Supplementary material for:

The influence of weather and moon phase on small mammal activity

Katharine L. Senior^{A,D}, Julia Ramsauer^{A,B}, Michael A. McCarthy^A and Luke T. Kelly^C

^ASchool of BioSciences, The University of Melbourne, Parkville, Vic. 3010, Australia

^BMediterranean Forestry and Natural Resources Management (MEDfOR), University of Lleida, 25003 Lleida, Spain

^CSchool of Ecosystem and Forest Sciences, The University of Melbourne, Parkville, Vic. 3010, Australia

^DCorresponding author. Email: kate.l.senior@gmail.com

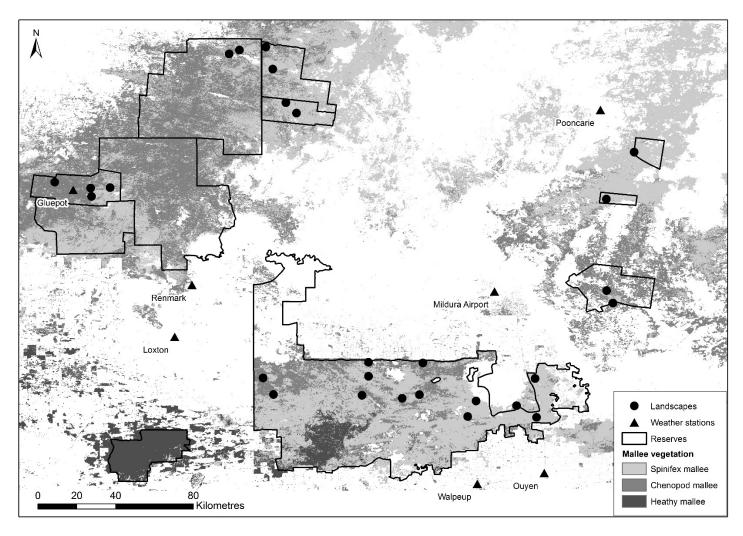


Figure S1: The extent of mallee vegetation in the Murray Mallee region of south-eastern Australia. Black circles represent the 27 landscapes used in this study, and black triangles represent the seven Bureau of Meteorology weather stations data was sourced from (Broken Hill station is located ~110 north of the map boundary).

Table S1: Survey dates and effort for each landscape used in this study.

^{*}Survey effort per night is presented as either one consistent value for each night of the survey or presented consecutively for each night during the survey. Survey effort varies due to delays in opening some sites and the need to close individual buckets to prevent depredation by ants.

Landscape	Survey number for landscape	Year	Month(s)	Dates	Nights	Survey effort per night*
M01	1	2006	November	26 th - 30 th	5	100
	2	2007	March	15^{th} - 18^{th}	4	99
	3	2007	October	24^{th} - 28^{th}	5	100
	4	2008	January - February	$30^{th}-4^{th}$	6	40, 100, 100, 100, 100, 60
	5	2011	November	$22^{nd}-26^{th}$	5	50
	6	2012	March	$5^{th}-9^{th}$	5	48, 47, 44, 48, 48
M02	1	2006	November	$26^{th}-30^{th}$	5	100
	2	2007	March	$14^{th}-19^{th}$	6	50, 100, 100, 100, 100, 50
	3	2007	October	$24^{th}-28^{th}$	5	100
	4	2008	January - February	$30^{th}-3^{rd}$	5	100
M03	1	2006	December	$2^{nd} - 6^{th}$	5	100, 98, 100, 100, 100
	2	2007	March	$21^{st}-25^{th}$	5	100
	3	2007	October - November	$30^{th}-3^{rd}$	5	100
	4	2008	February	$7^{th}-11^{th}$	5	100
M04	1	2006	December	$2^{nd} - 6^{th}$	5	100
	2	2007	March	$22^{nd}-26^{th}$	5	100
	3	2007	October - November	$30^{th}-3^{rd}$	5	100
	4	2008	February	$7^{th}-11^{th}$	5	100
M05	1	2006	October	$24^{th}-28^{th}$	5	100
	2	2007	February	$21^{st}-25^{th}$	5	100
	3	2008	March	$7^{th}-11^{th}$	5	100
M06	1	2006	October	$24^{th}-28^{th}$	5	100
	2	2007	February	$21^{st}-25^{th}$	5	100
	3	2007	December	$3^{rd}-7^{th}$	5	100
	4	2008	March	$7^{th}-11^{th}$	5	100
M07	1	2006	October	$24^{th}-28^{th}$	5	100

	2	2007	February	$21^{st}-25^{th}$	5	100
	3	2007	December	$3^{rd} - 7^{th}$	5	100
	4	2008	March	$7^{\text{th}}-11^{\text{th}}$	5	100
M08	1	2006	October	$24^{th}-28^{th}$	5	100
	2	2007	February	$21^{st}-25^{th}$	5	100
	3	2008	March	$7^{\text{th}}-11^{\text{th}}$	5	100
M09	1	2006	October	$24^{th}-28^{th}$	5	100
	2	2007	February	$21^{st}-25^{th}$	5	100
	3	2007	December	$3^{rd} - 7^{th}$	5	100, 95, 100, 100, 100
	4	2008	March	$7^{\text{th}}-11^{\text{th}}$	5	100
M10	1	2006	October	$24^{th}-28^{th}$	5	100, 100, 99, 100, 100
	2	2007	February	$21^{st}-25^{th}$	5	100
	3	2007	December	$3^{rd} - 7^{th}$	5	100
	4	2008	March	$7^{th}-11^{th}$	5	100
M11	1	2006	November	$26^{th}-30^{th}$	5	100
	2	2007	March	$22^{nd}-26^{th}$	5	100
	3	2007	October - November	$31^{st}-4^{th}$	5	100
	4	2008	January	$23^{rd}-27^{th}$	5	100
	5	2011	November	$8^{th}-12^{th}$	5	80, 78, 80, 80, 80
	6	2012	February	$20^{th}-24^{th}$	5	57, 74, 71, 73, 77
M12	1	2006	November	$26^{th}-30^{th}$	5	100
	2	2007	March	$22^{nd}-26^{th}$	5	100
	3	2007	October - November	$31^{st}-4^{th}$	5	100
	4	2008	January	$23^{rd}-27^{th}$	5	99, 100, 100, 99, 100
	5	2011	November	$8^{th}-12^{th}$	5	50, 49, 50, 50, 50
	6	2012	February	20 th -24 th	5	50, 49, 40, 49, 49
M13	1	2006	November	$20^{th}-24^{th}$	5	100
	2	2007	March	$21^{st}-25^{th}$	5	100
	3	2007	October	$18^{th}-22^{nd}$	5	100
	4	2007	December	$3^{rd} - 7^{th}$	5	100
	5	2008	January - February	$30^{th}-3^{rd}$	5	100
M14	1	2007	November	$20^{th}-24^{th}$	5	100
	2	2007	March	$21^{st}-25^{th}$	5	100

	3	2007	October	$19^{th}-23^{nd}$	5	100
	4	2007	December	$3^{rd} - 7^{th}$	5	100
	5	2008	January - February	$30^{th} - 3^{rd}$	5	100
M15	1	2006	November	$26^{th}-28^{th}$	3	100
	2	2007	March	$14^{th}-18^{th}$	5	100
	3	2007	October	$17^{th}-21^{st}$	5	100
	4	2007	November	$26^{th}-30^{th}$	5	100
	5	2008	February	$5^{th}-9^{th}$	5	100
M16	1	2006	November	$26^{th}-30^{th}$	5	100
	2	2007	March	$14^{th}-18^{th}$	5	100
	3	2007	November	$26^{th}-30^{th}$	5	100
	4	2008	February	$5^{th}-9^{th}$	5	100
M19	1	2006	October	$17^{th}-21^{st}$	5	100
	2	2007	February	$14^{th}-18^{th}$	5	100, 100, 99, 100, 100
	3	2007	November	$26^{th} - 30^{th}$	5	100
	4	2008	February - March	$29^{th}-4^{th}$	5	100
M20	1	2006	October	$17^{th} - 21st$	5	100
	2	2007	February	$14^{th}-18^{th}$	5	100
	3	2007	November	$26^{th}-30^{th}$	5	100
	4	2008	February - March	$29^{th}-4^{th}$	5	100
M21	1	2006	October	$17^{th} - 21st$	5	100
	2	2007	February	$14^{th}-19^{th}$	6	50, 100, 95, 94, 99, 48
	3	2007	November	$26^{th}-30^{th}$	5	100, 100, 98, 94, 96
	4	2008	February - March	$29^{th}-4^{th}$	5	100
M22	1	2006	October	$17^{th}-21st$	5	100
	2	2007	February	$14^{th}-18^{th}$	5	100
	3	2007	November	$26^{th}-30^{th}$	5	100
	4	2008	February - March	$29^{th}-4^{th}$	5	99, 100, 100, 100, 98
M23	1	2006	October	$17^{th}-21st$	5	100
	2	2007	February	$14^{th}-18^{th}$	5	100
	3	2007	November	$26^{th}-30^{th}$	5	100
	4	2008	February – March	$29^{th}-4^{th}$	5	100
	5	2011	October	$28^{th}-31^{st}$	4	48, 45, 44, 44

M24	1	2006	October	$17^{th}-21st$	5	100
	2	2007	February	$14^{th}-18^{th}$	5	100, 100, 96, 96, 100
	3	2007	November	$26^{th}-30^{th}$	5	100
	4	2008	February – March	$29^{th}-4^{th}$	5	100
	5	2011	October	$28^{th}-31^{st}$	4	49, 48, 48, 48
M25	1	2006	November	$26^{th}-30^{th}$	5	100
	2	2007	March	$14^{th}-18^{th}$	5	100
	3	2007	October - November	$30^{th}-3^{rd}$	5	100
	4	2008	January	$23^{rd}-27^{th}$	5	100
M26	1	2006	November	$26^{th}-30^{th}$	5	100
	2	2007	March	$14^{th}-18^{th}$	5	100
	3	2007	October- November	$30^{th}-3^{rd}$	5	100
	4	2008	January	$23^{rd}-27^{th}$	5	100, 99, 99, 99, 99
M27	1	2006	November	$19^{th}-23^{rd}$	5	100
	2	2007	March	$21^{st}-25^{th}$	5	100
	3	2007	October	$24^{th}-28^{th}$	5	100
	4	2008	January - February	$30^{th}-3^{rd}$	5	100
M28	1	2006	November	$19^{th}-23^{rd}$	5	100
	2	2007	March	$21^{st}-25^{th}$	5	100
	3	2007	October	$24^{th}-28^{th}$	5	100
	4	2008	January - February	$30^{th}-3^{rd}$	5	100
MH01	1	2011	November	$22^{nd}-26^{th}$	5	70, 69, 70, 70, 70
	2	2012	March	$5^{th}-9^{th}$	5	70, 69, 66, 70, 70

Table S2: Weather stations where data was sourced for the five weather variables for each of the 27 study landscapes.

Landscape		Variable source (weather station)						
-	Min. temperature	Precipitation	Relative humidity	Wind speed	Cloud cover			
M01	Mildura Airport	Mildura Airport	Mildura Airport	Mildura Airport	Mildura Airport			
M02	Ouyen	Ouyen	Walpeup	Walpeup	Mildura Airport			
M03	Walpeup	Walpeup	Walpeup	Walpeup	Mildura Airport			
M04	Walpeup	Walpeup	Walpeup	Walpeup	Mildura Airport			
M05	Mildura Airport	Mildura Airport	Mildura Airport	Mildura Airport	Mildura Airport			
M06	Walpeup	Walpeup	Walpeup	Walpeup	Mildura Airport			
M07	Walpeup	Walpeup	Walpeup	Walpeup	Mildura Airport			
M08	Mildura Airport	Mildura Airport	Mildura Airport	Mildura Airport	Mildura Airport			
M09	Mildura Airport	Mildura Airport	Mildura Airport	Mildura Airport	Mildura Airport			
M10	Walpeup	Walpeup	Walpeup	Walpeup	Mildura Airport			
M11	Loxton	Loxton	Loxton	Loxton	Mildura Airport			
M12	Loxton	Loxton	Loxton	Loxton	Mildura Airport			
M13	Gluepot	Gluepot	Renmark	Renmark	Mildura Airport			
M14	Gluepot	Gluepot	Renmark	Renmark	Mildura Airport			
M15	Gluepot	Gluepot	Renmark	Renmark	Mildura Airport			
M16	Gluepot	Gluepot	Renmark	Renmark	Mildura Airport			
M19	Gluepot	Gluepot	Renmark	Renmark	Mildura Airport			
M20	Gluepot	Gluepot	Broken Hill	Broken Hill	Mildura Airport			
M21	Gluepot	Gluepot	Broken Hill	Broken Hill	Mildura Airport			
M22	Gluepot	Gluepot	Renmark	Renmark	Mildura Airport			
M23	Gluepot	Gluepot	Renmark	Renmark	Mildura Airport			
M24	Gluepot	Gluepot	Renmark	Renmark	Mildura Airport			
M25	Mildura Airport	Mildura Airport	Mildura Airport	Mildura Airport	Mildura Airport			
M26	Mildura Airport	Mildura Airport	Mildura Airport	Mildura Airport	Mildura Airport			
M27	Pooncarie	Pooncarie	Mildura Airport	Mildura Airport	Mildura Airport			
M28	Pooncarie	Pooncarie	Mildura Airport	Mildura Airport	Mildura Airport			
MH01	Ouyen	Ouyen	Walpeup	Walpeup	Mildura Airport			

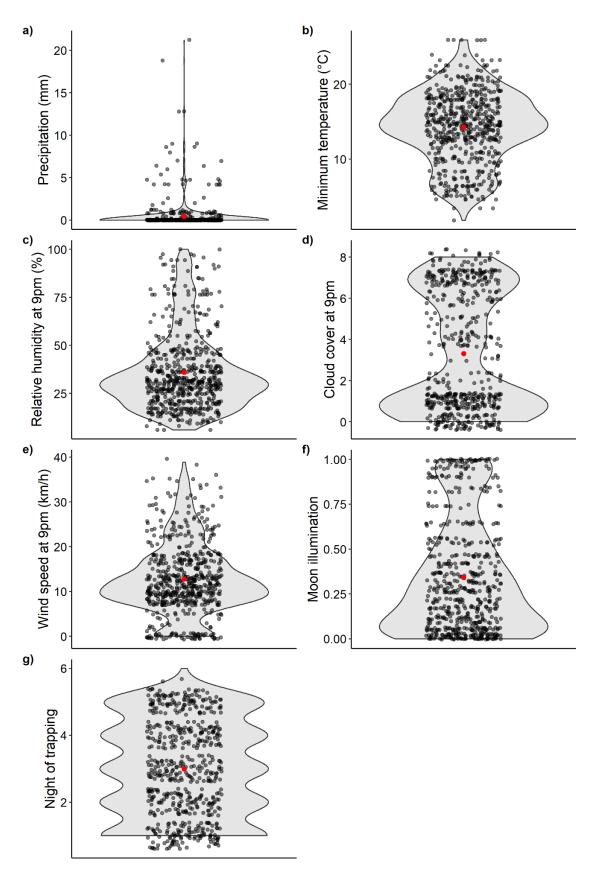


Figure S2: Violin plots of the seven explanatory variables used in our analysis. Variables are; a) Precipitation in the 24hrs prior to 12 am on the night of trapping (mm); b) Minimum temperature on the night of trapping (°C); c) Relative humidity at 9 pm (%); d) Cloud cover at 9 pm; e) Wind speed at 9 pm (km/h); f) Moon illumination; g) Night of trapping

Table S3: Summary statistics of the seven explanatory variables used in the analysis

Variable	Range	Median	Mean
Precipitation 24 hours prior to 9 pm (mm)	0.00 - 21.20	0.00	0.45
Minimum temperature (°C)	1.80 - 25.90	12.10	11.85
Relative humidity at 9pm (%)	6.00 - 100.00	31.10	36.03
Cloud cover at 9pm	0.00 - 8.00	2.00	3.31
Wind speed at 9pm (km/h)	0.00 - 38.90	11.20	12.78
Moon illumination (%)	0.00 - 100.00	26.00	34.00
Night of trapping	1.00 - 6.00	N/A	N/A

Table S4: Species included in each individual and family model used in our analysis.

Model type	Species	Family
Individual	Cercartetus concinnus (western pygmy possum)	Burraymid
Individual	Mus musculus (house mouse)	Rodent
Individual	Pseudomys bolami (Bolam's mouse)	Rodent
Individual	Ningaui yvonneae (mallee ningaui)	Dasyurid
Individual	Sminthopsis murina (common dunnart)	Dasyurid
Family	Cercartetus concinnus (western pygmy possum), Cercartetus lepidus (little pygmy possum)	Burraymid
Family	Mus musculus (house mouse), Notomys mitchellii (Mitchell's hopping mouse), Pseudomys bolami (Bolam's mouse)	Rodent
Family	Ningaui yvonneae (mallee ningaui), Sminthopsis murina (common dunnart)	Dasyurid

Table S5: Results of GLMMs testing the influence of weather and moon phase on capture rates of small mammals. Standardised model coefficients (± SE) are reported (following Gelman and Hill 2007) for the conditional (negative-binomial) and zero-inflated models (where fitted).

Results in bold indicate those where the 95% confidence intervals do not overlap zero.

Response variable	Precip.	Min. temp.	Rel. humid.	Cloud cover	Wind speed	Night	Moon illum.
		Cona	litional model co	oefficient (± SE)	of predictor var	riable	
C. concinnus	0.13 ± 0.31	0.36 ± 0.27	1.28 ± 0.21	-1 ± 0.23	1.99 ± 0.3	-1.17 ± 0.23	1.27 ± 0.45
M. musculus	-0.16 ± 0.1	-0.39 ± 0.25	0.87 ± 0.27	0.11 ± 0.21	1.17 ± 0.35	-0.62 ± 0.3	0.34 ± 0.39
N. yvonneae	-0.23 ± 0.15	0.49 ± 0.09	0.12 ± 0.1	-0.12 ± 0.095	0.44 ± 0.08	-0.31 ± 0.08	-0.52 ± 0.14
P. bolami	0.26 ± 0.26	-1.13 ± 0.48	-0.44 ± 0.5	0.93 ± 0.57	0.25 ± 0.34	0.3 ± 0.39	-2.13 ± 0.59
S. murina	0.13 ± 0.18	0.22 ± 0.14	-0.61 ± 0.16	0.47 ± 0.13	0.3 ± 0.13	-0.31 ± 0.12	-0.19 ± 0.17
Burramyids	0.07 ± 0.27	0.16 ± 0.26	1.11 ± 0.2	-0.59 ± 0.22	1.22 ± 0.29	-0.75 ± 0.23	1 ± 0.41
Dasyurids	-0.12 ± 0.12	0.38 ± 0.08	-0.12 ± 0.09	0.09 ± 0.08	0.41 ± 0.07	-0.3 ± 0.07	-0.35 ± 0.11
Rodents	-0.1 ± 0.1	-0.47 ± 0.21	$\boldsymbol{0.71 \pm 0.2}$	0.05 ± 0.2	0.56 ± 0.23	-0.63 ± 0.19	0.41 ± 0.3
		Zero-	inflated model c	$coefficient$ (\pm SE)) of predictor va	riable	
C. concinnus	0.47 ± 0.55	-1.25 ± 0.67	0.6 ± 0.58	-0.82 ± 0.6	1.58 ± 0.69	-2.31 ± 0.67	1.52 ± 0.56
M. musculus	-0.15 ± 0.28	0.13 ± 0.47	0.3 ± 0.49	0.34 ± 0.4	1.31 ± 0.63	-0.68 ± 0.5	0.09 ± 0.42
Burramyids	-0.09 ± 0.55	-0.37 ± 0.57	0.52 ± 0.47	-0.4 ± 0.49	0.45 ± 0.49	-1.19 ± 0.53	1.18 ± 0.44
Rodents	-0.15 ± 0.28	0.02 ± 0.4	0.29 ± 0.38	0.27 ± 0.4	0.43 ± 0.4	-0.76 ± 0.37	0.11 ± 0.4

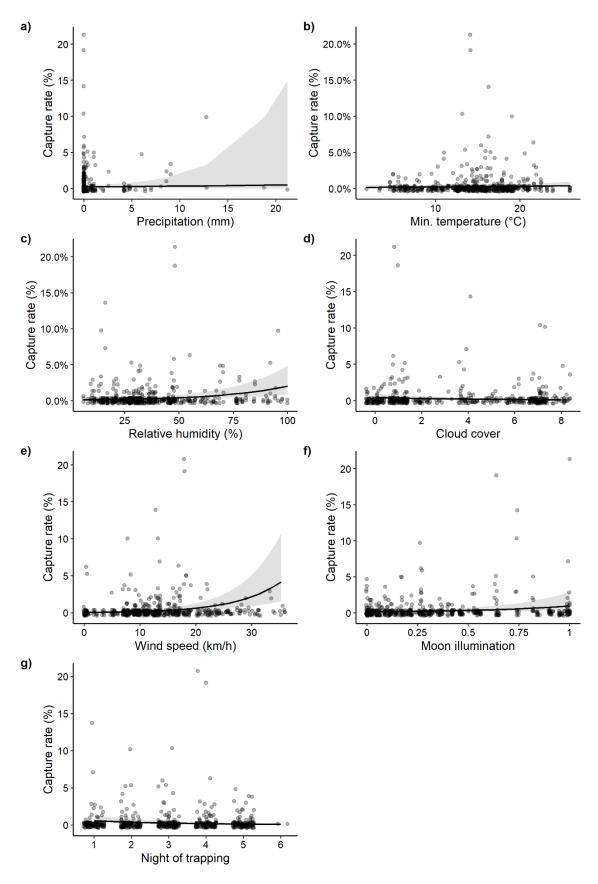


Figure S3: Response of capture rates of *Cercartetus concinnus* to; a) precipitation in the 24 hours prior to 00:00; b) minimum overnight temperature; c) relative humidity at 21:00; d) cloud cover at 21:00; e) wind speed at 21:00; f) moon illumination between 1700 and 2100; g) night of trapping within a single consecutive period

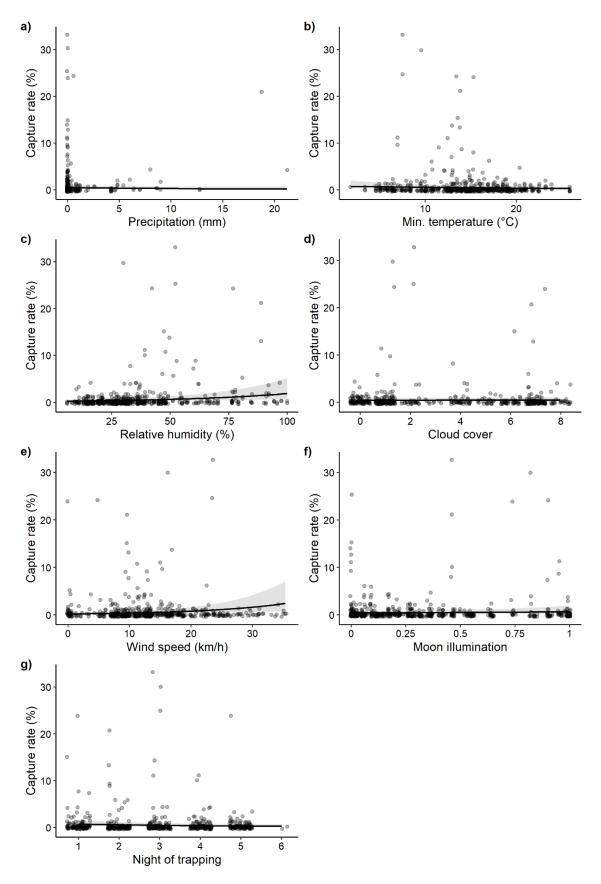


Figure S4: Response of capture rates of *Mus musculus* to; a) precipitation in the 24 hours prior to 00:00; b) minimum overnight temperature; c) relative humidity at 21:00; d) cloud cover at 21:00; e) wind speed at 21:00; f) moon illumination between 1700 and 2100; g) night of trapping within a single consecutive period

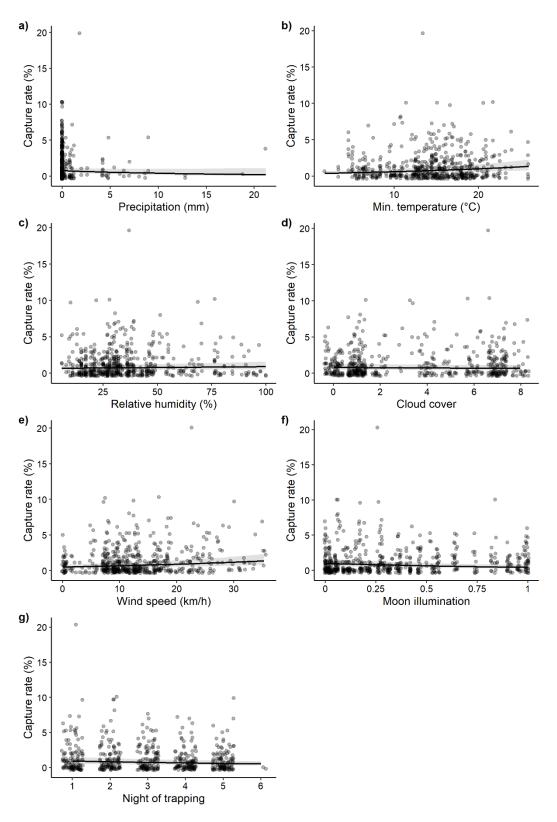


Figure S5: Response of capture rates of *Ningaui yvonneae* to; a) precipitation in the 24 hours prior to 00:00; b) minimum overnight temperature; c) relative humidity at 21:00; d) cloud cover at 21:00; e) wind speed at 21:00; f) moon illumination between 1700 and 2100; g) night of trapping within a single consecutive period

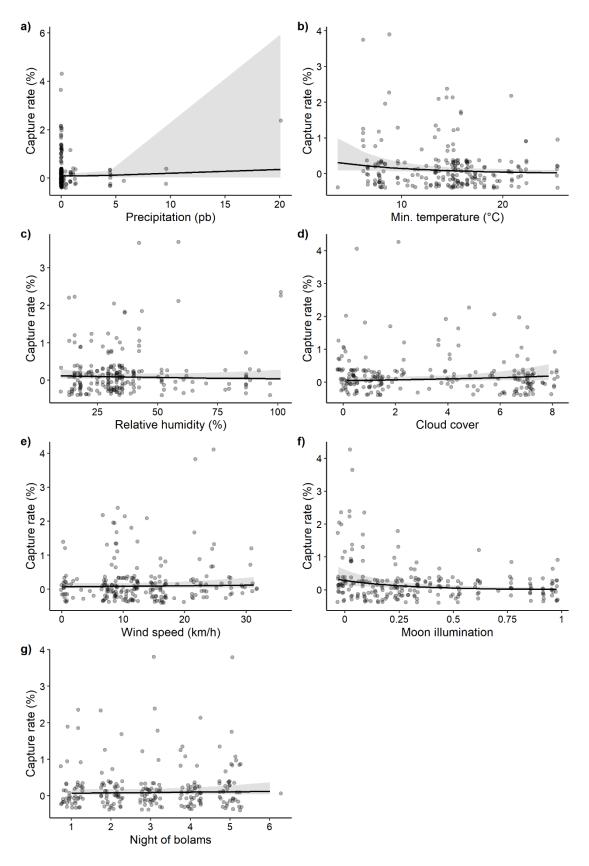


Figure S6: Response of capture rates of *Pseudomys bolami* to; a) precipitation in the 24 hours prior to 00:00; b) minimum overnight temperature; c) relative humidity at 21:00; d) cloud cover at 21:00; e) wind speed at 21:00; f) moon illumination between 1700 and 2100; g) night of trapping within a single consecutive period

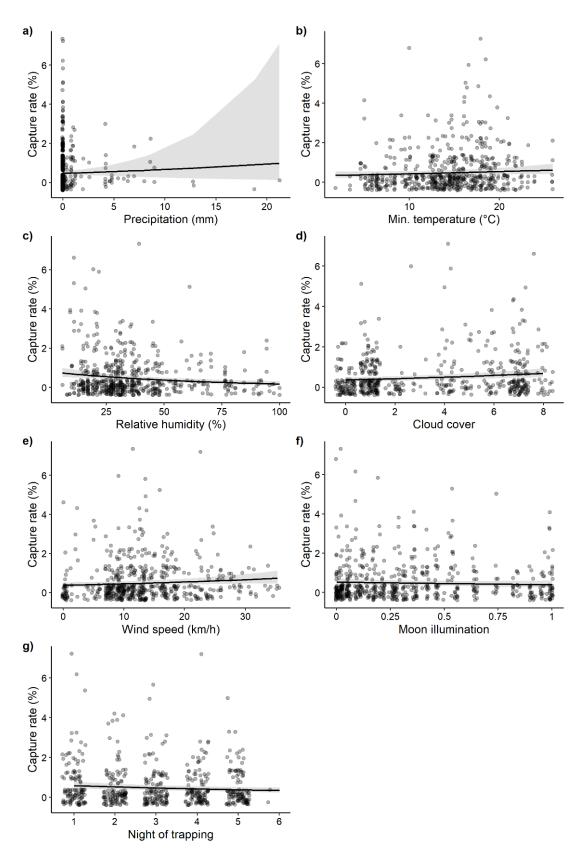


Figure S7: Response of capture rates of *Sminthopsis murina* to; a) precipitation in the 24 hours prior to 00:00; b) minimum overnight temperature; c) relative humidity at 21:00; d) cloud cover at 21:00; e) wind speed at 21:00; f) moon illumination between 1700 and 2100; g) night of trapping within a single consecutive period

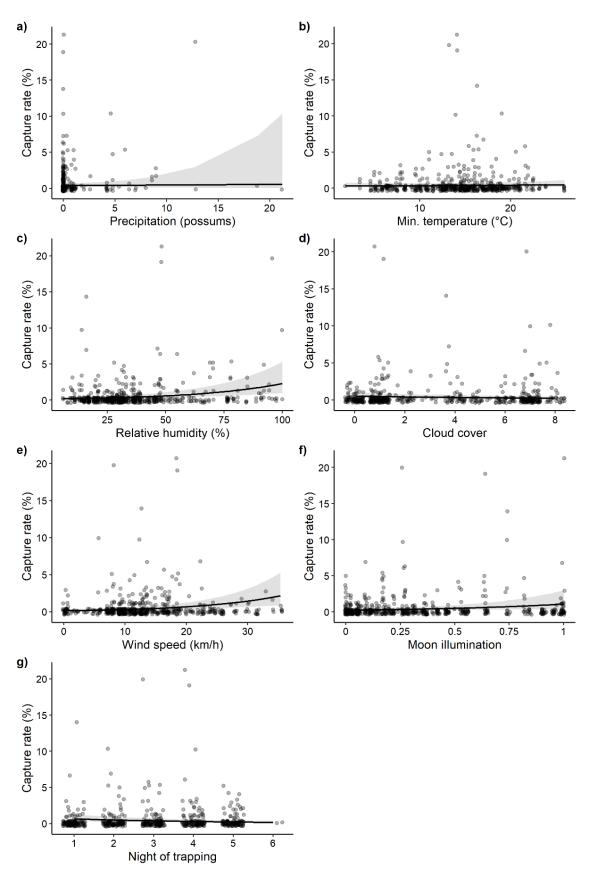


Figure S8: Response of capture rates of the burramyid family to; a) precipitation in the 24 hours prior to 00:00; b) minimum overnight temperature; c) relative humidity at 21:00; d) cloud cover at 21:00; e) wind speed at 21:00; f) moon illumination between 1700 and 2100; g) night of trapping within a single consecutive period

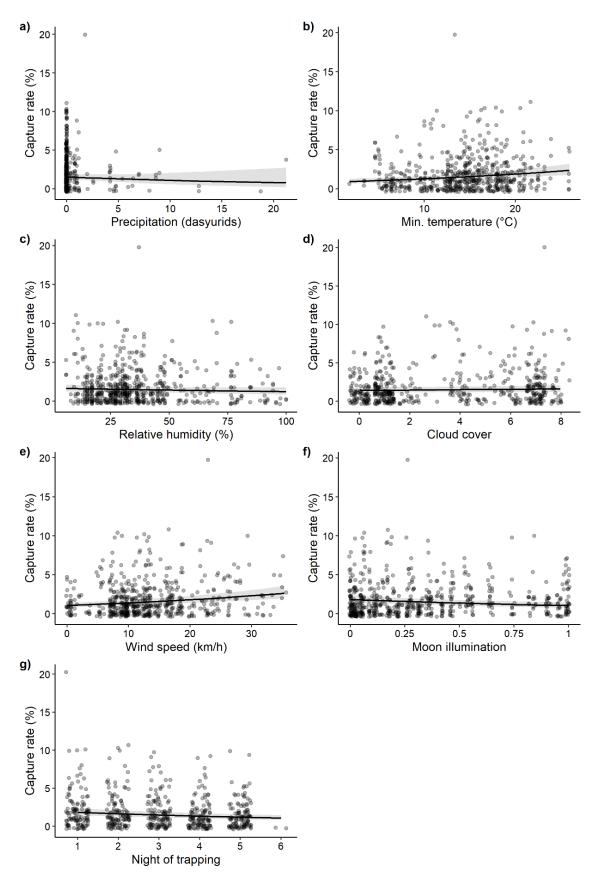


Figure S9: Response of capture rates of the dasyurid family to; a) precipitation in the 24 hours prior to 00:00; b) minimum overnight temperature; c) relative humidity at 21:00; d) cloud cover at 21:00; e) wind speed at 21:00; f) moon illumination between 1700 and 2100; g) night of trapping within a single consecutive period

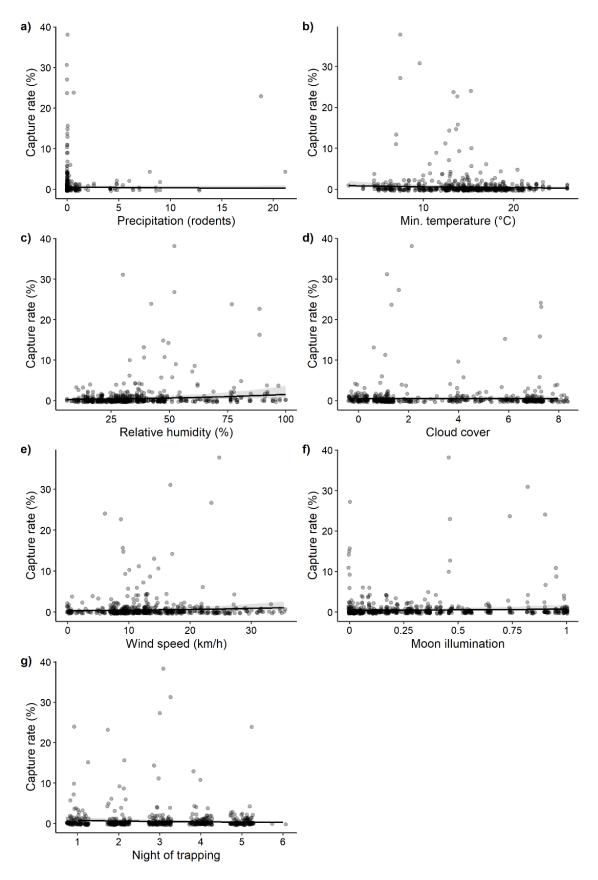


Figure S10: Response of capture rates of the rodent family to; a) precipitation in the 24 hours prior to 00:00; b) minimum overnight temperature; c) relative humidity at 21:00; d) cloud cover at 21:00; e) wind speed at 21:00; f) moon illumination between 1700 and 2100; g) night of trapping within a single consecutive period