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Abstract. Entericmethane emissions from livestock constitute a greater part of anthropogenic greenhouse gases (GHGs)
in Africa, than in more industrialised economies, providing a strong incentive for the development of low methane
phenotype ruminants. Although dietary and husbandry options already exist for lowering methane production, means of
changing ‘methane status’ of animals enduringly has a strong appeal. This paper is a critical review the empirical success to
date of attempts to alter this status. Introduction of reductive acetogens, defaunation, anti-methanogen vaccines, early life
programming and genetic selection at both the rumen and animal level are considered in turn. It is concluded that to date,
there is little in vivo evidence to support the practical success of any of these strategies, save selective breeding, and this at a
high cost with unknown efficacy. Finally, it is suggested that for developing economies management and nutritional
strategies to reduce emissions will have the greatest and most immediate impact, at the lowest cost.
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Introduction

Enteric methane emissions from ruminants are of wide concern
to government, to environmentalists, aid organisations, and
arguably to the wider or general community, because of the
interrelationships between food production, human health and
enteric methane’s adverse effect on climate. It has been argued
that it would be best if domestic ruminants were eliminated as a
human food source (Sabaté and Soret 2014); however, others
suggest that such an action would not be an efficient use of
available resources and question if the future human population
could meet its food needs if such a course were adopted (Rojas-
Downing et al. 2017). This is crucially so in sub-Saharan Africa
where the consumption of animal-based proteins is low, but
essential to the basic nutritional requirements of some of the
world’s most economically vulnerable people. Unfortunately,
large livestock numbers with low productivity and relatively
low levels of industrial development mean that the ruminant
contribution to anthropometric greenhousegas (GHG)emissions
on the African continent is the largest component of national
GHG inventories in many countries. This provides a compelling
case for developing and implementing practical and effective
strategies to reduce GHG emissions in African livestock.

Enteric emissions can be reduced or mitigated in several
ways. Several dietary manipulations such as the use of
lipids (Machmüller et al. 2000) or chemical feed additives
(e.g. bromochloromethane; (Denman et al. 2007), have been
demonstrated to reduce entericmethaneproduction in ruminants.
Improving animal productivity and thereby decreasing

emissions per unit of animal product produced is well
recognised as an effective way to reduce the carbon footprint
of livestock. Dietary and management strategies to ameliorate
the impact of ruminants on GHG levels have been the subject of
considerable scientific enquiry and has been well summarised in
several authoritative reviews (Beauchemin et al. 2008; Hegarty
et al. 2010).

Regardless of known and effective strategies for reducing
enteric emissions, the impetus to create, or develop ruminants
that emit lower levels of methane permanently or semi-
permanently, without the need for ongoing (human)
intervention is strong. Theoretically, as many have claimed
(Iqbal et al. 2008; Mitsumori and Sun 2008; Kumar et al.
2014) this should be achievable, and realising this goal would
be a game-changer, particularly in developing economies where
ruminant livestock production systems are a significant
contributor to emissions The process of enteric methane
production is a complex one, involving multiple microbial
consortia and their interactions with the host itself (Leng
2018). Thus, there are several potential modalities for
interfering or modulating the process of methanogenesis at
either at the level of the rumen biome or the mammalian host
level. Permanently altering the rumen environment by
introducing organisms that compete with or are inimical to
rumen Archea, inducing a host immune response to
methanogens or genetic selection of a low-methane phenotype
animal are all paths by which, at least in theory, enteric methane
production may be permanently reduced. However, results
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in vivo frequently fail to match those predicted by modelling,
molecular or in vitro studies. This review specifically examines
the animal experimental evidence to date for producing the ‘low
methane’ ruminant, whether by manipulating the rumen
population or the host, or both.

Changing the animal: altering the rumen microbiome

The rumen is an ecologically complex environment, but there
are documented instances of the successful transfer of novel
organisms to improve rumen function (Jones and Megarrity
1986). This section examines the evidence of reducing
methane production using modalities that attempt to
enduringly alter the rumen environment.

Reductive acetogens

The process of reductive acetogenesis (RA) takes the same
reactants used in methanogenesis (CO2 + H2) and transforms
them into acetate via an alternate biochemical process. This is a
process commonly found in anoxic natural systems such as lake
sediments, but generally accounts for less than 5% of hydrogen
utilisation in these systems (Lovley and Klug 1983) perhaps
due to the hydrogen concentration threshold for uptake by
methanogens being 10�1 to 10�2 of that for acetogens (Cord-
Ruwisch et al. 1988).

Notwithstanding this, establishing the process of reductive
acetogenesis in ruminants has become somethingof a ‘holygrail’
of enteric methane reduction. If acetogenic bacteria could be
established and compete effectively in the rumen, this
colonisation would have the dual benefit of reducing (possibly
eliminating) the animals’ requirement for methanogenesis to
dispose of excess hydrogen, while simultaneously providing
additional energy substrate for the host animal (resulting in
more complete usage of feed). The potential for RA to reduce
methane emissions in ruminants was reviewed by Joblin (1999)
who concluded that ‘it is too early to discard the possibility for
reductive acetogens competing with or acting in concert with
methanogens’. However, evidence to suggest that acetogenic
bacteriawill grow in the conditions prevalent in the rumen, using
the process of RA, is sparse. RA, along with methanogenesis,
is a critical metabolic process in termites, where acetogens
apparently co-exist with methanogens (Breznak and Kane
1990). Schmitt-Wagner and Brune (1999) found that both
groups are present in termites because they are highly
localised, with acetogens existing where there is the highest
partial pressure of hydrogen andmethanogens predominatemore
distally where hydrogen concentration is considerably lower.
Leadbetter et al. (1999) discovered that the separation is
facilitated by the attachment of acetogens to spirochetes
resident in the termite gut.

RA in the large intestine has been estimated to provide 0.25%
of the energy requirements of rats, rabbits and guinea pigs (Yang
et al. 1970; Prins and Lankhorst 1977). Graeve and Demeyer
(1990) found circumstantial evidence for the existence of RA in
the hindgut of cattle as well as of pigs, and this was confirmed by
later in vitro studies (De Graeve et al. 1994). Evans et al. (2009)
latterly identified the existence of RA in the foregut of the tamar
wallaby (Macropus eugen), whereas in humans, aminority of the
population have detectable levels of methanogenic Archaea

(MA) (Bernalier et al. 1996) and it appears that MA have a
competitively exclusive relationship with acetogenic bacteria
(AB) (Doréet al. 1995), aphenomenonalsoobserved innewborn
lambs (Morvan et al. 1994).

RA have been isolated from ruminants including deer (Rieu-
Lesme et al. 1995) and lambs (Rieu-Lesme et al. 1996) aswell as
cattle (Greening and Leedle 1989). However, attempts to grow
acetogens inmixed culture in vitro have only been possible using
partial pressures of hydrogen far above that encountered in a
normally functioning rumen, or chemical suppression of
methanogens, or both, to be successful (Nollet et al. 1997; le
Van et al. 1998; Nollet et al. 1998; Lopez et al. 1999). Early
attempts to induceRA in vivohave been reviewedbyFievez et al.
(1999), who concluded that all attempts, even after suppression
of MA, were unsuccessful. More recently Fonty et al. (2007)
reported successfully establishing and maintaining a population
of RA species in gnotobiotic lambs; however, methane
production was not recorded and hydrogen production and
utilisation were estimated indirectly from volatile fatty acids
(VFA) stoichiometry. The study concluded that methanogens
increased quickly to normal densitieswhen theywere introduced
to the rumen of acetogen-colonised lambs.

It appears that the critical requirement for RA to establish as a
significant metabolic process in the rumen is a high partial
pressure of hydrogen (Weimer 1998). Further, evidence
suggests RA cannot occur in the rumen unless MA are
permanently suppressed, with unknown consequences for the
host animal. Thus, it appears that because MA have such a high
affinity for hydrogen, the likelihood of RA being a substantial
hydrogen sink, thus reducingproduction ofmethane in the rumen
is low.

Defaunation

Elimination of protozoa from the rumen (defaunation) has
been the subject of considerable interest and investigation over
the last 50 years. Although ubiquitous, ciliate protozoa are not
essential to proper functioningof the rumen, and itwas suggested
that their absence may lead to improved production efficiency
(BRYANT 1970). Trials undertaken to assess the effect of
defaunation on animal productivity have generally shown that
growth, and in particular wool growth in sheep, improves,
especially where rumen bypass protein is limited (Bird and
Leng 1978; Bird et al. 1979; Eugène et al. 2004b) From a
meta-analysis of defaunation trials it was concluded that
although feed digestibility was lower in defaunated sheep,
there were substantial increases in microbial nitrogen outflow
with a concomitant decrease in rumen ammonia concentration
(Eugène et al. 2004a) and such changes are consistent with the
notion that eliminationof protozoawoulddiminishwasteful lysis
and intraruminal recycling of bacteria.

Protozoa do not possess H+-utilising (i.e. propiogenic)
metabolic pathways, and many methanogens form a close
physical and probably symbiotic relationship with ciliates
(Chagan et al. 1999). This has led to the suggestion that
defaunation may be an effective strategy to reduce enteric
methane production (Hegarty 1999). There is some evidence
that defaunation decreases methane production in sheep
(Kreuzer et al. 1986) and cattle (Whitelaw et al. 1984).
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Overall the evidence is equivocal, if not contradictory and the
effect of defaunation on enteric methane production not clear,
with Bird et al. (2008) failing to find differences in methane
production between faunated and defaunated ewes at 10 and
25 weeks after treatment. In studies using medium chain fatty
acids (MCFA) to suppress protozoa in sheep (Machmüller et al.
2000, 2003) the authors attributed the decrease in methane to
MCFA’s inhibitory effect onmethanogens themselves, aswell as
reducing protozoa.A definitive study of lambs born fauna-free to
previously chemically defaunated ewes, Hegarty et al. (2008)
found no difference in enteric methane production between
faunated and fauna-free animals. Thus, it appears that
although substantial gains in productivity may be realised
through the defaunation of ruminants, decreasing energy
losses through the diminution of enteric methane production,
does not appear to form part of those gains.

Host response: immunisation

Early trials by researchers inWesternAustralia produced two
vaccines designed to induce an immune response to rumen
methanogens (Wright et al. 2004). Plasma IgA and IgB
antibodies titres in sheep showed a significant response post-
immunisation. However, extensive testing and repeated
applications of the vaccines failed to produce significant
reductions in methane production (P-value 0.401–0.751),
except on one occasion where a 7.7% decrease of CH4 per
unit dry matter intake (DMI) (P = 0.051) was observed. A
vaccine prepared on a similar principle (i.e. using cell extracts
from the target species) with the aim of reducing rumen protozoa
(Williams et al. 2008), showed little response, as did a vaccine
based on five phylotypes of methanogens (Williams et al. 2009),
suggesting approaches based on a limited number of species of
methanogens is unlikely to be effective.

Both Attwood et al. (2011) and Wedlock et al. (2013) have
emphasised the importance of developing an effective
methanogen vaccine that targets all methanogens, to prevent
non-target species expanding to fill the ecological niches left by
those selectively eliminated, while avoiding affecting non-target
organisms. This will require the identification of some common
features, such as a shared surface protein, unique to Archaea, so
as not to interfere with or compromise the function of other
bacterial consortia playing crucial roles in ruminal digestion.
Recent trials using a recombinant protein as a potential antigen
against methanogens elicited strong antibody responses in both
cattle (Subharat et al. 2015) and sheep (Subharat et al. 2016), but
neither study quantified rumen methanogens or enteric methane
production post-immunisation. Using a different protein, but
employing a similar approach, Zhang et al. (2015) also observed
strong immune responses in saliva and plasma, yet failed to
detect any reduction in either rumen methanogens or enteric
methane production in inoculated goats. It is concluded that
although conceptually appealing,work to date has produced very
little actual evidence for the efficacy of methanogen vaccines on
the production of enteric methane in vivo.

Host response: early life programming (ELP)

The influence of diet during early life on the bacterial
community (Eadie et al. 1959) and physical structure of the

rumen (Greenwood et al. 1997) is well recognised. This
interrelationship has led to speculation that dietary or other
interventions during early life might be able to influence the
life-time microbial community of ruminants (Morvan et al.
1994) and thus affect life-time methane production. Abecia
et al. (2013, 2014) explored the effect of ELP on enteric
methane production in lambs using bromochloromethane to
suppress methanogens in new-born lambs and their dams, but
reported that the reduction in methane production lasted only as
long as treatment persisted, althoughnoting a longer termchange
in the archaeal community. In contrast, DeBarbieri et al. (2015a)
observed persistent changes in the rumen microbial community
of lambs inoculated with rumen content from different sources;
however, this did not translate into differences in entericmethane
production (De Barbieri et al. 2015b). This approach appears to
have some promise, but it is clear our understanding of effects
and modalities of ELP are at a preliminary stage (Yáñez-Ruiz
et al. 2015) and there are no practical applications to reduce
enteric methane at present.

Conclusion

There are several potential modalities available to reduce
enteric methane emissions by altering the rumen population
through extraneous means. Although initially promising, after
extensive testing it seems clear that the introduction of reductive
acetogens and elimination of ciliates will not produce the desired
effect. Although attempts are still ongoing, there has been a
similar lack of success in producing an effective methanogen
vaccine and understanding of ELP is still at a preliminary stage.
Thus it is concluded that at present there are no demonstrated
technologies that will reduce enteric methane by altering the
rumen biome in an enduring manner.

Changing the animal: the low-methane phenotype

Substantial differences in methane production have been
observed between animals consuming the same quantity of a
given diet (Blaxter and Clapperton 1965; Lassey et al. 1997;
Ulyatt et al. 1999; Hegarty et al. 2007). There is evidence to
indicate that digestibility of feed is inversely related to methane
production per unit intake (e.g. (Gordon et al. 1995; Yan et al.
2000), although intake and digestibility are frequently conflated
in the literature. In any case, these factors fail to explain why
animals under identical conditions should have different
methane yields (MY; gCH4/MJ of digestible energy intake).
Observed differences between animals in MY under equivalent
conditions may be due to differences in the animals’ digestive
physiology, in the rumenmicrobial community, or a combination
of both. Partially shifting the site of digestion, or alterations in
the bacterial and ciliate populations each have the capacity to
change the amount of methane generated per unit of energy
ingested through changing the amount and profile of VFA, the
partitioning of energy between cell growth andmaintenance, and
ultimately the amount of hydrogen generated. The extent to
which each of these factors are important in determining
between-animal differences in MY, and the degree to which
they are labile to manipulation will determine the theoretical
potential of developing a ‘low methane phenotype’ (LMP)
animal.
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Contribution of digestive physiology

Residence time of digesta, along with composition of the
microbial population, may each be influenced by mean
(rumen) retention time (MRT). Although level of food intake
is negatively correlated withMRT (Grovum andWilliams 1973;
Evans 1981), voluntary feed intake is positively related to rate of
eating (Forbes et al. 1972), which is itself highly repeatable
among diets and over time for individual animals, but is highly
variable between individual animals (Frisch and Vercoe 1977).
So it canbededuced that individual variation in rate of eatingmay
be expressed in differingMRT and it has also been demonstrated
that whole tract digesta time varies more between animals than
for individuals across diets (Bines and Davey 1970). Thus,
variables directly under the control of the animal will affect
important facets of digestive physiology in the ruminant, but the
case for digestive physiology having a direct impact onMYgoes
well beyond intake and rate of eating.

The evidence for MRT and associated rumen parameters
being a significant determinant of MY is quite compelling.
Okine et al. (1989) found cattle with weights in their rumens
produced 29% less methane than control animals fed the same
amount of the same diet and that methane production was
inversely correlated (r = –0.53) with outflow of rumen
particulate matter. Similarly, Smuts et al. (1995) demonstrated
that sheep selected for high wool growth had higher rumen
outflows and consequently, higher microbial outflow from the
rumen than low-wool growth sheep. Pinares-Patiño et al. (2003)
observed that rumen outflow rate accounted for ~57% of the
difference in MY in sheep fed a restricted diet (1.3 times
maintenance), whereas Barnett et al. (2012) clearly
demonstrated that manipulating gut motility and reducing
transit time would decrease MY in sheep at a given intake.
The critical role of rumen digestion parameters in determining
enteric methane production has been confirmed in studies using
previously identified low MY (LMY) and high MY (HMY)
sheep., where LMY was strongly associated with not only
decreased MRT in both solid and liquid phases, but also
smaller rumen volume and differences in rumen contents
(Goopy et al. 2014; Bond et al. 2017). Daily Methane
Production and more recently, MY have been shown to have a
low but significant heritability (h2 = 0.13) with distinct sire
differences and so there is scope for genetic selection
(Robinson et al. 2010; Pinares-Patiño et al. 2011, 2013).
Because MY is a complex trait that is technically challenging
to measure, discovering the mechanism(s) by which animal
genotype affects MY may help in the identification of proxies
which are indicative of MY. This is consistent with the findings
reported by Barnett et al. (2012), who demonstrated that a
reduction in whole-tract MRT (induced by injections of
triiodothyronine every second day) also reduced MY,
identifying the possibility that blood triiodothyronine
concentration may be a factor by which animal genotype
affects MRT and so a possible indicator of proxies for MY. To
this end, Clauss and Hummel (2017) suggested that selective
breeding of ruminants for increased liquid digesta flow rates is
likely to be an efficacious strategy to reduce MY, although how
this might be undertaken in practical terms, is not addressed.
Although it is yet to be investigated empirically, a final

consideration is the possible impact of selection for LMY on
animal productivity. If decreased rumen volume andMRTare the
physiological drivers for LMY, it may be posited that to select for
LMY will diminish an animal’s ability to assimilate nutrients
from low-quality roughages frequently encountered under
rangeland conditions, with potentially deleterious effects.

Contribution of microbial genomics

Meng et al. (1999) demonstrated in vitro that increasing dilution
rates were associated with improved microbial efficiency and
increased VFA concentrations, while lowering ammonia
concentrations in rumen fluid. By quantifying rRNA, Weimer
(1998) determined that there were differences up to 8-fold in
relative abundance of the threemain cellulolytic species between
a small number of cattle consuming the same ad libitum diets.
Chen andWeimer (2001) have demonstrated in vitro that varying
dilution rates in continuous cultures has substantial effects on the
relative abundance of key cellulolytic and amyolytic bacteria.
Studies using PCR–DDGE have identified clear differences in
microbial communities of steers selected for divergent feed
efficiency (Guan et al. 2008), indicating clear interrelationships
between rumen microbial population structure and host
physiology. Thus, evidence for a nexus between LMP animals
and differentiated microbial communities, is mounting.

Kittelmann et al. (2014) found two distinctly different rumen
bacterial communities in LMY sheep, and suggested that the
predominant metabolic pathways used by the main species in
the communitieswould result in the production of lower levels of
H+. Separately, Shi et al. (2014) discovered that gene pathways
involved in methanogenesis were differentially expressed in
high and low MY sheep, even though total numbers of
methanogens did not differ. In contrast, Wallace et al. (2015),
using a metagenomics approach to explore rumen microbial
community difference in LMY and HMY cattle, reported a
much greater abundance of methanogens in HMY cattle, and
observed similar differences in methanogenic gene expression
between groups.

More recently, employing 16S rRNA gene amplicon
sequencing from previously identified HMY and LMY sheep,
Kamke et al. (2016) found increased lactate-producing Sharpea
spp. in LMY sheep bacterial communities, suggesting that the
rumen microbiome in LMY animals support increased lactate
production, which in turn, is metabolised to butyrate, resulting in
a significantly reduced yield of hydrogen ions. Moreover, the
authors of this study concluded that the observed differences in
the LMY microbial community are consistent with the
hypothesis that a smaller rumen size with a higher turnover
rate, (where rapid heterofermentative growth would be an
advantage) results in lower H+ production and lower methane
formation, thus explicitlymaking the link between host digestive
anatomy/physiology and the differentiated rumen biome.

Conclusion

There is strong evidence for the existence of a LMP animal in
both bovine and ovine populations. However, as studies by
Münger and Kreuzer (2008), and more recently, Duthie et al.
(2017) have shown, suchdifferences are unlikely to conveniently
fall along existing breed lines, but individuals with LMP will
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need to be identified through rigorous and technically
challenging testing of a general population. At present, the
‘gold standard’ method for identifying individuals with LMY
or HMY is measurement under standardised conditions in open-
circuit respiratory chambers, which is expensive, laborious
and time-consuming. Simpler procedures, using short-term
measurements have been developed (Goopy et al. 2009,
2011), but are less sensitive and require a greater number of
measurements to be useful (Pickering et al. 2015). Recent
research suggests there is possibly a strong association
between particular rumen microbial communities and the
physiological/anatomical characteristics of a LMP animal, but
this is yet to be conclusively demonstrated. If proven, rumen
microbial profiling may provide a long-sought after proxy for
identifying LMP animals, but even then testing will most likely
need to include the provision of standardised feeding conditions.

Creating the LMP ruminant

It can be said there are two broad approaches to creating the LMP
ruminant. The first is to alter the rumen enduringly through
exogenous means. This has the attraction of being able to be
applied to any and all animals in a population, andwould achieve
an immediate, one-off decrease in entericmethane emissions, but
unfortunately the evidence todate for being able to achieve sucha
feat is disappointingly lacking. The second approach is that of
identifying individuals within the population who possess the
desired phenotype, then selecting for those animals. In the case of
the LMP, it needs to be considered that: (1) the technical
requirements for identifying and testing animals are
prodigious; (2) the differences between identified LMY and
HMY animals are only in the region of 12–15% (Goopy et al.
2014; Kittelmann et al. 2014) and there is no evidence that this
will be increased through trait selection; and (3) there is little if
any, economic benefit to be gained by farmers in selecting for
LMPunder prevailing economic conditions (Robinson andOddy
2016). Further, Eckard et al. (2010) has warned that even though
genetic selection for LMP animals is theoretically possible, the
rate of genetic gain for the trait will necessarily be low in any
multi-trait breeding program.

Thus, on the basis of current understanding, LMPanimals can
be identified, albeit with some difficulty. Animals that express
the trait produce 6–8% lessmethane on a given diet (Goopy et al.
2014; Kittelmann et al. 2014) than the general population. The
trait is heritable, but not highly so, andmight ormight not bemore
fully expressed over subsequent generations of animals selected
for the trait. In any case, such a breeding program would require
considerable resources to establish and significant industry
participation to be successful over many years – and this in an
environment where there is no economic imperative to do so.

In contrast, there are at present, a number of practicable,
implementable and financially beneficial management options
for ruminant productions systems that will almost immediately
reduce entericmethane emissions intensities 2–13%(Alcockand
Hegarty 2006). In more industrialised livestock systems where
the scope to reduce emissions intensities through improved
nutrition, husbandry or health becomes narrower, genetic
selection, along with dietary additives, may be the only future
options. However in developing, low-intensity production

systems where emissions intensities for livestock systems can
be reduced by 30% or more (J. Goopy, unpubl. data) by simple
dietary interventions that increase productivity, it seems
questionable as to whether development of the LMP animal is
the first, best, choice.
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