Supplementary material for

Habitat and sex effects on behaviour in fawn-footed mosaic-tailed rats (Melomys cervinipes)

Emma M. P. Delarue ${ }^{\mathrm{A}}$, Sarah E. Kerr ${ }^{\text {A }}$ and Tasmin L. Rymer ${ }^{\text {A,B,C }}$
${ }^{\text {A }}$ College of Science and Engineering, James Cook University, PO Box 6811, Cairns, Qld 4870, Australia.
${ }^{B}$ Centre for Tropical Environmental and Sustainability Sciences, James Cook University, PO Box 6811, Cairns, Qld 4870, Australia.
${ }^{\text {C}}$ Corresponding author. Email: tasmin.rymer @jcu.edu.au

Table S1. Mean \pm SE vegetation (abundance and diversity) measures and substrate types for an abandoned hoop pine (Araucaria cunninghamii) plantation (HP) undergoing natural revegetation and a variable secondary rainforest (RF) located in Smithfield, Cairns used to assess variation in habitat complexity

Site	HP				RF			
Stratum	0-2m	2-10m	10-30m	> 30m	0-2m	2-10m	10-30m	> 30m
Vegetation measurements								
Tree abundance	53.8 ± 1.5	20.6 ± 1.8	13.6 ± 1.5	6.8 ± 1.0	69.2 ± 12.2	21.2 ± 2.0	6.4 ± 1.4	1.0 ± 1.0
Tree diversity	5.4 ± 0.4	2.4 ± 0.5	2.0 ± 0.5	1.0 ± 0.0	9.6 ± 0.9	6.2 ± 0.4	3.8 ± 0.4	0.4 ± 0.4
Vine abundance	16.8 ± 3.3	5.8 ± 1.2	0.4 ± 0.2	0.0 ± 0.0	63.2 ± 18.5	56.8 ± 12.6	37.8 ± 18.2	0.6 ± 0.6
Vine diversity	3.4 ± 0.4	2.0 ± 0.5	0.4 ± 0.2	0.0 ± 0.0	5.6 ± 0.2	4.8 ± 0.5	3.8 ± 0.6	0.2 ± 0.2

Substrate type

Rocks	0.8 ± 0.2	0.2 ± 0.2
Exposed sol	1.0 ± 0.0	1.0 ± 0.0
Logs	0.6 ± 0.2	0.8 ± 0.2
Leaves	1.0 ± 0.0	1.0 ± 0.0
Vines	1.0 ± 0.0	1.0 ± 0.0
Grass	0.4 ± 0.2	0.8 ± 0.2
Tree roots	0.4 ± 0.2	0.8 ± 0.2
Tree stumps	0.0 ± 0.0	0.2 ± 0.2
Holes	0.2 ± 0.2	0.4 ± 0.2
Branches and sticks	0.8 ± 0.2	0.2 ± 0.2

Table S2. Outputs of principle components analyses generated from the behaviour of fawn-footed mosaic-tailed rats (Melomys cervinipes) in four different behavioural tests (open field, novel object, light-dark box, acoustic startle).

	Eigen Value			Proportion of Variance				Loadings			Contribution (\%)		
Test	PC1	PC2	PC3	PC1	PC2	PC3	Variable	PC1	PC2	PC3	PC1	PC2	PC3
							Inactive	0.69	0.12	-	47.64	1.47	-
							Explore	-0.22	-0.90	-	4.86	81.02	-
Open field			-			-	Thigmotaxis	-0.48	0.22	-	22.69	4.80	-
							Rear	-0.50	0.36	-	24.81	12.71	-
							Inactive	-0.47	-	-	21.90	-	-
							Explore	0.32	-	-	10.11	-	-
Novel object	4.55			0.76			Thigmotaxis	0.43	-	-	18.60	-	-
Novel object	4.55	-	-	0.76	-	-	Rear	0.43	-	-	18.07	-	-
							Sniff	0.31	-	-	9.85	-	-
							Latency to approach	-0.46	-	-	21.47	-	-
							Inactive	-0.49	0.24	0.09	24.62	5.79	0.78
							Explore	0.27	0.11	0.76	7.13	1.32	57.58
							Thigmotaxis	0.19	0.47	-0.61	3.44	21.65	36.92
Light-dark box	3.55	1.73	1.15	0.51	0.25	0.16	Time in dark	0.33	-0.56	0.17	11.00	31.00	3.20
							Latency dark	-0.50	0.21	0.07	24.65	4.56	0.53
							Latency light	-0.30	-0.51	-0.08	8.91	25.76	0.69
							Log no. transitions	0.45	0.31	0.05	20.25	9.91	0.30

Acoustic startle	4.45	1.17	1.10	0.64	0.17	0.16	Inactive	0.46	-0.04	0.23	20.78	0.13	5.42
							Explore	-0.24	-0.72	0.30	5.65	52.44	9.10
							Thigmotaxis	-0.23	0.68	0.41	5.15	46.70	17.08
							Time in dark	-0.35	0.08	-0.63	12.33	0.58	39.85
							Latency dark	0.45	0.02	0.25	20.53	0.03	6.30
							Latency light	0.41	0.01	-0.38	16.80	0.01	14.76
							Log no. transitions	-0.43	-0.03	0.27	18.76	0.11	7.49
Abiotic factors	2.50	1.17	-	0.50	0.23	-	Minimum temperature	-0.57	-0.21	-	32.23	4.54	-
							Maximum temperature	-0.12	-0.76	-	1.38	58.47	-
							Rainfall	-0.51	0.14	-	25.53	1.85	-
							Humidity	0.60	0.16	-	35.60	2.46	-
							Air pressure	-0.23	0.57	-	5.26	32.68	-

Table S3. Spearman's rank correlation matrices generated for the various principal components analyses. Significant correlations indicated in bold.

Abiotic factors	Minimum Temperature	Maximum Temperature	Rainfall	Humidity
Minimum Temperature	-	$R_{s}=0.25, P=0.119$	$\boldsymbol{R}_{s}=\mathbf{0 . 8 5}, \boldsymbol{P}<\mathbf{0 . 0 0 1}$	$\boldsymbol{R}_{s}=\mathbf{0 . 7 8 , \boldsymbol { P } < \mathbf { 0 . 0 0 1 }}$
Maximum Temperature	$R_{s}=0.25, P=0.119$	-	$R_{s}=-0.23, P=0.162$	$R_{s}=-0.14, P=0.388$
Rainfall	$\boldsymbol{R}_{\boldsymbol{s}}=\mathbf{0 . 8 5}, \boldsymbol{P}<\mathbf{0 . 0 0 1}$	$R_{s}=-0.23, P=0.162$	-	$\boldsymbol{R}_{\boldsymbol{s}}=\mathbf{0 . 9 0 , \boldsymbol { P }}<\mathbf{0} .001$
Humidity	$\boldsymbol{R}_{s}=\mathbf{0 . 7 8 ,} \boldsymbol{P}<\mathbf{0 . 0 0 1}$	$R_{s}=-0.14, P=0.388$	$\boldsymbol{R}_{\boldsymbol{s}}=\mathbf{0 . 9 0 , \boldsymbol { P } < \mathbf { 0 . 0 0 1 }}$	

Open Field	Inactivity	Exploration	Thigmotaxis	Rearing
Inactivity	-	$R_{s}=\mathbf{- 0 . 4 2 , ~} P=0.006$	$\boldsymbol{R}_{s}=\mathbf{- 0 . 7 0 , ~} P<\mathbf{0 . 0 0 1}$	$R_{s}=\mathbf{- 0 . 6 8 ,} P<0.001$
Exploration	$R_{s}=-0.42, P=0.006$	-	$R_{s}=0.14, P=0.396$	$R_{s}=0.11, P=0.483$
Thigmotaxis	$R_{s}=-0.68, P<0.001$	$R_{s}=0.14, P=0.396$	-	$R_{s}=0.39, P=0.013$
Rearing	$R_{s}=\mathbf{- 0 . 6 8 , ~} P<0.001$	$R_{s}=0.11, P=0.483$	$R_{s}=0.39, P=0.013$	-

Novel Object	Inactivity	Exploration	Thigmotaxis	Rearing	Sniffing	Latency to approach
Inactivity	-	$R_{s}=-0.89, P<0.001$	$R_{s}=\mathbf{- 0 . 8 8 , ~} P<0.001$	$R_{s}=-0.77, P<0.001$	$R_{s}=-0.87, P<0.001$	$R_{s}=0.92, P<0.001$
Exploration	$R_{s}=\mathbf{- 0 . 8 9 , ~} P<0.001$	-	$R_{s}=0.67, P<0.001$	$R_{s}=0.57, P<0.001$	$R_{s}=0.67, P<0.001$	$R_{s}=\mathbf{0 . 7 5 , P}$, 0.001
Thigmotaxis	$R_{s}=\mathbf{- 0 . 8 8 , ~} P<0.001$	$R_{s}=0.67, P<0.001$	-	$R_{s}=0.83, P<0.001$	$R_{s}=0.88, P<0.001$	$R_{s}=-0.94, P<0.001$
Rearing	$R_{s}=-0.77, P<0.001$	$R_{s}=0.57, P<0.001$	$R_{s}=0.83, P<0.001$	-	$R_{s}=0.71, P<0.001$	$R_{s}=\mathbf{- 0 . 8 2 , ~} P<0.001$
Sniffing	$R_{s}=\mathbf{0} 0.87, P<0.001$	$R_{s}=0.67, P<0.001$	$R_{s}=0.88, P<0.001$	$R_{s}=0.71, P<0.001$	-	$R_{s}=\mathbf{- 0 . 9 5 , ~} P<0.001$
Latency to approach	$R_{s}=0.92, P<0.001$	$R_{s}=-0.75, P<0.001$	$R_{s}=\mathbf{- 0 . 9 4 , P}<0.001$	$R_{s}=\mathbf{- 0 . 8 2 , ~} P<0.001$	$R_{s}=\mathbf{- 0 . 9 5 , ~} P<0.001$	-

Light-Dark Box	Time in the Dark	Inactivity	Thigmotaxis	Exploration	Latency to enter the dark	Latency to enter the light	Log. Number of Transitions
Time in the Dark	-	$\begin{array}{\|l} \hline R_{s}=-0.79 \\ P<0.001 \\ \hline \end{array}$	$\begin{aligned} & R_{s}=-0.10, \\ & P=0.551 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=0.11, \\ & P=0.507 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=-0.73, \\ & P<0.001 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=0.34, \\ & P=0.035 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=0.09, \\ & P=0.593 \\ & \hline \end{aligned}$
Inactivity	$\begin{aligned} & R_{s}=-0.79, \\ & P<0.001 \end{aligned}$	-	$\begin{aligned} & R_{s}=-0.01, \\ & P=0.973 \end{aligned}$	$\begin{aligned} & R_{s}=-0.44, \\ & P=0.005 \end{aligned}$	$\begin{aligned} & \boldsymbol{R}_{s}=\mathbf{0 . 8 2} \\ & \boldsymbol{P}<\mathbf{0 . 0 0 1} \end{aligned}$	$\begin{aligned} & R_{s}=-0.11, \\ & P=0.520 \end{aligned}$	$\begin{aligned} & R_{s}=-0.43, \\ & P=0.007 \end{aligned}$
Thigmotaxis	$\begin{aligned} & R_{s}=-0.10, \\ & P=0.551 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=-0.01, \\ & P=0.973 \\ & \hline \end{aligned}$	-	$\begin{aligned} & R_{s}=-0.11, \\ & P=0.499 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=0.21, \\ & P=0.208 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=-0.50, \\ & P<0.001 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=0.40, \\ & P=0.011 \\ & \hline \end{aligned}$
Exploration	$\begin{aligned} & R_{s}=0.11, \\ & P=0.507 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=-0.44, \\ & P=0.005 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=-0.11, \\ & P=0.499 \\ & \hline \end{aligned}$	-	$\begin{aligned} & R_{s}=-0.49, \\ & P=0.002 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=-0.27, \\ & P=0.096 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=0.68, \\ & P<0.001 \\ & \hline \end{aligned}$
Latency to enter the dark	$\begin{aligned} & R_{s}=-0.73, \\ & P<0.001 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline R_{s}=0.82, \\ P<0.001 \\ \hline \end{array}$	$\begin{aligned} & R_{s}=0.21, \\ & P=0.208 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=-0.49 \\ & P=0.002 \\ & \hline \end{aligned}$	-	$\begin{aligned} & R_{s}=-0.14, \\ & P=0.385 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=-0.31, \\ & P=0.058 \end{aligned}$
Latency to enter the light	$\begin{aligned} & R_{s}=0.34, \\ & P=0.035 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=-0.11, \\ & P=0.520 \end{aligned}$	$\begin{aligned} & R_{s}=-0.50, \\ & P<0.001 \end{aligned}$	$\begin{aligned} & R_{s}=-0.27, \\ & P=0.096 \end{aligned}$	$\begin{aligned} & R_{s}=-0.14, \\ & P=0.385 \end{aligned}$	- -	$\begin{aligned} & R_{s}=-0.49, \\ & P=0.002 \end{aligned}$
Log. Number of Transitions	$\begin{aligned} & R_{s}=0.09, \\ & P=0.593 \end{aligned}$	$\begin{aligned} & R_{s}=-\mathbf{0 . 4 3} \\ & P=0.007 \end{aligned}$	$\begin{aligned} & R_{s}=0.40, \\ & P=0.011 \end{aligned}$	$\begin{aligned} & R_{s}=0.68, \\ & P<0.001 \end{aligned}$	$\begin{aligned} & R_{s}=-0.31, \\ & P=0.058 \end{aligned}$	$\begin{aligned} & R_{s}=-0.49, \\ & P=0.002 \end{aligned}$	-

Acoustic Startle	Time in the Dark	Inactivity	Thigmotaxis	Exploration	Latency to enter the dark	Latency to enter the light	Log. Number of Transitions
Time in the Dark	-	$\begin{aligned} & R_{s}=-0.94, \\ & P<0.001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline R_{s}=0.39, \\ & P=0.069 \end{aligned}$	$\begin{aligned} & \hline R_{s}=0.52, \\ & P=0.013 \end{aligned}$	$\begin{aligned} & R_{s}=-0.95, \\ & P<0.001 \end{aligned}$	$\begin{aligned} & R_{s}=-0.61, \\ & P=0.002 \end{aligned}$	$\begin{aligned} & R_{s}=0.68, \\ & P<0.001 \end{aligned}$
Inactivity	$\begin{aligned} & R_{s}=-0.94, \\ & P<0.001 \end{aligned}$	-	$\begin{aligned} & R_{s}=-0.51, \\ & P=0.015 \end{aligned}$	$\begin{aligned} & R_{s}=-\mathbf{0 . 6 2}, \\ & P=0.002 \end{aligned}$	$\begin{aligned} & R_{s}=0.99, \\ & P<0.001 \end{aligned}$	$\begin{aligned} & R_{s}=0.70, \\ & \boldsymbol{P}<\mathbf{0 . 0 0 1} \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=-0.75, \\ & P<0.001 \end{aligned}$
Thigmotaxis	$\begin{aligned} & R_{s}=0.39, \\ & P=0.069 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=-0.51, \\ & P=0.015 \\ & \hline \end{aligned}$	-	$\begin{aligned} & R_{s}=0.30, \\ & P=0.171 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=-0.46, \\ & P=0.031 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=-0.53 \\ & P=0.011 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=0.51, \\ & P=0.015 \\ & \hline \end{aligned}$
Exploration	$\begin{aligned} & R_{s}=0.52, \\ & P=0.013 \end{aligned}$	$\begin{aligned} & R_{s}=-\mathbf{0 . 6 2}, \\ & P=0.002 \end{aligned}$	$\begin{aligned} & R_{s}=0.30, \\ & P=0.171 \\ & \hline \end{aligned}$	-	$\begin{aligned} & R_{s}=-0.58, \\ & P=0.005 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=-0.72, \\ & P<0.001 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=0.70, \\ & P<0.001 \\ & \hline \end{aligned}$
Latency to enter the dark	$\begin{aligned} & R_{s}=-0.95, \\ & P<0.001 \end{aligned}$	$\begin{aligned} & R_{s}=0.99, \\ & P<0.001 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=-0.46, \\ & P=0.031 \end{aligned}$	$\begin{aligned} & R_{s}=-0.58, \\ & P=0.005 \\ & \hline \end{aligned}$	-	$\begin{aligned} & R_{s}=0.70, \\ & P<0.001 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=-0.75, \\ & P<0.001 \end{aligned}$
Latency to enter the light	$\begin{aligned} & R_{s}=-0.61, \\ & P=0.002 \end{aligned}$	$\begin{aligned} & R_{s}=0.70, \\ & \boldsymbol{P}<\mathbf{0 . 0 0 1} \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=-0.53, \\ & P=0.011 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=-0.72, \\ & P<0.001 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=0.70, \\ & P<\mathbf{0 . 0 0 1} \\ & \hline \end{aligned}$	-	$\begin{aligned} & R_{s}=-0.83 \\ & P<0.001 \\ & \hline \end{aligned}$
Log. Number of Transitions	$\begin{aligned} & R_{s}=0.68, \\ & P<0.001 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=-0.75, \\ & P<0.001 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=0.51, \\ & P=0.015 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=0.70, \\ & P<0.001 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=-0.75, \\ & P<0.001 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{s}=-0.83, \\ & P<0.001 \\ & \hline \end{aligned}$	-

