the Nullarbor
Plain reaches the sea. Their connectivity has likely been
augmented by anthropogenically provided habitats such as
gardens around Eucla (Fig. 1). Here, we ask whether there is
cryptic genetic differentiation in L. cratitius and, if so, can it be
related to the Nullarbor and Eyrean Barriers, or indeed a sea
barrier, and to currently recognised subspecies? To address
these questions, we have gathered mitochondrial DNA
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(mtDNA) and single nucleotide polymorphism (SNP) data
from the nuclear genome.

Methods

Study design, specimens

We wished to sample the purple-gaped honeyeater
(Lichenostomus cratitius) evenly across its range. Fig. 1 and
Table S1 (Supplementary Material) show locations and other
details of the specimens studied. We lacked samples from what
may be an isolated population at the species’ easternmost
extremity well east of the Eyrean Barrier (Fig. 1) and east of the
BassianVolcanicBarrier (sensuSchodde andMason1999). That
population aside, the largest gap from which no tissue samples
were available before our study was ~1050 km, comprising
710 and 340 km west and east, respectively of Eucla, Western
Australia (Fig. 1). We collected 16 specimens from the former
regionwest of Eucla throughfieldwork in 2017.Wewere unable
to obtain any further samples fromeast ofEucla.Nonetheless,we
are confident that Fig. 1 and Table S1 show reasonably even
sampling of the species across its range.

Genotype-by-sequencing

DNA was extracted from liver samples of L. cratitius (n = 34)
and its sister species, the yellow-tufted honeyeater
(L. melanops) (n = 3) (Nyári and Joseph 2011; Marki et al.
2017; specimens listed in Table S1) using the Qiagen
Puregene® Tissue Kit following the manufacturer’s protocols.
DNA was provided to Diversity Arrays Technology (DArT)
with a concentration of 30 ng mL–1. The DArTseq� genotype-
by-sequencing approach uses a combination of DArT
complexity reduction and high-throughput sequencing (Kilian
et al. 2012; Courtois et al. 2013; Cruz et al. 2013) to
simultaneously identify and genotype SNP markers in the

absence of a reference genome. A combination of two enzymes
were used for complexity reduction (PstI–HpaII), before
addition of custom adapters (Kilian et al. 2012) to restriction
site overhangs. Fragments were amplified using primers
complementary to the adapters. These also incorporated
molecular identifier barcode tags, to allow multiplexing of up
to 96 samples per sequencing run. PCR conditions consisted of
denaturation at 94�C for 1 min; 30 cycles of 94�C for 20 s,
58�C for 30 s and 72�C for 45 s; and a final extension period of
72C for 7 min. PCR products were pooled for sequencing on an
Illumina HiSeq 2000 platform using 77 cycles of single end
sequencing. Raw sequence reads were filtered and processed
using a proprietary DArT analytical pipeline. Poor quality
sequences were removed, with more stringent criteria being
placed upon the barcode region than the rest of the sequence.
Approximately 2 000 000 sequences per barcode were
identified and used in marker calling, during which identical
sequences were collapsed and filtered before screening to
identify variable markers using DArT proprietary SNP and
SilicoDArT algorithms (DArTsoft14).

The R package dartR (Gruber et al. 2018) was used for
population genomic analyses of the DArTseq SNP data,
including filtering data and principal coordinates analysis
(PCoA). SNPs were filtered using the callrate function (99.5%)
and the RepAvg function (1). No monomorphic loci and no
duplicate loci per sequence tag were identified. The proportion
of genetic variation that is attributable to between-population
differentiation, FST,was calculated using theRpackageStAMPP
(Pembleton et al. 2013).

Mitochondrial DNA

We obtained mtDNA sequences for the ND2 gene of
mitochondrial DNA from the 31 L. cratitius (including most of
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Fig. 1. Principle coordinates analyses of the SNP data from the nuclear genome of the two Lichenostomus species. Analyses with data from
(a) L. cratitius (illustrated), the species of interest here, and L. melanops, and (b) L. cratitius only. EB and NB schematically indicate locations of
the Eyrean and Nullarbor Barriers, respectively, and localities mentioned in the text are also shown (Eucla is highlighted by a star). Sample points circled in
the top right quadrant of (a) show the slightest of separation between eastern and western samples on PCoA1 that was not supported in (b). See text for
discussion.
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those analysed for SNP data) and three L. melanops samples.
We used protocols described in Dolman and Joseph (2015) for
DNA extraction and sequencing. Forward and reverse raw
sequences were aligned in Geneious 10.2 (Biomatters) and
subsequently checked and edited manually. Consensus
sequences for all individuals including those of the outgroup
L. melanops were aligned in MUSCLE (Edgar 2004). Gamma
distribution, percentage of invariant sites and model of
sequence evolution were chosen using AIC calculations in
MEGA 7.0 (Kumar et al. 2018). Forward and reverse raw
sequences were aligned in Geneious 10.2 (Biomatters) and
subsequently checked and edited manually. The consensus
sequence for all individuals were aligned in MUSCLE (Edgar
2004). The Tamura–Nei (TN93+G) (Tamura and Nei 1993)
model was chosen using AIC calculations in MEGA X 10.0.5
(Kumar et al. 2018). Phylogenetic trees were prepared using
Garli 2.01 (Zwickl 2006) and visualised in SumTrees
(Sukumaran and Holder 2015).

Nodal support under maximum likelihood was assessed
with 100 bootstrap pseudoreplicates. We used DnaSP 6.11.01
(Rozas et al. 2017) to calculate Da (net nucleotide divergence),
which corrects for shared diversity among the individuals
within groups being compared.

Results

SNP data

We generated 170 551 SNPs. After filtering to remove loci
with missing data, we retained 40 437 SNPs for further
analyses (data lodged at doi: 10.6084/m9.figshare.12798446).
FST between L. cratitius and L. melanops were high, as
expected (0.49–0.51). Within the focal species, L. cratitius,
FST was low, at 0.01. A PCoA plot including both species
(Fig. 1a) shows that 19.8% of the variation in the data was
explained by the first two axes of variation, PCo1 and PCo2,
most of this reflecting the separation, as expected, between the
species L. cratitius and L. melanops. Still with L. melanops
included, very narrow but sharp separation of L. cratitius
samples east and west of the Nullarbor Barrier was suggested
on PCo1 (Fig. 1a). This particular effect disappeared when the
analysis was confined to L. cratitius (Fig. 1b) and a much
smaller proportion of the variation within the species, 9.6%,
was explained by PCo1 (5.2%) and PCo2 (4.4%). The only
structure then apparent on PCo1 was that of all three Kangaroo
Island samples being apart from all others. PCo2 similarly
showed almost all samples clustered together and mostly with
no geographical structure. Two pairs of samples, however – a
pair from Eyre Peninsula and a pair from south of Madura at
the western edge of the Nullarbor Plain – were each well
separated on PCo2. Other samples from both localities fell in
the main cluster. Further filtering the data to remove loci where
rare alleles have frequencies less than 0.25 yielded essentially
identical results (not shown).

MtDNA

Thirty-two ND2 sequences newly acquired in this study
have been lodged in GenBank (accession numbers
MW310592–MW310623). Of these, 30 were from L. cratitius
and three were from L. melanops. Net divergence, Da, between

the two species L. cratitius and L. melanops was substantial at
3.31%. Within L. cratitius itself nucleotide diversity was low
at 0.82%. So too, net divergence, Da, between eastern and
western groups was low at 0.06%. Da between Kangaroo
Island and all mainland samples was an order of magnitude
higher but still low at 0.2%. Phylogenetic analysis showed two
haplogroups, each comprising samples from across the range
(Fig. 2). Only one of these haplogroups was strongly
supported. It comprised five and two samples from the eastern
and western parts of the species’ range, respectively. It was
robustly supported by 99% bootstrap support. The other
haplogroup was weakly supported at 79%. Only one specimen,
ANWC B46696 from near Cummins, Eyre Peninsula, was in
both this mtDNA clade and among weakly differentiated
samples on PCo2 of the SNP analysis (Fig. 1b).

Discussion

We asked whether the Nullarbor and Eyrean Barriers and a sea
barrier have generated genetic differentiation among
populations of the purple-gaped honeyeater (Lichenostomus
cratitius). We were interested in linking any structure to the
species’ very low phenotypic diversity. Based on single
nucleotide polymorphism (SNP) and mitochondrial DNA
sequences, we conclude that the species has very low genetic
diversity and appears almost panmictic. The most strongly
supported genetic structure in the SNP data parallels the
currently recognised subspecies, L. c. cratitius (Kangaroo
Island) and L. c. occidentalis (mainland). Two aspects of our
results warrant further comment.

First, closer inspection of the PCoA analysis of SNP data
including both species L. melanops and L. cratitius (Fig. 1a)
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Fig. 2. Phylogenetic analysis of ND2 sequences from mtDNA of
Lichenostomus cratitius (and the L. melanops outgroup). Nodal bootstrap
support values �79% are shown. Numbers 1 to 31 link to the listing of
specimens in Table S1 (Supplementary Material). The bold horizontal line
highlights the separation of the twohaplogroups inL. cratitius.All specimens
in this analysis are from the Australian National Wildlife Collection
(ANWC).
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suggested a pattern arguably consistent with early stages of
differentiation in the latter. Importantly, this pattern
disappeared in the analysis using only data for L. cratitius, the
species of interest (Fig. 1b). Still at this geographical scale,
robust support for one mtDNA haplogroup is notable (Fig. 2).
That haplogroup comprises seven samples (samples 25–31:
Table S1), of which five (samples 27–31) are from east of the
Eyrean Barrier. The other two samples (samples 25 and 26) are
from west of the Nullarbor Barrier but they are among the
easternmost such samples. If the Nullarbor Barrier initiated
differentiation in mtDNA in this species, that differentiation
has probably long since been arrested by gene flow. We note
here that the species occurs in domestic gardens at Eucla
(Fig. 1; authors’ obs.). Eucla is itself located in what is
otherwise a gap in the species’ range (Atlas of Living
Australia, http://www.ala.org.au, accessed 4 August 2020).
This would at least facilitate recent bidirectional gene flow
across the Nullarbor Barrier. Second, the differentiation of the
Kangaroo Island population should be interpreted with care.
That is, genetic drift in an island population may explain this as
well as, if not better than, longer term biogeographical
separation implied by treating the population as a separate
subspecies.

We conclude that some differentiation may have occurred
historically during more arid glacial cycles, which presumably
fragmented the distribution across the Nullarbor Barrier. We
infer that this has since been largely obliterated, however, by
gene flow. Gene flow may also explain the diversity within
L. cratitius at 0.82%. It is approximately equal to or potentially
lower than what might be expected, given that L. cratitius
and L. melanops diverged from a common ancestor
~2.5 million years ago (see Joseph et al. 2014; Marki et al.
2017). The resulting genetic patterns nonetheless correlate
with currently recognised subspecies in L. cratitius. Overall,
this is very similar to patterns seen in the western pygmy
possum (Cercartetus concinnus), the distribution and habitat
of which closely mirror those of L. cratitius (Pestell et al.
2008). No effect of the Eyrean Barrier is evident, unlike in
many other bird species, some of which have even less of a
contemporary geographical separation across that barrier than
L. cratitius (examples cited in Introduction). If phenotypic
variation recognised by the currently recognised subspecies is
itself valid, then it may also include an effect of drift in the
Kangaroo Island population. The species seems poised at an
interesting stage in its evolutionary history.
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