Dietary supplementation with copper oxide nanoparticles ameliorates chronic heat stress in broiler chickens

Seham El-KassasAH, Karima El-NaggarB, Safaa E. AbdoC, Walied AbdoD, Abeer A. K. KirrellaE, Ibrahim El-MehaseebF and Mohammed Abu El-MagdG

AAnimal, Poultry and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Post Box 33516, Egypt.

BDepartment of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Post Box 22758, Egypt.

CGenetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Post Box 33516, Egypt.

DDepartment of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Post Box 33516, Egypt.

EPoultry Physiology, Poultry production Department, Faculty of Agriculture, Kafrelsheikh University.

FNano-chemistry Laboratory, Chemistry Department, Faculty of Science, Kafrelsheikh University, Post Box 33516, Egypt.

GDepartment of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Post Box 33516, Egypt.

HCorresponding author. Email: seham.elkassas@vet.kfs.edu.eg; seham.elkassas7@gmail.com
Fig. S1. Hemoglobin content (g/dL) ($n = 6$) of Cobb and Ross broiler exposed to different Cu sources under normal temperature and heat stress. The Results are expressed as mean ± s.e.m. *, ** and *** denote statistical significance with $P < 0.05$, $P < 0.01$ and $P < 0.001$, respectively.