Supplementary Material

Regional patterns of continuing decline of the eastern quoll

Calum X. Cunningham ${ }^{\text {A,B,* }}$, Zach Aandahl ${ }^{\mathrm{A}}$, Menna E. Jones ${ }^{\mathrm{A}}$, Rowena Hamer ${ }^{\text {A,C }}$ and Christopher N. Johnson ${ }^{\text {A,D }}$
${ }^{\text {A }}$ School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tas. 7001, Australia
${ }^{\mathrm{B}}$ School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
${ }^{\text {C }}$ Tasmanian Land Conservancy, 827 Sandy Bay Road, Sandy Bay, Tas. 7005, Australia
${ }^{\text {D }}$ Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tas. 7001, Australia
*Correspondence to: Email: cxcunn@uw.edu

Table S1: Summary of the number of spotlight transects surveyed in each region of Tasmania from 1985-2019. Regions are as follows: $\mathrm{C}=$ central, $\mathrm{N}=$ north, $\mathrm{NE}=$ north-east; $\mathrm{NW}=$ north-west; $\mathrm{E}=$ east; $S=$ south. The maximum variation in the number of transects surveyed in each region (i.e. maximum - minimum number of transects) is as follows: Central =1; North = 7; North-east = 8; North-west = 0; East = 9; and South = 19.

Year	\mathbf{C}	\mathbf{N}	NE	NW	E	S	Total
1985	13	23	42	12	33	9	$\mathbf{1 3 2}$
1986	13	24	42	12	33	9	$\mathbf{1 3 3}$
1987	13	24	44	12	39	9	$\mathbf{1 4 1}$
1988	13	23	45	12	39	11	$\mathbf{1 4 3}$
1989	13	23	44	12	34	9	$\mathbf{1 3 5}$
1990	13	24	47	12	41	13	$\mathbf{1 5 0}$
1991	13	27	47	12	41	20	$\mathbf{1 6 0}$
1992	13	26	47	12	41	28	$\mathbf{1 6 7}$
1993	13	27	48	12	41	28	169
1994	13	27	48	12	41	28	$\mathbf{1 6 9}$
1995	13	27	49	12	41	28	$\mathbf{1 7 0}$
1996	13	28	49	12	41	28	$\mathbf{1 7 1}$
1997	13	28	49	12	41	28	$\mathbf{1 7 1}$
1998	13	29	49	12	41	28	$\mathbf{1 7 2}$
1999	13	29	49	12	41	28	$\mathbf{1 7 2}$
2000	13	30	49	12	41	28	$\mathbf{1 7 3}$
2001	13	29	49	12	42	28	$\mathbf{1 7 3}$
2002	13	29	49	12	41	28	$\mathbf{1 7 2}$
2003	13	29	49	12	42	28	$\mathbf{1 7 3}$
2004	13	29	50	12	41	28	$\mathbf{1 7 3}$
2005	13	29	49	12	41	28	$\mathbf{1 7 2}$
2006	13	29	49	12	41	28	$\mathbf{1 7 2}$
2007	13	29	49	12	41	28	$\mathbf{1 7 2}$
2008	13	28	48	12	41	28	$\mathbf{1 7 0}$
2009	13	29	49	12	41	28	$\mathbf{1 7 2}$
2010	13	29	49	12	40	28	$\mathbf{1 7 1}$
2011	13	29	49	12	41	27	$\mathbf{1 7 1}$
2012	13	29	49	12	41	28	$\mathbf{1 7 2}$
2013	13	29	49	12	40	28	$\mathbf{1 7 1}$
2014	12	29	49	12	41	28	$\mathbf{1 7 1}$
2015	12	29	49	12	41	28	$\mathbf{1 7 1}$
2016	13	25	49	12	41	28	$\mathbf{1 6 8}$
2017	13	29	49	12	41	28	$\mathbf{1 7 2}$
2018	13	29	49	12	41	28	$\mathbf{1 7 2}$
2019	13	28	50	12	41	28	$\mathbf{1 7 2}$
Total							$\mathbf{5 , 7 8 8}$

Figure S1. Visual comparison of the effect of spotlight surveys that were added part-way through the sampling period. The number of transects surveyed each year increased from approximately 130 in the 1980s to approximately 170 in the 1990s (Table S1). The data points show the mean number of eastern quoll detections in each year, and the line shows a Loess smooth. Blue represents the entire dataset, consisting of 5,788 transect surveys, whereas orange shows only sites that were consistently surveyed since the beginning of data collection in 1985. In general, the effect of adding new transects had a negligible effect on the trends. The most notable effect was in the South region, where the number of transects increased from only nine in the 1980s to 28 in the 1990s (Table S1). Note that we used a different y-axis scale for the South region so that differences in each graph are more easily discernible.

