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Abstract. This review examines research aimed at reducing entericmethane emissions from theAustralian dairy industry.
Calorimetermeasurements of 220 forage-fed cows indicate an averagemethane yield of 21.1 gmethane (CH4)/kg drymatter
intake. Adoption of this empirical methane yield, rather than the equation currently used in the Australian greenhouse gas
inventory, would reduce themethane emissions attributed to the Australian dairy industry by ~10%. Research also indicates
that dietary lipid supplements and feeding high amounts of wheat substantially reduce methane emissions. It is estimated
that, in 1980, the Australian dairy industry produced ~185 000 t of enteric methane and total enteric methane intensity was
~33.6 g CH4/kgmilk. In 2010, the estimated production of entericmethanewas 182 000 t, but total entericmethane intensity
had declined~40% to19.9 gCH4/kgmilk. This remarkable decline inmethane intensity and the resultant improvement in the
carbon footprint of Australian milk production was mainly achieved by increased per-cowmilk yield, brought about by the
on-farmadoption of researchfindings related to the feeding andbreeding of dairy cows.Options currently available to further
reduce the carbon footprint of Australian milk production include the feeding of lipid-rich supplements such as cottonseed,
brewers grains, cold-pressed canola, hominy meal and grape marc, as well as feeding of higher rates of wheat. Future
technologies for further reducingmethane emissions include genetic selection of cows for improved feed conversion tomilk
or low methane intensity, vaccines to reduce ruminal methanogens and chemical inhibitors of methanogenesis.
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Introduction

In 2013–2014, there were 1.69 million dairy cows in the
Australian dairy herd within 6300 registered dairy farms
producing ~9.5 billion litres of milk (Dairy Australia 2014).
The Holstein and Holstein · Friesian breeds account for ~70%
of the national herd, with other breeds including Jersey, Holstein
· Jersey, Brown Swiss, Ayrshire, Australian Red and Illawara.
Dairying is an established land use across the temperate regions
of southern Australia and the subtropical regions of northern
New South Wales and southern Queensland. The majority of
milk by volume is produced in the southern mainland state of
Victoria (66%), where ~68% of registered farms are located.
Australian feeding systems have evolved to suit different regions,
climate conditions and feed availability and range from pasture-
based grazing with minimal grain supplementation, through to
zero-grazing feedlot systems. The feeding systems used in the
temperate rain-fed and irrigated regions, including Victoria,
Tasmania, southern New South Wales, South Australia and
Western Australia, represent more than 93% of the industry and

are characterised by grazed pasture (typically perennial ryegrass,
Lolium perenne) and supplementary feeding an average of 1.7 t
grain/cow.year (Dharma et al. 2012; Dairy Australia 2014). Dairy
products are the single largest commodity by value exported
from south-eastern Australia and their production is responsible
for ~12% of Australia’s agricultural greenhouse gas (GHG)
emissions (methane and nitrous oxide; DCCEE 2012a).

The average carbon footprint of Australian milk production
has been calculated to be 1.11 kg carbon dioxide equivalent
(CO2eq) per kg fat- and protein-corrected milk (Dairy Australia
2012).Entericmethaneemissions are thegreatest contributor to the
carbon footprint, comprising 57%of total on-farmGHGemissions
associatedwithmilkproduction (DairyAustralia 2012).Therefore,
mitigation of enteric methane emissions is key to reducing the
carbon footprint of Australian milk production.

The Australian Carbon Farming Initiative (CFI) was an
incentive policy mechanism for farmers to generate additional
income through the sale of carbon offsets generated through
reductions in methane and nitrous oxide emissions, or increased
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carbon storage in soils and trees (DCCEE 2012b). However, the
legislation concerning carbon tax and future emissions trading
scheme was repealed in July 2014, effectively removing the main
purchaser of agricultural offsets under the CFI. The current
Australian government has proposed a scheme of direct action,
whereby government becomes the purchaser of all emission
reductions, through the establishment of an Emission Reduction
Fund (ERF; ComLaw 2014).

Australia has invested significantly into research to mitigate
methane andnitrous oxide emissions and sequester carbon in soils
and trees, initially through theClimateChangeResearch Program
(Department of Agriculture 2013) and then the Carbon Farming
Futures Fund –Filling theResearchGapProgram (Department of
Agriculture 2014). The aimof these programshas been to develop
cost-effective solutions to mitigate agricultural GHG and
provide cost-effective options for farmers to participate in the
ERF. Under the Australian ERF, several offset methodologies
have been developed for dairy farmers to increase carbon storage
in pasture soils, reduce enteric methane through feeding dietary
lipids, establish environmental plantings and capture methane
emissions from effluent ponds (CER 2014). However, many of
these methods are not currently cost-effective for dairy farmers
relative to opportunities to simply increase production efficiency
(e.g. Alcock and Hegarty 2011; Bell et al. 2013; Browne et al.
2015). No projects have yet been registered against these
methodologies by dairy farmers and therefore, no carbon-
offset credits have been issued by the Australian government
to the dairy industry.

The major funders of enteric methane mitigation research
within the Australian dairy industry have been Dairy Australia,
state departments, universities and the federal Department of
Agriculture, with major activities being undertaken by Victorian
Department of Economic Development, Jobs, Transport and
Resources and The University of Melbourne, through the Primary
IndustriesClimateChallengesCentre, theCommonwealthScientific
and Industrial Research Organisation, the University of Sydney, the
University of Western Australia and Royal Melbourne Institute of
Technology.

Several comprehensive reviews have been published that
describe options to mitigate GHG from livestock production
(e.g. Eckard et al. 2010; Martin et al. 2010; Buddle et al. 2011;
Cottle et al. 2011; Doreau et al. 2011; Grainger and Beauchemin
2011; Henry et al. 2012; Meale et al. 2012; Clark 2013; Hristov
et al. 2013; Montes et al. 2013; Knapp et al. 2014; Kumar et al.
2014; Pacheco et al. 2014). These reviews on methane mitigation
have been global in scope and have focussed on methane-
mitigation research conducted during the past 10 years. The
present review focuses on more recent Australian dairy industry
methane-mitigation research and includes a revised method for
calculating methane emissions from the Australian dairy industry,
which is recommended as a replacement of the current Australian
GHG inventory methodology.

The majority of dairy cows in the temperate regions of
Australia graze on perennial ryegrass-dominant pastures for
the entire year (Dairy Australia 2014). In contrast, North
American and European dairy cow diets are usually based on
total mixed rations composed of lucerne hay, maize silage, maize
grain and soybeans (Mowrey and Spain 1999; VandeHaar and
St-Pierre 2006). However, the dairy industries in New Zealand,

United Kingdom and the Republic of Ireland also are based
on grazed perennial ryegrass-dominant pastures. Thus, the
research findings concerning methane emissions from dairy
cows fed pasture-based diets in these countries are likely to
have relevance to the Australian dairy industry, and vice versa.

Themajor aimsof this revieware to summarise themost recent
methane-mitigation research for the Australian dairy industry,
including the following; to identify those strategies that can
currently be used to reduce methane emissions, and those
technologies that have potential to be used as mitigation
strategies in the future; to estimate the methane yield when dairy
cows consume diets typically available in Australia; to propose an
improvement in the way the Australian GHG inventory calculates
enteric methane emissions from the Australian dairy herd; to
estimate the total enteric methane intensity of Australian milk
and to suggest future research opportunities for reducing
methane emissions from the Australian dairy herd.

Metric of emissions

International markets increasingly require certification of the
carbon footprint of imported dairy products. To achieve
this, the Australian dairy industry participates in a carbon
footprint project, using the methodology of the International
Dairy Federation (International Dairy Federation 2010). There
is currently no differentiation of the carbon footprint of products
produced by individual dairy companies in Australia but
carbon footprint analysis could be used as a point of product
differentiation in the future. By its nature, a carbon footprint
analysis derived from the CO2eq is an emission-intensity metric
because it is based on emissions per unit of product produced,
rather than an absolute measure of total emissions. Use of the
emission-intensity metric allows for further industry growth, in
keeping with international food demand, but with proportionally
less environmental impact per unit of product. There are three
generally accepted metrics used to quantify enteric methane
emissions from dairy cows, including (1) methane emission,
i.e. methane emitted per cow per day (g/day) or per unit of
farm land (g/ha), (2) methane yield, i.e. methane emitted per
unit of feed eaten (g/kg dry matter intake, DMI), and (3) methane
intensity, i.e. methane emitted per unit of product (g/kg milk or
g/kg milk solids).

Although the definition of methane intensity seems
straightforward, methane intensity has been used as a metric
by several authors to describe quite different things. Themajority
of authors have used ‘methane intensity’ to describe a short-term
measure of the efficiency of methane production with respect to
milk production. For example, many authors when describing
short-term feeding experiments, have measured the total amount
of entericmethane produced by a specific group of lactating cows
in a particular period of an experiment, and then divided this
amount by the total amount ofmilk produced by these same cows
during the same period (e.g.Wims et al. 2010;Moate et al. 2011).
We propose that this measure of methane (CH4) intensity, which
has units of g CH4/kgmilk ormilk solids (MS), should be defined
as ‘partial enteric methane intensity’ (PEMI) because it does not
take into account the enteric methane that is necessarily produced
by growing heifers, non-lactating cows and bulls. Such factors as
level of milk production and stage of lactation can greatly affect
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themagnitude of PEMI, and for this reason, PEMI should be used
only to compare emission intensity within an experiment or a
range of related experiments involving cows of similar milk yield
and stage of lactation. If we consider the total lifetime enteric-
methane emissions of a cow, and divide this amount by the total
lifetime milk production of the cow, we again have a metric of
methane intensity, with units of g CH4/kg milk, but this metric is
more appropriate to calculate the enteric methane intensity of an
individual cow.We propose that this should be called ‘individual
entericmethane intensity’ (IEMI), an idealmetric for the selection
of low methane-emitting dairy cows over their lifetime. By an
extensionof this reasoning, it is apparent thatwe canalso compare
the methane intensity of different herds or indeed national herds
by calculating the total annual production of enteric methane by
all of the animals in the herd, including methane produced by
the non-lactating growing heifers, the non-lactating cows, and the
bulls as well as the lactating cows, and dividing this amount by
the total annual productionofmilk fromall of the lactating cows in
the herd. This metric also has units of g CH4/kg milk, and we
propose that this metric should be called ‘total enteric methane
intensity’ (TEMI).

Mitigation can be defined as a reduction in any one of these
metrics. Currently, national inventories account only for total
emissions, while customers are increasingly interested in
emission intensity, most commonly expressed as a product’s
carbon footprint. Research efforts have been concerned with all
of these metrics, with a reduction in one metric sometimes
associated with a reduction in another. Under the policies
of the Australian government, the aim has been to reduce total
emissions. However, there is growing consensus in Australia of
the need to increase dairy production to supply the increasing
international demand for dairy products.Not surprisingly, there is
recognition by many scientists that enteric-methane mitigation
may, therefore, need to focus on emission intensity (Henry et al.
2012; Knapp et al. 2014). This also recognises that if dairy
production is to be increased, options to reduce total per cow
or per hectare emissions may be limited (Henry et al. 2012;
Hristov et al. 2013; Knapp et al. 2014).

The current constraints to mitigation mainly concern the lack
of effective, practical and profitable offsetmethodologies. Farmers
are unlikely to accept changes that are detrimental to profitability,
or that affect normal farm operation. If suitable technologies
are identified, then the reduction of emissions would need to be
quantified to provide appropriate financial reward, unless the
mitigant(s) increase farm profitability. The mitigation challenge
is greater in pastoral dairying, where the focus is on low-cost,
pasture-based milk production, compared with dairying that
involves feeding of mixed rations that provides a means to feed
components that can reduce enteric-methane formation (e.g. plant
lipids, tannins or methanogen-specific inhibitors). Lowering
emission intensity fits well with farmer objectives, namely, to
maximise profit through efficient production, increased cow
fertility and longevity (e.g. Lovett et al. 2006; Beukes et al.
2010; Waghorn and Hegarty 2011). Therefore, to ensure that
mitigation of enteric methane does not lead to increased GHG
emissions in other sectors, life-cycle analyses with appropriately
defined boundaries and assumptions are essential to avoid
unforseen increases in overall emissions (e.g. Williams et al.
2014a; Zehetmeier et al. 2014a, 2014b).

Measurement of methane emissions

Any attempt to mitigate emissions first requires the accurate
measurement of enteric methane emissions from dairy cows.
There have been several recent reviews that have specifically
addressed the various methods for measuring enteric methane
emissions from ruminants (e.g. Lassey 2007; Storm et al. 2012),
and it is the intent of this review to provide only a summary of the
methods used in Australia.

Calorimetric chambers are often acknowledged as the gold
standard for measurement of methane emissions from individual
animals (Grainger et al. 2007; Williams et al. 2013). This is due
to the accepted accuracy of calorimetric chambers; however,
their establishment and running costs and complexity of their
operation generally limits their availability and, consequently,
throughput is limited to small numbers of animals. Despite the
acknowledged accuracy of calorimetric chambers, substantial
errors in methane measurement can occur if appropriate
calibration procedures are not routinely followed (Gardiner
et al. 2015).

As well as measuring methane emissions by means of
chambers, the sulfur hexafluoride (SF6) tracer-gas technique
has also been used extensively for many years by researchers
in Australia. Unlike the calorimetric chamber method, the
SF6 tracer technique can be used on large numbers of animals
simultaneously (e.g.McNaughton et al. 2005;O’Neill et al. 2012)
and, importantly, for Australian dairy research, can be used to
determine the methane emissions from grazing or non-grazing
dairy cows (e.g. Grainger et al. 2007, 2008a).

Methane emissions from cattle can also be measured by the
GreenFeed system (C-lock Inc., Rapid City, SD, USA) patented
by Zimmerman (2011). There have been noAustralian studies on
dairy cows using the GreenFeed system. However, Velazco et al.
(2014) compared the methane emissions from Angus steers fed
diets supplemented with either nitrate or urea. They reported that
nitrate-fed steers consumed more meals per day, resulting in
a shorter time interval between consuming a meal and having
methane measured by the GreenFeed system. Velazco et al.
(2014) concluded that there was a need for caution in
extrapolating ‘short-term emission measures’, as are obtained
by the GreenFeed system, to daily methane-emission rates. This
need for cautionwhen employing theGreenFeed systemwas also
recently echoed by Hammond et al. (2015). Hammond et al.
(2015) conducted two experiments in which Holstein heifers
were fed various diets, and one experiment in which growing
heifers rotationally grazed swards of either ryegrass, clover or
flowers. They found that methane emissions as measured by the
GreenFeed systemwere not concordantwith emissionsmeasured
by the respiration chamber, and only in moderate agreement
with measurements made by the SF6 technique. Hammond et al.
(2015) concluded that ‘under our conditions of use theGreenFeed
system was unable to detect significant treatment and individual
animal differences in methane emissions that were identified
using both respiration chambers and SF6 techniques, in part
due to limited numbers and timing of measurements obtained’.
Thus, before the GreenFeed system should be used in Australia
in applied research, additional research is required to determine
appropriate operating protocols and its accuracy must be
validated against measurements made by the chamber technique.

Methane emissions from Australian dairy cows Animal Production Science 1019



The open-path FTIR tracer method was developed for use
on free-ranging cattle in Victoria (Griffith et al. 2006); however,
there are no peer reviewed papers reporting the use of open path
ormicrometeorologicalmethods to determinemethane emissions
from dairy cattle in Australia.

Methane emissions from cows fed pasture

Almost all Australian experiments in which methane emissions
have been measured, involved diets containing pasture or some
other forage supplemented with some amount of cereal grain.
However, there have been three Australian experiments in which
cows have been fed measured amounts of harvested pasture
(without supplement) and their mean methane emissions
ranged from 369 to 458 g CH4/cow.day, methane yields
ranged between 21.9 and 24.6 g CH4/kg DMI and PEMI
ranged between 15.1 and 18.3 g CH4/kg milk (Williams et al.
2013;Deighton et al. 2014b;Moate et al. 2014a). Thesemethane-
emission metrics are similar to those reported from pasture-fed
dairy cows in other countries. In New Zealand, Waghorn et al.
(2008) fed cows harvested perennial ryegrass-dominant pasture,
and measured methane emissions in the range 273–352 g CH4/
cow.day, methane yields in the range 17.7–21.2 g CH4/kg DMI
and PEMI of 11.5–16.9 g CH4/kg milk. In Ireland, O’Neill et al.
(2011) measured methane emissions of cows fed harvested
perennial ryegrass as 251 g CH4/cow.day with a methane yield
of 18.1 g CH4/kg DMI and a PEMI of 12.8 g CH4/kg milk.

Dietary strategies to mitigate methane emissions

Lipid-containing plant by-products

There is now strong evidence that addition of plant lipids to the
diet of dairy cows can reduce their enteric methane emissions
(Grainger andBeauchemin2011;Moate et al. 2011). InAustralia,
there are several industries that produce plant by-products that,
relative to pasture, contain a high concentration of lipids and are,
therefore, potentially useful as feed supplements for ruminants.
These by-products are typically fibrous residues resulting from
the extraction of higher-value constituents used in the production
of primary products (e.g. brewers grains from beer production;
cold-pressed canola from oil production; cottonseed from cotton
production; grape marc from wine making, and hominy meal
from maize milling). Given that these by-products have little
economic value compared with the primary product resulting
from their production, the GHG emissions associated with their
production can mostly be attributed to the primary product
(Williams et al. 2014a).

Grainger et al. (2008a, 2010b) showed that supplementary
feeding of whole cottonseed to dairy cows could cause a
substantial decrease in methane emissions without adversely
affecting milk production. They speculated that it was the
concentration of lipid in cottonseed that was responsible for
the methane mitigation. Since then, there have been several
reviews that have identified dietary supplementation with plant
lipids as one of the most effective ways to reduce methane
emissions from ruminants (Beauchemin et al. 2009; Martin
et al. 2010). More recently, Moate et al. (2011) compared
brewers grains, cold-pressed canola and hominy meal for their
methane-mitigation potential and found that all three by-products

could substantially reduce enteric methane emissions from dairy
cows.

Using data from 17 cattle experiments published in the
international peer-reviewed scientific literature, Moate et al.
(2011) quantified the effect of dietary lipid concentration on
methane emissions from dairy cows. Methane yield (g/kg
DMI) was linearly related to the lipid concentration in the diet
(Eqn 1) and this equation has been used in the development of an
offset methodology (ComLaw 2013) by the Australian Federal
Government.

CH4 yield ¼ 24:5 �1:48ð Þ � 0:079 �0:0157ð Þ · lipid; ð1Þ
whereCH4 yield is the entericmethane yield (gCH4/kgDMI) and
lipid is theconcentrationof lipid in thediet (g lipid/kgDMI).From
Eqn 1, it can be calculated that, for a typical dairy diet containing
30 g lipid/kg DMI, each additional 1% increase in dietary fat
concentration will decrease methane emissions by ~3.5%.

Since thework ofMoate et al. (2011), otherAustralian research
has examined the effects on methane emissions when dairy cows
were fed other by-products rich in plant lipids. Grape marc is one
such by-product. The feeding of red grape marc to dairy cows
reduced methane emissions and methane yield by ~20% (Moate
et al. 2014b). Recently, the feeding of grape marcs from red and
white grapeswere found to be equally effective at inhibiting enteric
methane emissions from dairy cows (Moate et al. 2014c). As
well as lipids, grape marc contains tannins, lignin, tartaric acid,
p-coumaric acid, resveratrol and copper which all have potential to
inhibit enteric methanogenesis (Moate et al. 2014b).

A compilation of data from themost recent Australian feeding
studies, including seven published experiments (Moate et al.
2011, 2013, 2014a, 2014b, 2014c; Deighton et al. 2014b;
Williams et al. 2014b) and five other unpublished experiments
from these authors, provides additional quantification of the lipid
effect and, for thefirst time, quantification of the effect ofwheat in
the diet, on methane emissions from dairy cows. This dataset
included measurements from 362 lactating dairy cows from six
experiments in which methane was measured by open-circuit
calorimeters and six experiments inwhichmethanewasmeasured
by the SF6 technique (Williams et al. 2011a; Deighton et al.
2014b). In these experiments, cows were in various stages of
lactation and consumeddiets containing a diverse range of dietary
ingredients. These factors are likely to have contributed to the
variation in methane yield shown in Fig. 1. A meta-analysis was
performed on the data from these experiments using a linear
mixed model with nested random effects for experiment and cow
within experiment. Orthogonal linear and quadratic polynomial
terms in wheat and lipid diet percentage were used to develop the
fixed-effect regression terms. A parsimonious model consisting
of only statistically significant terms (P < 0.01) was refitted to
the data using original (non-centred and non-orthogonalised)
covariates, for presentation. Data analysis was conducted using
GENSTAT 17 software. The concentrations of lipid in these diets
ranged from 20 to 70 g/kg DM and methane yield declined
linearly by 0.093 � 0.0174 g CH4/kg DMI per gram dietary
lipid concentration (Fig. 1). This response in methane yield is
not significantly (P > 0.05) different from the response shown
in Eqn 1 above. In Australia, dietary-lipid supplements such as
brewers grains, cold-pressed canola meal, cottonseed, hominy

1020 Animal Production Science P. J. Moate et al.



meal and grape marc will continue to have an important role in
supportingmilk production,with the ancillary benefit of reducing
methane emissions. Although there has been considerable
speculation as to the mechanisms by which dietary lipids
suppress methane emissions (Beauchemin et al. 2009; Martin
et al. 2010), definitive evidence identifying the most important
mechanisms is still lacking and represents a clear knowledge gap.

Cereal- and protein-based concentrates

Most international research on the effect of concentrate feeding
has been carried out with mixtures of maize grain and soybean
meal (Yan et al. 2010; Hristov et al. 2013). However, it is known
that diets containing a high proportion of starch-containing
grains decrease methane yield compared with forage-based
diets (Johnson and Johnson 1995; Beauchemin and McGinn
2005). In general, most international research has shown that
methane yield starts to decline when maize grain or soybean
concentrates make up more than 60% of the diet (Lovett et al.
2003; Sauvant et al. 2011). In the temperate regions of south-
eastern Australia, grazed pasture generally constitutes themajority
of feed consumed by dairy cows, although the consumption of
concentrates has been increasing steadily. By 2011, dairy cows in
Australia consumed, on average, 1.7 t DMof concentrates per year
(Dharma et al. 2012).Most of this concentratewaswheat grain, yet
there are few reports on the effect of dietary wheat on methane
emissions from dairy cows (Moate et al. 2012).

The meta-analysis described above also showed that, as
well as a lipid effect, methane yield (g CH4/kg DMI) varied
quadratically with respect to the concentration of wheat grain in
diets (Fig. 2, Eqn 2).

CH4 yield ¼ 24:4 ð�1:11Þ � 0:093 ð�0:0174Þ · lipid

þ 0:0174 ð�0:00056Þ · wheat� 0:000070 ð�0:0000119Þ
· wheat2; ð2Þ

where CH4 yield is the enteric methane yield (g CH4/kg DMI),
lipid is the concentration of lipid in the diet (g lipid/kg DMI)

and wheat is the concentration of wheat in the diet (g wheat/kg
DMI).

Plant secondary compounds

Inclusion of condensed tannins from bark of blackwattle (Acacia
mearnsi) in the diet of dairy cows has been shown to substantially
reduce methane emissions (Grainger et al. 2009). However,
milk yield and DMI were also reduced. Tannins are also
present in many forage species, such as birdsfoot trefoil (Lotus
corniculatus), chicory (Cichorium intybus) and sulla (Hedysarum
coronarium). When dairy cows in New Zealand grazed birdsfoot
trefoil, their methane emissions were reduced (Woodward
et al. 2004). Similarly, when dairy cows grazed sulla, methane
emissions were reduced without compromising milk production
(Woodward et al. 2002). There is also some evidence that the
feeding of chicory to sheep may be associated with reduced
methane emissions (Sun et al. 2012).

Forage brassicas have shown mixed results as a methane
mitigating feed. Although most brassicas fed to sheep have
resulted in similar methane yields, an exception is the
significantly lower methane yield (~20%) when swedes or
forage rape were fed, compared with ryegrass, turnips and kale
(Sun et al. 2012). The mechanism of this reduction is unknown
and further research is warranted to investigate the methane
mitigation effects when these forage brassicas are fed to dairy
cows.

Methane inhibitors

Monensin, a polyether antibiotic, has shown promise as a methane
mitigant in dairy cattle where grains form a substantial proportion
of the diet (e.g. Odongo et al. 2007). However, monensin has not
shown any consistent methane-mitigating effect in the pasture-
based systems of Australia and New Zealand (Moate et al. 1997;
van Vugt et al. 2005; Waghorn et al. 2008; Grainger et al. 2010a).
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Nitrates, when fed as a dietary supplement, have been shown
to reduce methane emissions from dairy cows consuming diets
containing low concentrations of nitrogen (van Zijderveld et al.
2011). This mitigation option may not be attractive to Australian
dairy farmers because dietary nitrate supplementation may
decrease DMI (Lund et al. 2014) and, therefore, potentially
decrease milk production. Dietary nitrate supplementation will
also increase the risk of nitrate poisoningof dairy cows, especially
when pastures already contain a high concentration of crude
protein (Callaghan et al. 2014).

Methanogen-specific inhibitors are a potentially effective
mitigation technology because they may exploit the
evolutionary distinctiveness of methanogenic micoorganisms.
Methanogens are the most prevalent archaea species found in
the rumen (Janssen and Kirs 2008). Archaea are evolutionarily
distinct fromother rumen organisms (bacteria, protozoa, fungi and
viruses) and, as all methanogens share a similar methanogenesis
pathway (Hedderich and Whitman 2013), inhibitors of this
pathway may specifically target methanogens without directly
affecting other rumen microorganisms. Halogenated compounds
were identified as inhibitors of ruminal methane formation over
40 years ago (Johnson et al. 1972; Clapperton 1974).Considerable
research has been conducted with halogenated compounds (e.g.
bromochloromethane, bromoethanesulfonate and chloroform)
and, in some cases, administration of halogenated compounds
to ruminants has caused substantial decreases in enteric methane
emissions (Trei et al. 1972; Abecia et al. 2012). Artificially
synthesised halogenated chemicals are unlikely to be used in
Australia because of their potential toxicity, the risk of residues
in milk, their ozone-depleting properties and because there are
strict laws governing their importation and use. However,
some plants such as the red sea weed, Asparagopsis taxiformis,
contain high concentrations of bromoform and other halogen
compounds (Burreson et al. 1976) and, in a recent in vitro
experiment, Asparagopsis taxiformis was shown to reduce
methane production by 99% (Machado et al. 2014). Thus, the
supplementation of ruminant diets with red sea weed may offer a
natural means of methane mitigation.

A novel inhibitor 3-nitrooxypropanol (NOP) has been shown
to have anti-methanogenic properties. NOP acts against archaea
in the rumen by interfering with the last enzymatic step in the
formation of methane (Duval and Kindermann 2012). Recent
research with dairy cows in Canada and the USA has shown
that administration of NOP was associated with reduced
methane production (Haisan et al. 2014; Hristov et al. 2015).
The efficacy of NOP as a dietary additive for pasture-fed
cows has not yet been determined; however, before any such
inhibitor couldbeusedonAustralian farms, research focussingon
toxicology and residues would be required.

Emerging technologies to measure methane emissions
and facilitate mitigation

In the context of this review, emerging technologies are those
technologies that, by themselves,maynotmitigate entericmethane
emissions, but facilitate the accurate measurement of methane
emissions (e.g. improved SF6 methodology; development of
intra-ruminal sensors), prediction of methane emissions (e.g.
modelling), or the development of other technologies that can
be used to mitigate enteric methane emissions (e.g. ruminomics).

Improved methodology for the SF6 tracer technique

Several researchers have shown that methane yields measured
using the original SF6 technique (Zimmerman 1993; Johnson et al.
1994) were not concordant with methane yields measured in
calorimetric chambers (e.g. Pinares-Patiño et al. 2008; Grainger
et al. 2010b; Muñoz et al. 2012) or that the variance in methane
yieldmeasured by the original SF6 techniquewas generally greater
than the variance of methane yield measured by the chamber
technique (Vlaming et al. 2008; Hammond et al. 2009, 2015).

In 2011, the Global Research Alliance on Agricultural
Greenhouse Gases sponsored a workshop in New Zealand on
the SF6 technique, resulting in publication of guidelines describing
how the original SF6 technique should be implemented (Berndt
et al. 2014). Since this workshop, there has been considerable
research undertaken in Ireland and Australia to improve the
accuracy and reliability of the SF6 technique (e.g. Williams
et al. 2011a; Deighton et al. 2013a, 2014a, 2014b; Moate et al.
2014c, 2015). This research has identified the source of
measurement errors within the SF6 tracer technique and has led
to the development and validation of amodifiedmethod (Deighton
et al. 2014b). Implementation of the SF6 technique using these
modifications enabledmeasurement ofCH4 emissions to be highly
concordant withmeasurements made using calorimetric chambers
(Deighton et al. 2013b). Another recent experiment has
demonstrated the high degree of accuracy of the modified SF6
technique (Deighton et al. 2014b). In this experiment, lactating
dairy cows were fed on freshly harvested perennial ryegrass and
mean CH4 yield (g/kg DMI) was 21.9� 1.65 when measured by
calorimetric chamber and 22.3� 1.44 when measured by the SF6
technique. The between-cow coefficient of variation was 7.5%
when CH4 yield was measured in chambers and 6.5% when
measured by the SF6 technique. Recently, Moate et al. (2015)
showed thatMichaelis–Menten kinetics accurately predict the rate
of SF6 release from permeation tubes used to estimate methane
emissions fromruminants. The important implications of this latest
research are that when Michaelis–Menten kinetics are used to
predictSF6 release rate frompermeation tubes, thiswill increase the
accuracy of the estimation of methane emissions from ruminants
and extend the period during which methane emissions can be
accuratelymeasured for up to 1 year after deployment of the tubes.

Intra-ruminal gas sensor

An intra-ruminal device with the capability of measuring the
concentrations of methane and carbon dioxide dissolved in
rumen fluid has recently been developed (CSIRO 2014). The
rumen is a particularly hostile environment for electronic
instruments because hydrogen sulfide can diffuse across the
membrane that encloses the device and cause corrosion of
electrical circuits. Recently, researchers have shown that silver
nano-particles incorporated into membranes can substantially
reduce the permeation of hydrogen sulfide through membranes
(Nour et al. 2014). For an intra-ruminal device to be able to
dynamicallymeasure theconcentrationsofgases in the rumen, the
gases must be able to quickly permeate through the membrane.
Recently,Nour et al. (2013) andBerean et al. (2014) reported that
membrane permeability of methane, hydrogen and carbon
dioxide could be substantially altered by the use of composite
membranes and by optimising the temperature at which the
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membranesweremade. This fundamental researchwill be crucial
for the further development of robust intra-ruminal gas-sensing
devices, and also for gas-sensing devices that could be attached to
in-vitro fermentation apparatus to enable real timemeasurements
of the composition of fermentation gases. Nevertheless,
additional research will be needed to determine whether, or
how, the in situ measurement of ruminal gas composition can
be used to determinemethane emissions from individual animals.

In vitro measurement of fermentation gases

Globally, the most common screening process used to identify
potential methane mitigants involves in vitro fermentation
procedures. In Australia, several research groups are currently
using in vitro fermentation procedures. A series of in vitro
experiments have been conducted to investigate the effect of
plant essential oils (Chaves et al. 2012), endophyte toxins
(Meale et al. 2013) and organic acids (Reis et al. 2014) on
methane production. However, none of these substrates
inhibited methane production. In vitro procedures have been
used to screen Australian native plants for their methane-
mitigation potential. The most promising forage plant identified
is emu bush (Eremophila glabra; Li et al. 2014). Researchers have
also screened a wide range of feed additives for their methane-
mitigation potential and have found reduced methane production
from nine feed additives, eight essential oils and two plant extracts
(Durmic et al. 2014). Tropical marine algae (sea-weed) have been
screened for their methane-mitigation potential. The brown algae
(Cystoseira trinodis and Dictyota bartayresii), and the red algae
(Asparagopsis taxiformis) were identified as having particularly
potent methane-inhibiting effects in vitro (Dubois et al. 2013;
Machado et al. 2014).

Proxy measures of methane emissions

The measurement of enteric methane emissions from ruminants is
difficult, labour intensive and expensive and, for these reasons,
therehas been considerable international research to developproxy
measures for enteric methane emissions. In Europe, research has
focussed on the possibility of using the concentrations of specific
fatty acids in milk as predictors of methane emissions from dairy
cows (Chilliard et al. 2009; Dijkstra et al. 2011). Furthermore, the
fatty acid composition of milk fat can influence the mid-infrared
spectra of milk and researchers in Belgium have related the mid-
infrared spectrum of milk from individual cows to their methane
emissions (Dehareng et al. 2012; Vanlierde et al. 2013). In
Australia, Williams et al. (2014c) found only weak relationships
betweenmethane emissions and the concentrations of specific fatty
acids in milk fat. Further research is required to examine potential
relationships between the yields of specific milk fatty acids and
enteric methane emissions.

Rumen metagenome profiling, proteomics and high-
energy forages

The rumen microbiome of individual cattle is the collection
of microbial species living in the rumen, including bacteria,
protozoa, archaea and virus. The composition of an animal’s
microbiome is of great interest, as it could influence methane
emissions. In the past, it was difficult to assess rumen microbial
composition as many of the rumenmicrobial species are resistant

to culture. High-throughput, massively parallel sequencing
overcomes this problem as DNA extracted from rumen samples
can be sequenced directly without an intervening culture step. If
individual rumen samples are sequenced, the sequences can be
used to infer relative composition of each microbiome profile.
This requires a rumen metagenome reference sequence – a
representation of DNA from all of the species likely to occur in
the rumen. While Brulc et al. (2009) and Hess et al. (2011) have
assembled rumenmetagenome reference sequences, many species
remain unknown, given the large number of species in the rumen.

The repeatability (stability) of an animal’s rumenmetagenome
over time remains to be determined and has important
consequences for the validity of rumen metagenome profiling
as a research tool. However, Ross et al. (2012) collected rumen
fluid samples from three locationswithin the rumenof three cows.
DNA from the samples was sequenced using massively parallel
sequencing. When the reads were aligned to the rumen
metagenome references, the rumen metagenome profiles were
repeatable (P < 0.00001) by cow regardless of location of
sampling within the rumen. There is preliminary evidence that
rumenmetagenome profiles can be used to predict methane yield
of dairy cows (Ross et al. 2013b). Ross et al. (2013a) extracted
DNA from rumen fluid from 39 cows either fed diets with a large
effect on methane (grapemarc, fat and tannins), or a control diet,
and compared these with measured methane emissions from
these cows. Rumen metagenome profiles for each cow were
associated with methane yield using the best linear unbiased
prediction method, which allowed information from the relative
abundance of many microbes to be used simultaneously. The
correlation between predicted methane yield and actual methane
yield was 0.47. This is encouraging, as it suggests that rumen
metagenome profiles could be used either to select cattle with
lower methane yields, or as a proxy phenotype for methane yield,
for example, to develop genomic breeding values for methane
yield, as described above.

The accuracy of using rumen microbial profiles to predict
methane yield, while useful, could be improved. If the complete
DNA sequence of rumen microbes was known, profiles could
be generated that more accurately reflected the rumen microbial
composition of individual cattle. The Hungate 1000 project
(Leahy et al. 2013) aims to completely sequence large numbers
of rumen microorganisms, including bacteria and archaea. The
accuracy of predicting methane yield from rumen microbial
profiling would also be increased with a larger set of cattle
measured for methane, and with rumen microbial profiles.
Such efforts are underway in Australia in the Pangenome
project (P. Vercoe, pers. comm.) and, internationally, in the
Ruminomics project. Extracting RNA (i.e. gene expression)
information from rumen samples may also be useful as it has
recently been demonstrated that the magnitude of methane
emissions in sheep was associated with the level of gene
expression of methanogenesis pathway genes (Shi et al. 2014).

Whilemost rumenmetagenome studies havebeen focussedon
bacteria and archaea, a recent paper demonstrated that the rumen
is also host to viruses, in the form of bacteriophages and
archaeophages (Ross et al. 2013c). While the importance of
phage abundance and species on methane yield is unknown,
this is certainly an interesting area for future investigation. A
question of great interest is to what extent does the host ruminant
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control the abundance and composition of the rumen microbial
community. Possible mechanisms for this control would be gene
expression in rumen papillae, and salivary proteins (given the
huge amount of saliva ingested each day). An atlas of the bovine
saliva proteome (the proteins expressed in saliva) revealed that at
least 447proteins are expressed in bovine saliva (Ang et al. 2011).
More recent work has demonstrated considerable variability
between cattle in the relative abundance of these proteins in
saliva samples. However, no link to methane yield could be
demonstrated (in a small number of cattle). A vaccine that
delivered an antibody to methanogens through saliva has been
suggested as a means to a reduce methane yield (Wedlock et al.
2013). In the future, transgenic approaches could possibly beused
to modify saliva protein expression.

Genomic selection

Selection for highermilk production in theAustralian dairy cattle
population has already resulted in a reduction in methane
emissions per kilogram milk, i.e. reduced PEMI (Hayes et al.
2013; Fig. 3).

Genomic selection, combined with the direct measurement of
methane emissions and feed conversion efficiency, could result
in reductions in methane emission intensity of milk production.
Genomic selection identifies many of the causative mutations
affecting an animal’s phenotype through tagging with many
thousands of genetic markers, known as single nucleotide
polymorphisms. Provided sufficient phenotypes are available
within a genotyped subset of dairy cows that are representative
of the national herd, genomic prediction equations can be derived
and applied to cows that have single nucleotype polymorphism
genotypes, but for whom phenotypes for traits affecting methane
production are unknown (Pryce et al. 2014).Genomic selection is
now used routinely in many countries for genetic evaluation of
traits that alreadyhave an estimatedbreeding valuederived froma
combination of pedigree and phenotype information (Spelman
et al. 2013). The advantage of genomic selection for these traits is
that the rate of genetic gain is accelerated by 40–50% (Spelman
et al. 2013).

Genomic selection offers powerful new opportunities to
select for traits that are difficult and/or expensive to measure,
such as phenotypes associated with methane production. An
example of the implementation of genomic selection within
the Australian Holstein–Friesian population is selection for
improved feed conversion efficiency (Williams et al. 2011b).
The trait used by Williams et al. (2011b) was residual feed
intake (RFI), which is the difference between actual and
predicted feed intake. Negative values are indicative of
cows that eat less than predicted for their level of milk
production. Developing a genomic prediction tool for this
trait has been the focus of a large collaboration
between researchers in Australia and New Zealand, initially
involving measurement of feed-intake phenotypes of ~1000
Holstein–Friesian heifers of ~6 months of age in each country
(Williams et al. 2011b). The accuracy of trait prediction using
this population was ~0.4 (Pryce et al. 2012), which is
equivalent to a reliability of 0.16. While considerably lower
than achieved for production traits (Spelman et al. 2013), this
is similar to deterministic predictions of accuracy based on

population size and the heritability of the trait (Pryce et al.
2014). Accuracy of trait prediction is limited by the size of the
reference population. One possible solution is to collaborate
with other researchers to establish an even larger reference
population. For example, de Haas et al. (2012) combined DMI
phenotypes from Dutch and UK cows with Australian heifer
phenotypes and found that the accuracy of genomic prediction
was 5.5% higher when a multi-country reference population
was used, than with single-trait models. Since then, there has
been further international collaboration through the global Dry
Matter Initiative (gDMI) to build an even larger reference
population (Berry et al. 2014). Initial results on genomic
prediction using this reference population look promising.

So as to use genomic selection for reducedmethane emissions,
there are two options; to copy the gDMI model and build a
reference population of methane phenotypes, where countries
share the in vivo phenotype measurement and genotyping work,
or to select for traits that are correlated with methane intensity,
such as feed efficiency.

RFI is showing promise as a selection criterion for reducing
methane emissions. Selection for RFI has been reported to lead
to reductions in methane emissions in Australian beef cattle by
~13.5 g CH4/kg RFI (Hegarty et al. 2007). Recently, using
methane-emission data from calorimetry chambers collected
over a 3-day period from 32 cows that were part of a study on
RFI, the potential for abatement inHolstein dairy cowswas found
to be ~17.5 g CH4/kg RFI (J. E. Pryce, unpubl. data). In another
Australian study, Bell et al. (2013) suggested that in addition to
feed efficiency, the greatest lifetime reduction in emissions per
cow and per unit product (i.e. milk production) may be through
selecting animals for longevity because of a reduction in the
number of replacement animals required and the increased milk
yield per lactation of multiparous cows. It is expected that, in
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Fig. 3. Selection of dairy cattle for increasedmilk production tends to lower
methane emissions per kg of milk (PEMI). Methane emissions are closely
linked to feed intake, because more productive and efficient cows dilute their
feed intake formaintenance requirements overmore units ofmilk (reproduced
from Hayes et al. 2013).
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the future, a combination of these two strategies will make a
substantial contribution to reducing methane emissions from the
Australian dairy herd.

Modelling enteric methane production

There are two main classes of model that can be used to predict
enteric methane emissions from dairy cows. These are dynamic
mechanistic models and static empirical statistical models.
Within these classes of models, there are both whole farm-
system models and rumen or ruminant-animal models.

Dynamic mechanistic models can describe the dynamic
changes that occur in the rumen as ingested feed is fermented
(Volpe et al. 2005). Thus, by definition, dynamic mechanistic
models involve a set of differential equations that describe
changes in a set of state variables over time. State variables are
variables such as the amount of a particular substrate, metabolite
or agent of change in the rumen. Examples of state variables are
the amount of fermentable carbohydrate present in the rumen at
any time, the amount of soluble protein present in the rumen at any
time, and the number of bacteria in the rumen.Typically, dynamic
mechanistic models may have between 12 and 50 state variables
and there may be complex interactions between these variables.
Globally, there are currently four major dynamic mechanistic
models that have the capacity to dynamicallymodel fermentation
within the rumen of dairy cows and predict methane production.
These areMolly (Baldwin 1995), Anje/COWPOL (Dijkstra et al.
1992; Benchaar et al. 1998; Mills et al. 2001), Karoline (Danfaer
et al. 2006) and DairyMod (Johnson et al. 2012). These models
are suitable for research purposes but, due to their complexity and
their requirement for extensive parameterisation reflecting
dietary components, they are unlikely to be suitable for day-
to-day use predicting the methane emissions from cows grazing
a wide range of constantly varying diets, as occurs in the pasture-
based dairying systems of Australia. Thus, they are unlikely to be
sufficiently accurate to generate the national inventory of GHG
emissions from theAustralian dairy herd.Molly,Anje/COWPOL
and Karoline are not in common use in Australia, but DairyMod
has been extensively used to evaluate a range of methane and
nitrous oxide mitigation options in the context of Australian
whole-farm systems (Browne et al. 2013, 2015).

Static empirical models have the following three key
strengths: (1) simplicity, they generally involve a small
number of variables (e.g. DMI, dietary lipid%, dietary lignin
%), (2) they can be implemented in a simple spreadsheet, and (3)
they are transparent and can be easily tested on a variety of
datasets. The national GHG inventory of Australia currently uses
a static empirical model to estimate emissions of methane from
ruminant livestock. The equation used is based on the equation of
Blaxter and Clapperton (1965), as corrected by Wilkerson and
Casper (1995), and is as follows:

CH4 emission as% of GEI ¼ 1:3þ 0:112 · Dð Þ
� L 2:37� 0:05 · Dð Þ; ð3Þ

where CH4 emission (CH4% of gross energy intake, GEI) is
expressed as a % of GEI (MJ), D is the apparent digestibility
of dietary energy at maintenance (expressed as a %) and L is the
energy intake expressed as a multiple of that required for
maintenance (%).

TheDairyGreenhouseGasAbatement Strategymodel, which
captures the Australian inventory methods in a simple farm
tool, has been used to predict enteric methane emissions from
60 Tasmanian dairy farms (Christie et al. 2011). The principal
disadvantage of all of these empirical static models is that they do
not rely on an understanding of the biology of methanogenesis in
the rumen, and, hence, they are of limited use in the development
of new strategies to mitigate enteric methane emissions from
ruminants. Static empirical models are also limited in predicting
beyond the data used for their development.

So as to be able to quantify the magnitude to which various
interventions mitigate methane emissions, it is first necessary
to quantify methane emissions in the absence of mitigation
interventions. Figure 4 depicts daily DMI and daily methane
production data from 220 cows from eight experiments using
Holstein–Friesian cows (Grainger et al. 2008b; 2010a; Moate
et al. 2013;Williams et al. 2013; Deighton et al. 2014b; and three
unpublished experiments, using the same methodology). The
cows were at different stages of lactation and were fed a wide
variety of diets containing in excess of 70% forage (pasture,
pasture hay, pasture silage, or lucerne hay) and between 0% and
30% cereal grain (barley or wheat), with none of these diets
containing any known methane mitigants. These diets represent
diets that have been used on Australian dairy farms during the
past 40 years (Kellaway and Harrington 2004). The methane
emissions from individual cows were measured in open-circuit
calorimeters, with the chambers and method of operation
previously described in detail (Williams et al. 2013). These
methane-yield data were analysed using a mixed model with a
single fixed effect consisting of just the mean and with random
effects for experiment, treatment within experiment, period
within experiment, cow within experiment and a residual term
(period within cow within experiment). This model (Eqn 4) is
essentially the same as a random coefficients regression-through-
the-origin model for methane (CH4 g/day) versus DMI (kg/day).

CH4 emission ¼ a · DMIþ bi · DMIþ eij · DMI; ð4Þ
where a is the mean slope of the relationship between methane
andDMI, andbi is a randomcoefficientwithmean0, that depends
on factors such as experiment, treatment, period andcow, and eij is
a residual error coefficient for each datum, with residual error
plausibly proportional to DMI (or CH4). The primary objective
of the analysis was to estimate the mean slope, a, with an
appropriate standard error. Rearranging Eqn 4 gives Eqn 5 that
is, a linear mixed model for methane yield, as follows:

CH4 yield ¼ CH4

DMI
¼ aþ bi þ eij: ð5Þ

Each random term was tested using a chi-square change-
in-deviance test on exclusion of the term from the model, and
themost parsimoniousmodel was selected on the basis of Akaike
information criterion (AIC). Distributional assumptions of
normality and constant variance were checked graphically
using plots of residual versus fitted value (in the case of lowest
stratum residuals) histograms and normal quantile plots, and
residual plots by experiment and treatment class (for both
lowest stratum residuals and for residuals combining all
random effects). Data analysis was conducted using GENSTAT

17 software (VSN International 2014).
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The resulting linear relationship between methane emissions
(g CH4/cow.day) and DMI (kg/cow.day) is shown in Fig. 4 and
is described by Eqn 6, as follows:

CH4 emission ¼ 21:1 �0:48ð Þ · DMI: ð6Þ
The coefficient of 21.1 g CH4/kg DMI is similar to the

coefficient of 21.6 used in the New Zealand GHG inventory
(Ministry for the Environment 2014). Furthermore, this
coefficient for dairy cows is less than the 23.1 g CH4/kg DMI
(Fig. 4) reported by Dijkstra et al. (2011) for dairy cows in The
Netherlands, but more than the coefficient of 19.4 for diets based
on a mixture of maize silage, maize grain and soybeans, as is
typically used in the USA (Hristov et al. 2013).

When lactating dairy cows are fed different amounts of a diet
dominated by forage, we have found the response in methane
emissions to be linear (Fig. 4). This is in contrast to the
diminishing methane yield predicted by the equation which is
used to predict methane emissions for dairy and beef cattle in
the current Australian GHG inventory (Department of the
Environment 2014), based on Blaxter and Clapperton (1965),
the non-linear Mitscherslich (Mits3) model of Mills et al.
(2003), which is the current model recommended by the
USDA (Powers et al. 2014), and the recent model of Knapp
et al. (2014). We propose that for the Australian GHG
inventory, Eqn 6 is more appropriate than the current method.
There are six reason for usingEqn 6 instead of Eqn 3. These are as
follows:
(1) The choice of dependent and independent variables in Eqn 3

is problematic. The dependent variable, CH4 emissions,
is expressed as a percentage of the GEI (MJ). GEI is
determined as the product of DMI and the concentration

of gross energy in the feed (MJ/kg DM). The concentration
of gross energy in a feed is normally determined by using a
bomb calorimeter, and it is an exacting process prone to
error. Also the apparent digestibility of dietary energy at
maintenance (D) for most Australian feeds has rarely, if
ever, been measured in dairy cows. For any given animal,
the determination of D and the level of energy intake
relative to maintenance (L) is quite difficult to determine
and subject to error. Therefore, this calculation is based on
variables that are themselves very difficult to accurately
measure and about which there is limited published data for
Australian feeds.

(2) The second issue with Eqn 3 is that it is primarily based on
data that came from studies on sheep (Blaxter andClapperton
1965). Equation 3 predicts that, for a feed of a given D value,
the methane production as a % of GEI will decline with
increasing L. There is some recent evidence that this may
be the case for sheep (Pacheco et al. 2014), but the data
reported here (Fig. 4) and in the scientific literature now
provide incontrovertible evidence that, for cattle fed forage-
dominant diets, methane emissions (g CH4/day) are linearly
related to DMI (Kriss 1930; Ellis et al. 2010; Hristov et al.
2013).

(3) The third issuewith Eqn 3 is that it is based on feeds available
in the UK during the early 1960s. Not only are these
qualitatively different from current Australian cattle diets,
but some of the diets in the database of Blaxter and
Clapperton (1965) included high proportions of flaked
maize and sugar-beet pulp, which may be expected to
have ruminal fermentation characteristics different from
those of forage-based diets typically fed to dairy cows in
Australia.

(4) The fourth problem with the Blaxter and Clapperton (1965)
equation is that it introduces an error into the estimation of
methane emissions, by relating methane production to
energy intake. This is particularly problematic in diets
containing a high concentration of lipid. The Blaxter and
Clapperton (1965) equation predicts that cows consuming a
lipid-rich diet would produce more methane than cows
consuming a diet with a low lipid concentration. However,
the reverse is observed (Beauchemin et al. 2009;Moate et al.
2011).

(5) The fifth reason why the Blaxter and Clapperton (1965)
equation should be replaced is that it was developed at a
time before statistical programs had been developed that
could take into account multiple covariates and colinearity
between independent variables or perform appropriate meta-
analyses. From the vantage point of 2015, we cannot be
confident that appropriate statistical modelling was
performed on the data of Blaxter and Clapperton (1965).

(6) Last,more than 50 years have passed since the data ofBlaxter
and Clapperton (1965) were obtained from experiments
conducted during the late 1950s and early 1960s. There
have been substantial changes in the genetic merit of dairy
cows during the past 50 years. Therefore, it would be prudent
that mathematical models to predict methane emissions from
the Australian dairy sector should be based on data from
modern lactating dairy cows representative of the current
Australian dairy herd.
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If Eqn 6 was to be employed to estimate enteric methane
emissions from dairy cows, then the estimate of enteric methane
emissions from the Australian dairy industry would be ~10% less
than the current inventory estimate.

Methane emissions and intensity of Australian milk
production

First-world consumers are increasingly concerned with the
environmental impact of their lifestyles (Fraj and Martinez
2006; Young et al. 2010). An important determinant of the
carbon footprint of dairy products is how much total enteric
methane is associated with each kilogram of milk produced
(TEMI; g CH4/kg milk). Thus, practical steps to mitigate
methane emissions associated with dairy production must
necessarily be concerned with reducing methane intensity. In
this regard, the question facing researchers and consumers is
‘What is the TEMI of Australian milk production?’.

Calculationofmethane intensity is complicatedby the fact that
methane is produced by dairy cows during the growth phase,
before commencement of lactation at about 2 years of age, when
they are not lactating and when they are lactating. Nevertheless,
using the calculator described byHeard et al. (2011), it is possible
to estimate the total annual DMI of all animals (calves, growing
heifers, milking cows and dry cows) on an Australian dairy farm.
Several assumptions are required to make this calculation. These
include the average bodyweight of cows, the percentage annual
replacement rate of cows, and the estimatedmetabolisable energy
(ME) concentration (11.0 MJ/kg DM) of pasture consumed, the
estimated ME concentration (12.0 MJ/kg DM) of concentrate
consumed, the lipid concentration of the diet and the impact that
the proportion of wheat in the diet has on the methane yield. A
conservative approach to calculating enteric methane emissions
from these animals involves use of Eqn 6. Alternatively, the
impact that wheat consumption has on methane emissions can be
estimated by using Eqn 2.We have applied Eqn 6 for Years 1980,
1990, 2000, 2010, 2020 and 2030 andEqn 2 forYears 2010, 2020
and 2030.Whenmaking these calculations, we used data on total
annual milk production and the total number of dairy cows in
Australia (DairyAustralia 2014). Inmodelling the effect ofwheat
consumption onmethane emissions, it has been assumed that half
of the Australian dairy herd consume 25% of their ME intake as
wheat and half consume 50%of theirME intake as wheat, overall
equating to 38% of ME intake as wheat. This approximates the
average proportion of wheat currently in the diet of dairy cows in
Australia. Thus we assumed that average wheat intakes in 2010,
2020 and2030were, respectively, 1.7, 2.4 and2.5 twheatDMper
cow per year. Table 1 shows the data used to estimate methane
emissions and TEMI from 1980 to 2030.

In 1980, Australia’s annual milk production was ~5.4 billion
kg, and this increased to ~8.9 billion kg by 2010, a 64% increase.
We estimate that in 1980, the Australian dairy industry produced
~185 000 t of enteric methane annually, and by 2010, enteric
methane production remained almost the same at ~182 000 t (3.8
M t CO2e). Thus, the important issue highlighted by the data
in Table 1 and Fig. 5 is that, as milk production per cow has
increased, TEMI has decreased. Indeed, between 1980 and 2010,
TEMI has decreased by ~40%, and by 2030, the modelling
indicates that with wheat feeding, TEMI may be less than half

of that in 1980. The data presented in Table 1 and Fig. 5 also
highlight the fact that currently and into the near future,
wheat feeding can be expected to reduce TEMI by ~20%. This
substantial reduction in estimated TEMI relies on our estimated
methane response to wheat feeding, as is shown in Fig. 2. In view
of the potential magnitude of the dietary wheat effect, additional
research is needed to better quantify the methane response to
wheat feeding, such as the following: to determine whether the
methanemitigation response observed in short-term experiments
persists into the longer term; to identify potential additive or
synergistic effects if diets contain wheat as well as other methane
mitigants such as lipid supplements; to compare the methane
mitigation responses when wheat of various qualities (e.g.
Australian general-purpose or feed wheat) are fed to cows; and
to elucidate the chemical and physical attributes of wheat that are
associated with methane mitigation.

It has been suggested that as arable land becomes scarce, diets
containing a high proportion of cereal grains should not be fed to
ruminants on ethical grounds since cereals could be fed directly to
humansor tomonogastric animals (Doreau et al. 2014).However,
in 2010, Australian dairy cows consumed less than 10% of the
27.4 million tonnes of wheat grown in Australia (Index mundi
2014). Most of the wheat consumed by cattle was classified as
either Australian general-purpose or feed wheat. These wheat
classes generally comprise grain that has failed tomeet minimum
standards formilling, due to foreignmaterials, weather damage or
sprouting (QueenslandGovernment 2009). Furthermore, in terms
of producing food for human consumption, it is more efficient to
feed grain to cows and produce milk than to use grain to produce
chicken or pig meats (Wilkinson 2011). Thus, it seems likely that
wheat will continue to constitute a significant proportion of the
diet of Australian dairy cows in the future.
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Fig. 5. Estimates of the past and future total entericmethane (CH4) intensity
of milk production (TEMI) for the Australian dairy industry. The solid line
depicts conservative estimates based on amethane yield of 21.1 g CH4/kg dry
matter intake. The dashed line depicts estimates that take into account the
effect of estimated and predicted future wheat feeding on TEMI.
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Future research opportunities

During the past 30 years, the on-farm application of research in
dairy cow nutrition, rumen microbiology and dairy cow genetics
has led to substantial increases inmilk production from individual
cows. In 1980, Australian dairy cows produced on average 2889
kg milk per year and, in 2010, average production had increased
64% to 5654 kg milk per year. Analysis of data collated in the
present review has shown that dairy cows in Australia produce
21.1 g methane for each kg of DM consumed. Using this
coefficient, the average TEMI from Australian dairy cows was
estimated to have been 33.6 gmethane/kgmilk (9.8 t CO2e/tMS)
in 1980, but this had decreased to 19.9 g methane/kg milk (6.0 t
CO2e/t MS) in 2010. This reduction in TEMI intensity was
brought about by improvements in nutrition and genetics,
leading to increases in milk production, that have occurred in
the intervening years.

Currently, there are only a few practical and cost-effective
strategies that can be used on Australian farms to achieve further
reductions in total methane emissions. Those currently available
include the feeding of lipid-rich feed supplements, such as
brewers grains, cold-pressed canola, cottonseed, hominy meal,
grape marc, and the feeding of wheat. Other promising strategies
are in early stages of development but offer the possibility of long-
term mitigation. These include genetic selection of cows that are
efficient at feed conversion to milk, genetic selection of low-
methane-emitting cows, vaccines to reduce ruminalmethanogens
and intra-ruminal administration of specific chemical inhibitors
of methanogens. However, well-resourced research on methane
mitigation in Australia has been undertaken for less than 15 years
and it is likely that further researchwill be required for significant,
sustainable and cost-effective solutions to be developed.

The present review has identified that the following areas
should have high priority in future methane-mitigation research:
(1) The quantification of methane mitigation resulting from

feeding wheat
(2) The elucidation of themechanisms bywhich the feeding of

fatty feed supplements and the feeding of wheat reduce the
methane emissions of ruminants

(3) The elucidation of how rumen microbiology influences
enteric methane production

(4) The development of low-cost methods for measuring
enteric methane production

(5) Large-scale screening of dairy cows to identify low
methane-emitting animals

(6) Research to enhance the productivity of dairy cows so as to
further reduce their methane intensity

Conclusions

The current Australian GHG inventory overestimates the
contribution made by enteric methane emissions from the
dairy sector due to the use of a now outdated calculation based
on the research of Blaxter and Clapperton (1965). We conclude
that empirical evidence demonstrates that the methane yield of
forage-fed dairy cows in Australia is ~10% less than the current
inventory with an average of 21.1 g CH4/kg DMI.

We report that the current TEMI of Australian national milk
production is ~19.9 g CH4/kg milk (6.0 t CO2e/t MS).

Implementation of research to improve Australian milk
production has led to a substantial (40%) reduction in the
enteric methane emission associated with Australian milk
production, from 33.6 in 1980 to 19.9 g CH4/kg milk in 2010.
Current research has demonstrated that the TEMI of Australian
milk production can be further reduced by the inclusion of lipid-
rich by-products in the diet of dairy cows. Themethane emissions
of cows consuming forage diets containing 30 g lipid/kg DMI
can be reduced by ~3.5% for every 1% increase in dietary fat
concentration. Recent Australian research has also indicated that
inclusion of feed wheat in the diet of dairy cows also results in a
substantial reduction in methane yield; however, further research
is required to quantify this effect and its complementarity with
other dietary mitigation options. A further reduction in the
methane intensity of Australian milk production is anticipated
in the near future, given the increasing inclusion of wheat in the
diet of Australian dairy cows.

Further substantial reductions in methane emissions will
probably not occur by the application of a single technology,
but by the application of an integrated suite of technologies.
Against these advances, continuing growth in consumer demand
for dairy products, especially in Asia, is likely to stimulate dairy
production in Australia, and in the absence of further mitigation
research, potentially cause a concomitant increase in production
of GHG, and in particular, methane, in the absence of further
mitigation research. Future research should, therefore, focus on
both the medium- and long-term options to profitably reduce the

Table 1. Estimated enteric methane emissions and total enteric methane (CH4) intensity (TEMI) of milk production from the Australian Dairy
industry, 1980 to 2030

Data after 2010 for cowbodyweight, replacement rate, Australian cows andmilk yieldwere assumed on the basis of current trends. Intake per cow, average intake
per milking cow plus non-milking replacement stock

Year 1980 1990 2000 2010 2010A 2020 2020A 2030 2030A

Cow bodyweight (kg) 500 533 566 600 600 610 610 620 620
Replacement rate (%) 25 28 31 34 34 31 31 30 30
Australian cows (millions) 1.88 1.65 2.17 1.6 1.6 1.6 1.6 1.6 1.6
Milk yield (kg/cow.year) 2889 3786 4997 5654 5654 6500 6500 7500 7500
Intake per cow (t DM/year) 4.6 5.2 5.9 6.4 6.3 6.8 6.7 7.0 6.9
Australian enteric CH4 emission (1000 t/year) 182 181 270 216 179 230 187 236 196
TEMI (g CH4/kg milk) 33.6 29.0 24.9 23.9 19.9 22.1 18.0 21.1 16.4

ACalculation of the impact of wheat consumption on estimated methane emissions and TEMI.
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emission footprint of dairy production systems. In the short term,
the most prospective focus for mitigation research would be on
dietary manipulation and animal management. However, a long-
term research focus on rumenmanipulation and plant and animal
breeding is imperative to underpin the future sustainability and
environmental footprint credentials of the Australian dairy
industry.
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