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Abstract. Herd improvement has been occurring since the domestication of livestock, although the tools and
technologies that support it have changed dramatically. The Australian dairy industry tracks herd improvement through
a range of approaches, including routine monitoring of genetic trends and farmer usage of the various tools and
technologies. However, a less structured approach has been taken to valuing the realised and potential impacts of herd
improvement. The present paper aims to demonstrate the value of herd improvement, while exploring considerations
for undertaking such a valuation. Attractive value propositions differ among and within dairy stakeholder groups.
While broad-scale valuations of genetic trends and industry progress are valued by government and industry, such
valuations do not resonate with farmers. The cumulative nature of genetic gain and compounding factor of genetic lag
means that long timeframes are needed to fully illustrate the value of genetic improvement. However, such propositions
do not align with decision-making timeframes of most farming businesses. Value propositions that resonate with
farmers and can lead to increased uptake and confidence in herd improvement tools include smaller scale cost–benefit
analyses and on-farm case studies developed in consultation with industry, including farmers. Non-monetary
assessments of value, such as risk and environmental footprint, are important to some audiences. When
additionality, that is, the use of data on multiple occasions, makes quantifying the value of the data hard,
qualitative assessments of value can be helpful. This is particularly true for herd recording data. Demonstrating
the value of herd improvement to the dairy industry, or any livestock sector, requires a multi-faceted approach that
extends beyond monetary worth. No single number can effectively capture the full value of herd improvement in a way
that resonates with all farmers, let alone dairy stakeholders. Extending current monitoring of herd improvement to
include regular illustrations of the value of the tools that underpin herd improvement is important for fostering uptake of
new or improved tools as they are released to industry.
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Introduction

Herd improvement has been occurring since the domestication
of livestock species, with farmers seeking to improve
subsequent generations of animals (Simm 2000). Since
then, scientific knowledge and resources have advanced
considerably (Weigel et al. 2017) and many new industry
tools that support herd improvement have been delivered. For
over 100 years, dairy herd improvement has been underpinned
by milk recording (generally known as herd testing in the
southern hemisphere). The milk sampling of lactating cows,
which is normally performed monthly, is used for management
decisions on farm and underpins genetic evaluation. The
statistical approach of Henderson’s (1953) best linear
unbiased prediction method provided a way to disentangle

the influence of environment and genetics on an animal’s
performance. These estimates of the genetic merit of
animals are known as estimated breeding values (EBVs).
By providing a fair way of benchmarking and comparing
animals across herds and countries, best linear unbiased
prediction has had a major impact on the potential for herd
improvement.

Today, DataGene (Melbourne, Victoria, Australia)
publishes EBVs on 42 traits for Australian dairy farmers,
including milk-production traits, fertility, longevity, health
and efficiency traits. To simplify selection decisions, the
information from EBVs is summarised into a single index
value. EBVs are weighted by their respective index weights,
generally derived from economic values and genetic
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parameters using selection index theory, an approach proposed
by Hazel (1943). The national dairy selection index in
Australia is the Balanced Performance Index (BPI) that
includes key traits contributing to profitability, each
weighted by their respective economic value (Byrne et al.
2016).

Herd improvement in the Australian dairy industry is
monitored through several approaches. The success of
breeding programs can be measured by tracking genetic
trends over time (Pryce et al. 2018a). The doubling of
average genetic gain in the past decade from AU$10/year in
sires born from 2005 to 2009 to AU$20/year (Fig. 1) is an
important metric of herd improvement. However, there is
large variation in the rate of genetic gain among herds. For
example, using data from 581 Holstein herds (obtained from
DataGene (Bundoora, Victoria, Australia) in November 2019)
and applying a within-herd linear regression of BPI on year of
birth between 2010 and 2014, the rate of genetic gain ranged
between –AU$15/year to AU$35/year (99% confidence
interval). The improvements in genetic gain that have been
made can be largely attributed to genomics and extension.
The implementation of genomic selection has reduced
generation interval and increased EBV reliability. The
National Breeding Objective Review in 2014 was an
extensive consultative process with industry and farmers to
support, develop and agree on the current indices used in the
Australian dairy industry (Martin-Collado et al. 2015). The
formation of DataGene has resulted in a more coordinated
approach to herd improvement and increased investment by
key stakeholders in the herd improvement space. This has
facilitated broader awareness of validation studies such as
Feeding the Genes and increased the uptake of some herd
improvement tools such as the Good Bulls Guide, Genetic
ProgressReport and commercial genotyping of heifers and bulls.

However, similarly to variable rates of genetic progress
among farms, variable uptake in herd improvement tools has
also been observed. For example, although increasing numbers
of bulls and commercial females are being genotyped (DataGene
2019a) and genomic semen usage is on the rise (NHIA 2020),
approximately two-thirdsofAustraliandairyherdshave less than
80% of their replacements sired by an artificial insemination sire
(DataGene 2019b). This has an impact on genetic progress, as

herd bulls are generally of lower genetic merit than are artificial
insemination sires (Byrne et al. 2016). Also, without a recorded
pedigree, these calvesdonot receive anEBV.Therehas alsobeen
declining participation in herd testing. Between 2005–2006 and
2016–2017, the number of cows tested reduced from48% to39%
of the national herd (DataGene 2018). This drop is in part
explained by declining farm and cow numbers, an increase in
alternate on-farm measurement devices, such as in-line meters
(Watson and Watson 2016), and financial pressures of the
millennial drought, global financial crisis and milk price step-
down. In addition, individual farmer usage and awareness of
decision support tools is monitored through regular surveys by
Dairy Australia. The 2016 survey (Watson and Watson 2016)
showed that not all farmers were aware of the BPI 1 year after its
release, and of those that are aware, not all use it for making
selection decisions. Today, farmer awareness of theBPI has now
reached 80% (Watson 2019).

Despite this large coordinated effort monitoring genetic
trends and uptake and awareness of herd improvement tools,
historically, a less structured approach has been taken to valuing
the realised and potential impacts of uptake (or decline) of these
tools in the dairy industry. Perhaps, it is, in part, because of the
challenge of doing so. Herd improvement comprises many
components, and, therefore, attributing a monetary worth is
hard. Also, definitions of value extend beyond monetary
worth to encompass the importance or usefulness of
something (Cambridge University Press 2011). The present
paper aims to demonstrate the value of herd improvement and
explore the considerations for undertaking such a valuation,
including; the target audience and how this influences value
proposition, the scale and timeframe of valuation, non-monetary
assessments of value and additionality in data usage.

Considering the target audience

Whenapplying thedefinitionofvalue toherd improvement, there
are several considerations. First, the perceived usefulness, or
importance of something, which is a measure of value
(Cambridge University Press 2011), can be a subjective
assessment. For instance, perceptions of the value of herd
testing have been found to differ among farms, being
influenced by both prior exposure and farm business stage
(Newton et al. 2020). This means an attractive value
proposition can differ among farms. Previously, Waters et al.
(2009) also identified differing priorities among farmers and
recommended multiple messages be used to address these
different priorities. Second, the target audience for value
propositions influence why there is a need to demonstrate
value and what presentation of value will resonate with them.
For example, large, broad-scale valuations at national or regional
levels are valuable to government and industry for reporting on
genetic trends and industry progress (e.g. Table 1 includes
example key performance indicators for the Australian dairy
industry). However, these key performance indicators do not
necessarily provide an attractive value proposition at the farm
level. Therefore, there is a need to consider multiple approaches
to valuation, including non-monetary or qualitative assessments
of value. To effectively engage farmers with herd improvement,
it has previously been suggested that increasing alignment
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Fig. 1. Average rate of genetic gain for sires of Holstein cows by year of
birth over three time periods. Figure was adapted from DataGene (2018).
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between farmer decision-making and usage of genetic tools
requires a demonstration of how genetic improvement is
making a difference in dollar terms on farm as part of a
coordinated strategy and comprehensive development
program (Nettle et al. 2010). In addition, the benefits of
working with partner farms in Australian dairy research and
extension are well described (Crawford et al. 2007), with
farmers having a preference to learn from other farmers
(Blair et al. 2013). A research, development and
engagement strategy that demonstrates a multi-faceted value
proposition at the farm level, engages partner farms in
research, and provides a platform for farmers to learn from
other farmers is more likely to deliver an attractive value
proposition and drive practice change in farmer use of herd
improvement tools.

Macro- and micro-valuations of herd improvement
Several different approaches have been used in macro-
valuations of genetic improvement, that is, in very large
datasets or at a national level. Here, we will first describe
two examples applicable to the dairy industry, demonstrating
links between performance and genetic merit and measures of
income or profit and genetic merit. Then, we consider two
approaches for demonstrating the value of herd improvement
at the herd (micro) level, namely, the use of on-farm case
studies and cost–benefit analyses.

Macro-valuation, Example 1: genetic gain versus
phenotypic improvement

Illustrations of the link between genetic gain and phenotypic
improvement are often used as illustrations of the value of

Table 1. Example Australian dairy industry key performance indicators (KPI) used for herd improvement
Baseline, target and achieved metrics for each KPI are given where available. BPI, Balanced Performance Index; HWI, Health-Weighted Index; TWI, Type-

Weighted Index; APR, Australian Profit Ranking, predecessor to the BPI; EBVs, estimated breeding values

Source KPI Baseline Target/achieved

ImProving Herds Project Proportion of farmers using Australian
metrics as the criteria for bull selectionA

2013:
44% of farmers say APR

influences their selection
decisions

2018:
65% of farmers using Australian metrics
Achieved:
80% are aware of BPI, HWI or TWI
78% of farmers say EBVs influence

selection decisionsC

Proportion of semen sold from young
genomic bullsB

2013:
25% of semen sold comes from

young genomic bulls

2018:
45% of semen sold comes from young

genomic bulls
Achieved:
47.4% of semen sold comes from young

genomic bulls
Dairy Australia Evaluation
Framework 2020–2025D

Accelerated genetic progress in feedbase
and animal breeding

2020–2021:
the rate of genetic gain of BPI of

sires of cows is AU$24/year;
the rate of genetic gain of cows in

BPI units is AU$18/year

2024–25:
the rate of genetic gain of BPI of sires of

cows is now AU$30/year;
the rate of genetic gain of cows in BPI

units as a result of heifer genomic
testing is AU$25/year

Routine management decisions of dairy
farm businesses (e.g. sire selection,
irrigation scheduling, culling) are
informed by multiple data sources

No baseline available 2024–2025:
80%of dairy farms are usingmultiple data

sources in decision making

Herd Improvement Strategy
2019–2024E

Increase the measurement of individual
cow performance through an increased
number of cows participating in herd
testing and increased data accessed
from farms with in-line meters

2016:
20% of farms have in-line meters

2017:
39.6% of cows are herd tested

2024:
data accessed from herd test participants

and farms with in-line meters for
measurement of individual cow
performance represents over 60%of the
national herd

The majority of dairy farmers and service
providers are making data-informed
decisions to drive animal performance,
improve profitability and meet value
chain requirements

2016:
47% of farmers using Good Bulls

Guide

2024:
75% of farmers are using the Good Bulls

Guide or app as a source of sire data

ASources: Watson and Watson (2013, 2016); Watson (2019). Some questions asked in 2016 and 2019 surveys were changed, so not all results are directly
comparable.

BSource: NHIA (2020).
CDairy Australia’s Animal Husbandry and Genetics Survey is conducted only every 3 years, so values are from 2019.
DDairy Australia (2020b).
EHerd Improvement Industry Strategic Steering Group (2019).
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genetics. For example, using a large Australian dataset Morton
(2011) indicated that cows with higher EBVs for fertility had
higher 6-week in-calf rates. Similarly, an across-herd study of
505 dairy herds showed that cows sired by high Australian
Profit-Ranking bulls, the precursor to the BPI, had greater milk
yields than did those sired by lower ranked bulls, and were just
as likely to last in the herd (Morton et al. 2015). They also
found that while level of supplementary feeding influenced the
magnitude of difference between cows, it did not affect
direction of trends. Recently, Cole et al. (2020) illustrated
the proportion of improvement in milk protein yield of US
Holstein cattle attributable to improved genetic and
environment (management). Using a similar approach on
Australian data, one-third of the gain in protein yield since
1990 can be attributed to genetic improvement (Fig. 2).
Similarly, 31% of the annual gain in Australian average
milk yield per cow since 1980 is attributable to genetic
improvement (Fig. 3). Although genetics has had a smaller
effect than have management changes on milk production
gains, genetic improvement is permanent and cumulative.

Macro-valuation, Example 2: genetic gain versus profit

Although many modern selection indices, including the BPI,
are expressed as expected profit per cow per year (Byrne et al.
2016), few validation studies of the link between genetic merit
and profit are apparent. By multiplying change in milk EBV
since 1980 by the actual milk prices (ABARES 2019), adjusted
for inflation (ABS 2020), our example from above (Fig. 3) can
be extended. Genetic improvement in milk yield since 1980
contributed an additional milk income of AU$493 per cow per
lactation in 2018. Extrapolating this across the population of
herd recorded cows, genetic improvement in milk yield since
1980 represented an additional AU$176.8 million of milk
income in 2018. As genetic gain is cumulative, summing
the total value of genetic improvement made in milk yield

for herd recorded cows every year since 1980 exceeds AU
$4.87 billion. However, such valuations are limited, as they do
not account for the costs of producing this extra milk. The
study by Ramsbottom et al. (2012) is one of few studies to
directly explore the link between genetic merit and profit in
dairy cows. In a large study of Irish dairy herds, Ramsbottom
et al. (2012) reported that a 1 unit increase in the Economic
Breeding Index, Ireland’s national index, was associated with
an e1.94 (�AU$2.76) increase in the net margin per cow.
Although Ramsbottom et al. (2012) adjusted for year, stocking
rate, herd size and purchased feed, it is unlikely that such an
approach enables that all variables that influence farm
profit, especially management decisions, can be effectively
accounted for.

More broadly, as modern selection indices consider many
aspects of cow performance (Cole and VanRaden 2018; Pryce
et al. 2018a), the cumulative value of genetics and herd
improvement in the Australian dairy industry is much
greater than the impact on milk income illustrated here.
This value will continue to increase, most likely at faster
rates than in the past, as genotyping of females becomes
more common place and new data sources and analytical
techniques support continued development of new and
improved EBVs. Incorporation of routine, national
approaches for quantifying the value of herd improvement
would complement existing measurement of genetic gain and
technology use.

Micro-valuation, Example 1: validating herd
improvement through on-farm studies

To apply the recommendations of Nettle et al. (2010) and
Crawford et al. (2007) to the development of a valuation of
genetics that would resonate with farmers, we recruited
diverse farms representative of the broader industry for use
as on-farm case studies. Consequently, we engaged 27 farms
representative of the diversity of Australian dairy industry
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Fig. 2. Graph showing the increase in milk protein (kg) since 1990,
partitioned out to show the proportion of increase in milk protein (in kg)
since 1990 attributable to genetics (orange) and management (grey)
relative to the average production in of 1990 (blue) in herd-recorded
Holsteins and Jerseys. Source: DataGene Ltd (https://datagene.com.au/
DataServicesDataServices, accessed November 2018).
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(Fig. 4). Economic, performance and EBV data from these
farms were used to develop a within-herd approach for
demonstrating the value of genetics to farm businesses. This
was first described in Newton et al. (2017b) and has since
expanded as additional data have become available. The
performance of the top and bottom 25% of cows (ranked on
BPI) within each herd was compared. Because it was a within-
herd analysis, cows were fairly compared with their herd
mates, that is, they had similar management, environment
and diet. Each cow’s lifetime values were divided by their
productive life (in days) and multiplied by 365 to
produce yearly values for fair comparison. In every herd
(n = 29), the top 25% of cows outperformed their low-BPI
herd mates, on average, producing 88 kg more milk solids
a year. These cows also lasted as long or longer in the herd,
with the average productive life 8 months longer (Table 2).

Individual cow lifetime performance information was
combined with farm financial data to calculate margin over
feed and herd costs (MOFH) as a measure of contribution
to farm profit in a subset of herds (n = 5). This measure was
reached following iterative cycles of feedback and
consultation with dairy farmers, economists, service
providers and technical independent geneticists from
overseas. Each cow’s MOFH was calculated by summing
income from milk, calf sales and final salvage value and
subtracting costs of rearing, feed and those associated with
mating and mastitis events. As described in Newton et al.
(2017b), all financial measures were calculated as net present
values, assuming a 5% discount rate, and then presented as an
annual value. On average, high-BPI cows contributed ~AU
$300 per cow per year more to MOFH than did their low-BPI
herd mates. Additional milk income easily compensated for

Table 2. Average difference in Balanced Performance Index (BPI), productive life and annualised milk
production parameters between the top 25% and bottom 25% of cows ranked on BPI within herd-years

Results are presented as the average within-herd difference observed in 29 herds (n (cows) = 13 371)

Parameter BPI Productive
life (months)

Milk
(L/cow.year)

Fat
(kg/cow.year)

Protein
(kg/cow.year)

Difference 172 8 649 50 38
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Fig. 4. Location of case-study farms whose data were used to demonstrate the value of genetics to farm businesses. A multi-disciplinary
selection panel reviewed the 70 expressions of interest received considering region, feeding system, calving pattern, herd size, breed and
interest level in genetics, so as to ensure focus farms reflected diversity of Australian dairy industry.
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higher feed costs of these cows, with a sensitivity analysis of
current milk prices and feed costs showing this to be true even
if milk price dropped by 50% and feed prices stayed the same
or feed price doubled and milk prices stayed the same.

Farms are complex systems. Ho et al. (2013) illustrated
that no one measure of farm performance was a good predictor
of profit. Therefore, genetic merit is one of many factors
influencing financial performance, and whether a high
genetic merit herd is a profitable one will be influenced by
many factors. However, demonstrating that cows of differing
genetic merit make different contributions to farm margins
illustrates that genetics is of value to farm businesses. How this
knowledge is then implemented within a farm system is likely
to be constrained by the individual parameters of that farm. For
example, stocking rate may need to be adjusted as higher
genetic merit cows with increasing feed demands enter the
herd. Replacement heifer strategies may need to be adjusted as
the herd improves its fertility and more high genetic merit
heifer calves are born each year.

Micro-valuation, Example 2: cost–benefit analyses

Cost–benefit analyses are often used to estimate the value of
adopting a herd improvement tool on-farm. A growing number
of studies are presenting farm-level cost–benefit analyses of
genotyping heifer replacements at varying levels of
complexity. One approach is the use of complex (usually
stochastic) simulations to model the impact of genotyping
across all areas of the farm. For example, Hjortø et al.
(2015) reported on the change in operational return, which
encompasses all sale income minus variable costs of cows and
young stock, when exploring adoption of genotyping. This
modelling approach also facilitated the use of genomic
information multiple times over the animal’s lifetime.
Bérodier et al. (2019) calculated overall net margin in a
mechanistic, stochastic and dynamic model to compare
genomics and usage of sexed dairy, conventional dairy and
beef semen under three French dairy farming systems. They
found that over a 10-year period, incorporating genotyping
increased genetic gain in all scenarios compared with selecting
on the basis of parent average EBVs. However, break-even
genotyping prices were low and heavily influenced by farming
system. They ranged from �e1.4 to e12.8 for a farm selling
into the fresh milk market, �e5.2 to e27.8 for a farm selling
into organic markets to e5.3 to e36.3 for a farm selling milk
for cheese production. While such approaches can offer useful
insights as they consider the flow-on effects of a change of one
element of a farm business, findings can be highly specific to a
particular dairy farming system and current prices. Results
from such analyses may not be broadly applicable over time or
in countries such as Australia where dairy businesses operate
in diverse conditions.

Simple case studies that focus on the cost of genotyping and
a benefit realised through the increased accuracy with which
herd replacements are chosen may better support the
development of value propositions as conclusions are less
influenced by prevailing market conditions. For example,
both Calus et al. (2015) and Weigel et al. (2012) focussed
on the cost of genotyping and a benefit realised only through

the increased accuracy with which herd replacements are
chosen. At a genomic test cost of US$40/head, Weigel
et al. (2012) reported that net benefit from genotyping
heifer calves ranged from US$28 to US$259, depending on
the proportion of females retained, where the benefit is the
average gain in EBVs of selected females. Alternatively, Calus
et al. (2015) and Newton and Berry (2020) reported results as
standard deviations of a breeding goal (selection index). This
approach means that conclusions and summaries are easily
transferrable as market conditions change or national breeding
goals are revised. As the benefit from genotyping is also
heavily affected by herd parameters such as replacement
rate and reproductive performance, another strategy for
supporting adoption is to develop simple decision-support
tools (Newton and Berry 2020). Such tools, including the
genomic value tool of DataGene (https://uat.datavat.com.au/
heifer-selector, accessed 26 October 2020) enable customised
value propositions to be derived for individual farm adoption
of genomic testing.

Timeframe for valuation

Genetic lag and the cumulative nature of genetic gain both
pose challenges in demonstrating the value of genetic and
genomic tools, especially on farm. The average superiority of
the next generation is a function of the proportion of
individuals chosen (selection intensity), the accuracy of
the information available and the variation in the
population as described in the breeder’s equation (Falconer
1989). Provided selection pressure exists (i.e. not all progeny
are chosen to produce progeny of their own), genetic gain
accumulates, and each subsequent generation of animals
is superior to the one preceding it. As genetic gain is
cumulative, a long-term approach to valuation, in
principle, offers a more attractive value proposition for
industry. For example, revisiting the impact of
compounding on genetic improvement on milk yield
(Fig. 3), since 1980 the milk EBV has increased an
average of 27 units/year. After 10 years (in 1990), the
milk EBV is 244 units higher than it was 1980, while in
2018, after 28 years of selection, the milk EBV is 979 units
higher. For similar reasons, the break-even cost of genetic
tools can be higher when longer timeframes are considered.
For example, Boichard et al. (2013) found that the break-
even cost of genotyping to choose herd replacements is
higher when a longer timeframe is considered, e25 after
5 years and more than double that (e59) after 25 years.
Genetic lag and cumulative genetic gain prevent full
expression of benefits in short time periods; so, a higher
breakeven cost means that more can be paid for the
genotyping service. As costs of genomic testing have
decreased, genotyping investments can be recouped in
shorter timeframes.

The impact of genetic gain being cumulative is further
compounded by the fact that most herd improvement
investments do not show results in dairy businesses for
several years due to genetic lag. This has particularly been a
challenge under the structure of progeny-testing schemes, with
genetic lag of 5–6 years (Pryce and Daetwyler 2012). Genomic
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selection has dramatically increased rate of genetic gain in
dairying (Weller et al. 2017); bulls are now selected and
used at much younger ages on the basis of genomic EBVs.
However, genetic lag is still a challenge as it is still nearly
3 years after a bull’s semen is used before his daughters enter
the milking herd. Similarly, while genomic EBVs enable early
informed decisions about female replacements, there is also a
lag of several years before they enter the milking herd. Also,
most economically important traits, such as fertility, milk
production and longevity, are not fully expressed for
several years after entering the herd (Byrne et al. 2016).
The tendency of industry-wide strategic planning to
consider a longer-term outlook, for example, Australian
Dairy Sustainability Framework 2030 goals (Dairy Australia
2020a) and National Farmers Federation 2030 strategy (NFF
2018), show that a long-term lens in calculating value or return
on investment is accepted in research and industry.

When discussing value at a farm level, this is not the case,
and shorter timeframes need to be considered. One of the
characteristics of genetics identified as most off-putting by
advisors was the period of time between making a choice and
seeing the outcome (Axford et al. 2015). Comparing genetic
investments over a 20-year period alongside investments in
other business areas where value is seen almost immediately
(i.e. supplementary feeding, fertiliser) is a challenge. In their
simulation of the value of selecting replacement heifers using
genomic breeding values, Calus et al. (2015) proposed that the
cumulative effects of genetic gain via cow-to-cow pathway
could be ignored as they had previously been shown by Van
Tassell and Van Vleck (1991) to be small compared with
those of other dairy selection pathways. Ignoring cumulative
genetic gain means that a discrete generation of animals can be
considered in calculating the genotyping return on investment.
Although still measured in years, a much shorter timeframe
can be considered. Adopting similar reasoning to Calus et al.
(2015) but modelling Australian dairy farms, Newton et al.
(2018) showed that the net benefit of genotyping to guide
heifer-replacement decisions on an ‘average’ farm with
surplus heifer-replacement candidates is likely to be
positive. They found that when the selection decisions were
based on parent average-derived EBVs, the net benefit of
genotyping was AU$204 in a 100-cow herd in a scenario
where all female progeny are tested. This increased to AU
$1124 when no EBV was available. Ultimately, the financial
returns from genotyping to support replacement decisions are
greatly influenced by individual farm parameters such as
replacement rate, reproductive performance and current
selection practices. However, being able to show that
investments in herd improvement tools can be recouped
within a short timeframe may support uptake of commercial
genomic testing of heifers (Newton et al. 2018).

Other value propositions

Aside from performance and profit, there are other quantitative
measures that can help demonstrate the value of herd
improvement. Illustrations of the link between genetic
improvement and environmental efficiency or risk are part of
developing attractive value propositions for industry and
farmers.

Measuring environmental value

Climate change and an increasingly conscious consumer
interested in the environmental credentials of food
production mean that there is a growing need to
demonstrate the link between genetic improvement and
environmental value. The Australian red meat industry has
already announced a plan to be carbon neutral by 2030
(Mayberry et al. 2019), while in August 2020, peak farm
body National Farmers Federation came out in support of a
national carbon-neutrality strategy for 2050 (Murphy 2020).
Without a price on carbon emissions in Australia, one
approach for showing the value of herd improvement from
an environmental perspective is to illustrate the direct link
between genetic merit and carbon emissions.

Modelling undertaken by Pryce and Bell (2017) showed
that over a 10-year period, cows selected using the BPI are
expected to have 33% less carbon dioxide-equivalent
emissions/cow.year than are those selected using the
predecessor of the BPI. Over the past decade, there has
been a reduction of 1% per year in total emissions from the
Australian dairy industry (Pryce and Bell 2017), as the national
dairy herd has decreased in size while production per cow has
increased. This means that both genetic improvement in
individual traits as well as improved selection indices are
helping produce more environmentally friendly cows. Since
2015, breeding companies and Australian farmers have had the
opportunity to breed for more efficient cows directly through
the Feed Saved EBV (Pryce et al. 2014). Cows that have
higher Feed Saved EBVs are more efficient and have lower
total greenhouse gas emissions (Pryce and Bell 2017).
Improvements in Feed Saved EBV are expressed to farmers
as savings in feed not greenhouse gas emissions. One
opportunity that would allow for divergent views on the
value of genetic improvement to reduce carbon emissions
would be to develop an additional ‘green’ index that ranks
bulls on the basis of the expected carbon footprint of their
daughters instead of expected profit. It is probably only a
matter of time before a monetary value is placed on carbon
dioxide emissions. Until then, illustrations of the link between
genetic gain and reduced carbon dioxide emissions present a
viable solution for illustrating the environmental value of
genetic improvement.

Valuing risk

Assessing risk, that is, the uncertainty surrounding the
consequences of an action (Anderson 1988), is an important
part of any business. Two examples relevant to herd
improvement are: (1) herd testing, which is perceived to
reduce risk to farm businesses; and (2) genomic testing,
which is perceived to increase risk to the farm business.
We followed experiences of seven farms in introducing
herd testing over a 15-month period. Among these farms,
incorporating herd testing into their businesses was valued
as a risk-reduction tool, with frequent expressions of more
confidence in decision making (Newton et al. 2020).
Additionally, several of these seven farms noted that cows
sold with herd test records received higher prices. One farm
explicitly stated herd testing was part of their risk-management

226 Animal Production Science J. E. Newton et al.



plan and was also a criterion of their bank for a loan (Newton
et al. 2020). In direct contrast, herds that took up genotyping
and that were questioned expressed concerns about the risk of
adopting genomic testing in terms of how well it predicted
future animal performance. The following approaches have
been applied in practical scenarios to validate of the use of
genomic EBVs (EBVgs). First, the realised reliabilities
between pre-calving EBVgs and the corresponding first
lactation production records were estimated as the squared
correlation between EBVgs and EBVs calculated including
first lactation production records. These ranged from 0.66 to
0.77, comparing well to the published mean production trait
EBVg reliabilities of 0.74 of DataGene (Pryce et al. 2018b).
Second, when heifers were classified into quartiles on the basis
of their genomic BPI across herds, the group of heifers that
ranked in the bottom 25% for genomic BPI (across herds)
included no heifers that ranked in the top quartile for either
actual protein or fat yield. A similar trend was seen within
herds. On average, less than 2% of heifers that ranked in the
bottom quartile for genomic BPI appeared in the top quartile
for the actual protein yield. However, one herd had 15% of
bottom quartile genomic BPI heifers that were in the top 25%
for protein yield. This herd also had the poorest relationship
between trait deviation and EBV (Pryce et al. 2018b). These
results showed that EBVgs are a reliable predictor of future
herd performance, with a low risk of accidently selling a
genetically elite heifer. They also provide independent
evidence of the accuracy of EBVgs in Australia, indicating
that EBVgs can be confidently used to guide heifer selection
decisions (Pryce et al. 2018b).

In a herd improvement context, risk is not often measured
or valued explicitly, although EBV accuracy (or reliability) is
often used as a substitute. Newton et al. (2017a) proposed that
probability distribution theory could be used to quantify the
relative risk of different breeding programs, including several
considering the incorporation of genomic EBVs. In placing a
value on risk, Klieve et al. (1993) and Rogers (1990) explored
strategies for ranking sires on the basis of both genetic merit
and risk. They found that the overall impact on ranking was
small, unless a very high aversion to low accuracy sires
existed. A risk-reduction strategy has been adopted to a
degree in Australia; to be published in the Good Bulls
Guide, sires have to meet several criteria, including a
minimum reliability. As genomic reference populations
continue to grow, and novel analyses are developed, it is
also feasible that new approaches for valuing genetic risk
will be developed. For example, computational techniques
developed to calculate inbreeding or that identify lethal
recessive allele combinations (Maltecca et al. 2020) could
extend valuation of risk beyond EBV accuracy.

Capturing value generated by additionality

Additionality, where further value is garnered from a piece of
information by its use many times, theoretically helps build
more attractive value propositions by lowering cost per use;
however, capturing this on-farm value is challenging. For
example, it is widely accepted that additional genetic gain
through more accurate selection of herd replacements

represents only part of the on-farm return expected from
female genotyping (Pryce and Hayes 2012; Boichard et al.
2013). However, selection of herd replacements has been the
most frequently modelled because of its ease of measurement.
In practice, the availability of EBVg is likely to result in other
changes on farm such as usage of sexed dairy semen, or beef
semen or both sexed dairy semen and beef semen as modelled
by McCullock et al. (2013), Newton et al. (2018) and Bérodier
et al. (2019). The availability of accurate EBVs on young
animals also presents opportunities on farm, including changes
to calf rearing strategies, changes to cow culling strategies,
new markets due to validated pedigrees or EBVg or both,
optimised mating programs or managing inbreeding. Farmers
may also have very specific business reasons for genotyping,
applicable to only a percentage of farmers, such as a transition
to A2A2 milk or polled animals. Such changes are likely to be
quite farm-specific and hard to quantify more broadly.

The difficulties in quantifying additionality was particularly
apparent in valuing the adoption of herd testing on farm. While
specific examples of data usage were quantified (Newton
2017), farmer interviews identified that data were used
multiple times and in different ways across farms (Newton
et al. 2020). For example, a 6% loss in milk income due to milk
quality penalties was able to be corrected after herd test
information enabled high somatic cell count cows to be
identified. Similarly, the flow-on effects of a decision to
dry-off cows early where quantified through additional milk
production and savings in concentrate fed and milking labour
costs (Newton 2017). In both examples, a single usage of data
recouped the entire cost of herd testing in a season. However,
capturing a monetary value of all data uses was virtually
impossible. Here, qualitative analytical approaches offered
additional opportunities for illustrating the value of herd
improvement. Qualitative analysis showed strong themes
around confident, informed decision making (i.e. risk
reduction). After having herd testing paid for by research
projects, the managers of all seven farms involved in our
study decided to continue or resume herd testing after the
project finished and they had to pay for tests themselves. This
willingness to pay for herd testing is a clear demonstration of
herd testing being perceived as valuable (Newton et al. 2020).
Arguably, the best strategy for developing value propositions
that capture data additionality is to combine qualitative and
quantitative measures of value.

Demonstrating value to drive practice change

No one illustration of value for herd improvement is going to
fully capture data additionality or resonate with all target
audiences, or even individuals within a target audience;
however, it is possible to develop value propositions that
increase farmer usage of herd improvement tools. Having a
multi-faceted value proposition, including qualitative and
quantitative measures of value developed in conjunction
with farmers and dairy industry stakeholders, is an approach
that gets involvement and action, as we have demonstrated
through examples of applying it to herd improvement
challenges. Following previous recommendations around
demonstrating on-farm value propositions (Nettle et al.
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2010) and directly involving farms (Crawford et al. 2007),
communication and early extension activities were
incorporated within a research project that used many of the
case studies presented here. This structure facilitated the
involvement of representatives from right across the herd
improvement space throughout the project. While this
created some challenges, especially in terms of timing, this
model facilitated iterative feedback cycles on the project
methodology and messaging and realised new opportunities.
Having farms involved in research projects also supported the
development and piloting of extension resources and created a
platform where farmers could learn from one another, which is
their preferred method of learning (Blair et al. 2013). The
farms involved also increased their knowledge base and
became advocates for genetics and herd improvement. This
‘farmer voice’ has been a very effective way of disseminating
project material, in a relatable way that can effect change in
farmers. For example, at the end of a herd improvement
field day that included many of the examples presented in
the current paper, 86% of the respondents to a survey (n = 72)
said that the day had ‘changed their thinking’ about utilising
genetic information on farm.

Conclusions

There is no single unifying number that demonstrates the value
of herd improvement. Instead, demonstrating the value of herd
improvement to the dairy industry, or any livestock sector,
requires a multi-faceted approach. Valuation needs to extend
beyond monetary worth to also consider risk, environmental
value as well as qualitative assessments of value, being
cognisant of the fact that data additionality means that full
value is unlikely to be captured. The target audiences need to
be considered in developing a value proposition as perceptions
of value differ both among and within stakeholder groups.
Value propositions developed in consultation with dairy
stakeholders that feature on-farm case studies facilitate the
development of value propositions that resonatewith farmers and
can lead to increased uptake and confidence in herd improvement
tools and information. It is recommended that current monitoring
of herd improvement progress be supplemented with regular
assessments of the value of the tools that underpin herd
improvement. These valuations should be multi-faceted and
consider non-monetary and non-quantifiable measures of
value. Such value demonstration, particularly at the farm level,
is important for fostering uptake of new or improved tools as they
are released to industry.
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