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Abstract. The use of probiotics in poultry production has increased rapidly, and this movement has been promoted
by global events, such as the prohibition or decline in the use of antibiotic growth promotants in poultry feeds. There
has been a persistent search for alternative feed additives, and probiotics have shown that they can restore the
composition of the gut microbiota, and produce health benefits to the host, including improvements in performance.
Probiotics have shown potential to increase productivity in poultry, especially in flocks challenged by stressors.
However, the outcomes of probiotic use have not always been consistent. There is an increasing demand for well
defined products that can be applied strategically, and currently, probiotic research is focusing on delineating their
mechanisms of action in the gut that contribute to an improved efficacy. In particular, mechanisms involved in the
maintenance and protection of intestinal barrier integrity and the role of the gut microbiota are being extensively
investigated. It has been shown that probiotics modulate intestinal immune pathways both directly and through
interactions with the gut microbiota. These interactions are key to maintaining gut homeostasis and function, and
improving feed efficiency. Research has demonstrated that probiotics execute their effects through multiple
mechanisms. The present review describes recent advances in probiotic use in poultry. It focuses on the current
understanding of gut homeostasis and gut health in chickens, and how it can be assessed and improved through
supplementation of poultry diets with probiotics in poultry diets. In particular, cellular and molecular mechanisms
involved in the maintenance and protection of gut barrier structure and function are described. It also highlights
important factors that influence probiotic efficacy and bird performance.
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Introduction

The gastrointestinal tract (GIT) or gut of all species is a
tubular organ of great structural and functional complexity,
as has been detailed elsewhere (Scanes and Pierzchala-Koziec
2014; Denbow 2015; Furness and Cottrell 2017; Pluske et al.
2019). An important part of the GIT is the small intestine, the
segment where the majority of the digestion and absorption
of nutrients takes place. Briefly, the intestinal mucosa
(which consists of epithelium with a core of lamina propria)
projects into the gut lumen through villi, and each villus serves
as a functional absorptive unit (Fig. 1). The chicken intestinal
epithelium is a single layer of columnar cells, and comprises
enterocytes (absorptive cells), goblet (mucus-producing) and
enteroendocrine cells, and various intraepithelial immune
cells. The mucosa is covered by mucus (a complex
hydrated gel that protects epithelial cells from chemical,
enzymatic, microbial, and mechanical damage) and mucus-
linked specific commensal bacteria. An intact epithelial barrier
is essential for gut physiology and immunity or GIT

homeostasis (de Santa Barbara et al. 2003; Kastl et al.
2020). The epithelial cells linked by intercellular junctions
and the mucus layer are crucial components of the intestinal
barrier that selectively permits the movement of ions, nutrients
and water, but restricts the translocation of microbes and
toxins from the lumen, thus playing a fundamental role in
maintaining gut health of the host. However, the entire
integrity of the barrier is sustained by a complex network
of regulatory pathways that interact with the microbiota,
luminal contents or digesta, and host mucosa.

The GIT ecosystem is a delicate balance among the
microbiota, the intestinal epithelium and host immunity.
The gut lumen wall covered by the mucus layer surrounds
the intestinal contents, a mixture of nutrients, metabolites, and
a diverse microbial community, that work in concert to
maintain GIT homeostasis or health. Shifts in intestinal
microbial composition of a chicken can be caused by stress
emanating from diet, such as changes in dietary ingredients,
antigens in the feed, microorganisms associated with the diet,
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pathogens contaminating the diet, and litter consumption
(Drew et al. 2004; Choct 2009; Pan and Yu 2014;
Antonissen et al. 2016; Borda-Molina et al. 2018). It
appears that chicken can consume as much as 4% of their
diet as litter (Jesse 2004). Water quality and housing
conditions can also influence chicken gut microbiota (Diaz
Carrasco et al. 2019). Structural modifications of the intestinal
mucosa occur in response to infection and inflammation
(Kaldhusdal et al. 1995; Jou et al. 1998; Olkowski et al.
2008; Vancamelbeke and Vermeire 2017; Shini et al. 2021).
When gut homeostasis is disturbed, perturbations of the
epithelium may also occur and contribute to the
pathophysiology of intestinal disease, and from time-to-time

systemic disorders. Moreover, subclinical infections, and
chronic, low-grade intestinal inflammation, may also cause
similar alterations of the epithelial barrier without clinical
manifestations, and these may be difficult to diagnose.

The future Nobel laureate Elie Metchnikoff, a Russian
working in Paris at the turn of the 20th century, was the
first to suggest a role for the gut microbiota in health. However,
a brief note in Nature in 1973 by the Finnish scientists Esko
Nurmi and Marjatta Rantala, describing their research to
control Salmonella infections in poultry with bacterial
cultures, rekindled interest in the use of direct-fed
microbials or probiotics, in animals (Nurmi and Rantala
1973). Rob Cumming and his group at the University of
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Fig. 1. Chicken ileal mucosa: histology and electron microscopy outline. On the left, is a histology image (H and E staining) and layers of ileal wall
(mucosa, submucosa (SM) and muscularis externa (ME)). The villous mucosa is represented by three layers: epithelium (Ep), lamina propria (LP) and a
tinny layer of MMu along the villi and the ileal wall. The epithelium is covered by a mucus layer (green arrow). Also shown are the intestinal lumen,
enterocytes (brown arrow), goblet cells (pink arrow), intraepithelial mononuclear immune cells (yellow arrows), and segmented filamentous bacteria
(SFB). (a–i) On the right, are electronic micrographs of the epithelium. Shown are scanning electronic micrographs of (a, b) ileal mucosa, and the
epithelium with microvilli, and (c–i) the transmission electronic micrographs of normal enterocytes (En), filled with mitochondria (Mt) and a nucleus (Nu).
(c–e) An intraepithelial lymphocyte (IEL), yellow marked borders of an enterocyte, and a goblet cell (GC) respectively. (f–h) Cellular features and contents
such as microvilli (Mv), terminal web (TW), the tight junction (TJ), gap junction (GJ), a lipid droplet (LD), and many inclusion bodies (Ib), most probably
from the endocytosis of bacteria. A SFB attached to enterocyte through a holdfast is also shown. (g) A typical microfold cell (M-cell), overlying a
lymphoid follicle. (i) From a bird with coccidiosis and shows the oocyte (Oo) inside an enterocyte.
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and molecular mechanisms involved in the maintenance and
protection of gut barrier structure and function are described.

Gut health

‘Gut health’ is a term that is used very frequently in the human
and animal literature, especially when describing the outcomes
of probiotic use. However, the definition is often very broad
and nebulous. In the human health literature, the role of
probiotics is seen as facilitating gut homeostasis, primarily
through interactions with the gut microbiota (Watnick and
Jugder 2020). As the gut is a very dynamic environment, the
term gut homeostasis may be a more precise way in which to
describe such an environment than the more general term, gut
health; the terms are used here interchangeably.

Importance of gut health

The GIT has a central role in nutrient digestion and absorption,
host metabolism and energy generation, intestinal barrier
integrity, mucosal immunity and providing a niche for a
stable microbiota (Kogut and Arsenault 2016). For poultry,
a ‘healthy gut’ means the absence of abnormal or damaged
structures and functions, so that the bird is protected from
pathogens and is able to digest feed and absorb nutrients
efficiently to achieve optimum performance. There is
increasing evidence that probiotics can make an important
contribution to keeping a gut healthy by the maintenance of gut
homeostasis (Bajagai et al. 2016; Cameron and McAllister
2019; Zommiti et al. 2020). Optimal gut health is crucial not
only for the health, performance and welfare of production
animals, but it also contributes to the environment because it
improves feed efficiency, reduces use of AGPs, and sustains
food safety and human health.

Box 1. Necrotic enteritis

Necrotic enteritis (NE) is a significant enteric infection of poultry, primarily seen in broiler chickens, but the disease has also been reported for
commercial layers raisedon theground, cage reared replacementpullets and turkeys.Other avian species canbeaffected. Inbroiler chickens,Clostridium
perfringens, a normal occupant of the digestive tract, is the major aetiologic agent for NE (Parish 1961; Long and Truscott 1976; Kaldhusdal and
Hofshagen1992).However,NE is amultifactorial disease and it occurswhengut conditions are altered in favour of clostridia proliferation, leading to the
onset ofNE. For example, coccidiosis (a parasitic disease of the intestinal tract of poultry caused by coccidian protozoa ofEimeria species) is believed to
be one of the major predisposing factors for NE outbreaks (Al-Sheikhly and Al-Saieg 1980; Hermans and Morgan 2003; Collier et al. 2008). Other
predisposing factors include the addition offishmeal to the diet (Wu et al. 2010;Wu et al. 2014;Rodgers et al. 2015), feedstuffs containing high amounts
of water-soluble non-starch polysaccharides, such as barley, rye and wheat (Kaldhusdal and Hofshagen 1992; Riddell and Kong 1992; Kaldhusdal and
Skjerve 1996; Annett et al. 2002; Jia et al. 2009); in general, any factor that induces stress and immunosuppression in chickens and disrupts the
homeostasis of the gut ecosystem contributes to the risk of NE in a flock.

NE is characterised by distended intestines containing gas and or fluids, and lesions such as patches of necrotic tissue on the intestinal mucosa
(Fig. 2). NE often develops as an acute disease, with birds dying within a day after clinical signs are observed (e.g. ruffled feathers, depression, and
diarrhoea; Fig. 2). Flock mortality can be as high as 10–30%, if untreated. The subclinical form of NE is associated with subtle clinical signs or no
clinical signs; however, chronic damage of the intestinal mucosa (i.e. intestinal lesions) can be found after necropsy or histopathology (Kaldhusdal
and Hofshagen 1992; Gholamiandehkordi et al. 2007; Park et al. 2008; Wu et al. 2010; Smyth 2016; Kogut et al. 2018; Shini et al. 2020b).
Subclinical NE is difficult to diagnose, but can spread through flocks, resulting in substantial production losses (Skinner et al. 2010) due to
malabsorption and reduced performance.

Historically, NE was effectively controlled by adding antimicrobial growth promoters (AGP) to broiler feed (Prescott et al. 1978; Elwinger et al.
1992, 1998).However, it has becomeone of themost significant broiler diseases globally, after the banning or reduced use ofmostAGPs in poultry diets.
Current strategies focus on introducing alternatives to AGPs andmanaging predisposing factors, rather than trying to eliminateClostridium. In the case
of NE outbreaks associated with clinical signs and increased mortality, birds can still be treated therapeutically with antibiotics such as bacitracin,
lincomycin, oxytetracycline or virginiamycin.
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New England pioneered the application of ‘competitive 
exclusion’ (Lloyd et al. 1977; Soerjadi et al. 1978) in  
Australia. Since then, many investigators have shown that 
probiotics can restore the composition of the gut microbiome, 
and introduce beneficial functions to microbial communities, and 
in doing so, they prevent or reduce gut inflammation and intestinal 
infection and improve bird performance (Eckert et al. 2010; 
Mountzouris et al. 2010; Cengiz et al. 2015; Huff et al. 2015; 
Latorre et al. 2015; Park and Kim 2015; Forte et al. 2016;Bai et al. 
2017; Pereira et al. 2019; Yadav and Jha 2019; Shini et al. 2020b; 
Zaghari et al. 2020).

The use of probiotics in poultry production has increased 
rapidly. This reflects the efficacy of most probiotic products 
in the field, acceptance by consumers of a product that is 
widely consumed in society, and the need to find additional 
feed additives following the banning or decline in the use of 
antibiotic growth promotants (AGPs) globally. Interestingly, 
probiotics, not unlike AGPs, do improve animal performance 
and both classes of feed additives initiate these improvements 
through reducing inflammation in the gut (Niewold 2007; 
Mountzouris et al. 2019). There is an increasing demand by 
feed companies and poultry producers for well defined 
antibiotic alternatives that can be applied strategically 
without significant increase in feed costs. Currently, 
probiotic research is focussed on delineating intestinal 
mechanisms of action with the objective to improve 
efficacy and feed utilisation.

The present review describes recent advances in probiotic 
use in poultry, and examples relating to the control of necrotic 
enteritis (see Box 1, Fig. 2) are cited frequently. It focuses on 
our current understanding of gut health, how to assess it in 
chickens, and highlights important mechanisms of probiotic 
action that appear to improve gut health. In particular, cellular
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An undeniable feature of probiotic use is the broad
spectrum of applications that have resulted in positive
animal performance outcomes. Increases in egg and milk
production, gut health and disease reduction, leg health and
lameness reduction, reproductive health, meat quality and
metabolic homeostasis, have all been demonstrated
experimentally following feed supplementation with
probiotics (Mountzouris et al. 2010; Wideman et al. 2012;
Shini et al. 2013, 2020b; Zheng et al. 2014, 2016; Latorre et al.
2015; Bajagai et al. 2016; Angelakis 2017; Gadde et al. 2017;
Cameron and McAllister 2019; Park et al. 2020; Wang et al.
2020; Zommiti et al. 2020). Together, this is a very strong
endorsement for the role of probiotics in promoting gut health,
and animal health and productivity. Moreover, probiotic use
will also have a positive impact on animal and bird welfare
(Bryden et al. 2021). Importantly, there is increasing evidence
that the gut microbiota plays a central role not only in physical,
but also mental wellbeing, with obvious implications for bird

health and welfare (Kraimi et al. 2019). Nevertheless, as we
discuss below, there are instances when probiotics do not show
any effect in improving animal and bird productivity.

Assessment of gut health

One difficulty to improving gut health with probiotics has been
the lack of reliable methods or biomarkers to assess intestinal
health or test probiotic efficacy. This assessment is of a
particular importance in the case of subclinical infections
and chronic intestinal inflammation (Kogut and Arsenault
2016; Kogut et al. 2018; De Meyer et al. 2019; Shini et al.
2020b). A bird with a subclinical infection or intestinal
inflammation does not display signs of the disease, but
epithelial damage and malabsorption can occur. For
example, during subclinical necrotic enteritis (NE), birds
may appear normal or have very mild clinical signs;
however, a damaged intestinal epithelium can be found

Fig. 2. The assessment of gut health using clinical signs, necropsy and histopathology. First row from the left to the right, pictures showing 14-day-
old chicks; a bird with pasty vent, and a 21-day-old bird with clean vent, and a slower-growing bird with ruffled feathers (all yellow arrows). Next to
it, images from histology and electron microscopy from birds with subclinical necrotic enteritis (NE). Second row from the left to the right, images
from gross pathology of the ileum of birds with subclinical NE, watery diarrhoea, digesta mixed with bile, hyperaemic mucosa covered with a creamy
content, and mucosa with a tan to yellow pseudomembrane referred to as ‘Turkish towel’ due to necrosis.
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mucosal barrier such as mucus-producing cells (goblet cells),
immune-competent cells, i.e. intraepithelial lymphocytes and
tissue-related immune cells (macrophages and heterophils),
and microbial presence, provide evidence of involvement of
inflammatory and immune defence mechanisms in the
pathogenesis of NE (Shini et al. 2020a, 2020b, 2021).

When evaluating intestinal health, both the intestinal wall
and the luminal contents must be considered. The luminal
contents or digesta contain a variety of microbial and chemical
components such as bacteria, nutrients, endogenous secretions,
other dietary ingredients, antigens and substances delivered
with diet or generated in the GIT tract by digestion and
microbial metabolism; all are potential biomarkers of gut
health. In the case of intestinal disturbances, inflammatory
metabolites can be assessed in the digesta or excreta. Most of
these components are known to participate in the stimulation
of gut mucosal defence, and mucosa growth and regeneration
by directly stimulating enterocytes or acting on the enteric
nervous system and modulating a variety of GIT
functions (Furness and Cottrell 2017; Pluske et al. 2019).
Metabolome analysis using biological specimens, such as
digesta, excreta, blood or gut tissue, can target metabolites
and explore disease-related or dysregulated metabolic
pathways and their biological implications for gut health
(Celi et al. 2019). However, here is a need for reliable and
rapid tests for gut health that can be conducted on farm. In this
regard, excreta is an invaluable source of information of
clinical and subclinical infections. Faecal droppings can be
checked for abnormalities in colour, consistency and content,
such as excessive water, fat, mucus, gas bubbles and
undigested feed particles. Inflammatory metabolites in
excreta show promise as potential biomarkers for the
evaluation of intestinal barrier function in broilers;
metabolites include ovotransferrin (Goossens et al. 2018),
cloacal immunoglobulin A (IgA); (Baxter et al. 2019),
fibronectin, intestinal alkaline phosphatase and lipocalin-2
(Barekatain et al. 2020). Detection of such biomarkers could
be incorporated into an excreta dipstick to be used on-farm for a
quick gut health screening test.

Two simple, but very important, physicochemical
parameters of digesta that affect microbial activity,
digestion and absorption in the small intestine, are viscosity
and pH. Many grains (wheat, barley, rye, triticale and oats)
contain soluble fibre or non-starch polysaccharides (NSP), that
interact with mucus and secretions in the GIT to form a
hydrocolloidal layer and impair digestion and absorption
(Knudsen 2014; Bederska-łojewska et al. 2017). Moreover,
prolonged exposure to NSP can induce a low-grade sterile
inflammatory response (Rubartelli et al. 2013). Intestinal
viscosity may also influence the host resistance to diseases.
The supplementation of diets rich in viscous grains with
probiotics and exogenous enzymes, such as xylanase,
partially breaks down NSP, and reduces digesta viscosity,
and decreases the proliferation of undesirable microbes such
as Escherichia coli and Clostridium perfringens (Latorre et al.
2015), and parasites such as Ascaridia galli (Dänicke et al.
2009). The measurement of digesta viscosity is a possible
biomarker of gut health in poultry. However, greater
standardisation of how digesta viscosity is measured and
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after necropsy and histopathology or electron microscopy 
(Kaldhusdal and Hofshagen 1992; Teshfam and Rahbari 
2003; Gomide et al. 2004; Zekarias et al. 2005; 
Gholamiandehkordi et al. 2007; Park  et al. 2008; Wu et al. 
2010; Smyth  2016; Kogut et al. 2018; Shini et al. 2019, 2020a, 
2020b, 2021). Subclinical intestinal infections are difficult 
to diagnose, but can spread through flocks; therefore, 
they are one of the most important problems in the poultry 
industry because of high economic losses. A standard 
evaluation methodology for intestinal health status needs to 
be established.

What to assess and how? There are visual clues and aspects 
of performance efficiency that might suggest gut health 
problems in a flock. Observations of compromised chicken 
performance, increased flock morbidity, evidence of diarrhoea 
or birds with pasty vents (Fig. 2), and the occurrence of wet 
droppings and wet litter (Dunlop et al. 2016; Kaldhusdal et al. 
2016; De Cesare et al. 2017; Kumar et al. 2018; Shini  et al. 
2020b) may indicate disturbances to gut health and should be 
investigated to minimise the possibility of reduced flock 
welfare and productivity. In addition to performance and 
visual signs, necropsies of dead or culled birds can indicate 
the presence of any clinical or subclinical gut problems. As 
presented in Fig. 2, small and apparently normal birds may 
appear ‘healthy,’ but their intestinal mucosa might be 
‘disturbed’, and this can be determined only at necropsy.

In addition to observations, intestinal health can be assessed 
using invasive tools that are necessary for a definite diagnosis, 
such as blood testing (haematology and serology), necropsy 
and histopathology or even electron microscopy for 
ultrastructure evaluations (Chen et al. 2015; Smyth  2016; 
Baxter et al. 2019; Shini  et al. 2019, 2020a, 2020b, 2021). 
These direct tests provide more conclusive details. Studies 
conducted with a broiler model of subclinical NE (Shini et al. 
2020b) have demonstrated that histopathology of the ileal 
mucosa helps quantify villus morphological alterations 
(Fig. 3, HISTO: a–d), and demonstrate focal erosion of 
epithelial cells and the fusion of adjacent villi, in otherwise 
apparently healthy birds. Histopathology of NE-challenged 
birds helped detect the successful infection with Eimeria, 
and oocyst formation underneath the epithelium (Fig. 3, 
HISTO: b, c). Consequently, the epithelial detachment in 
sheets and mucus production occurred and predisposed 
colonisation by Clostridium perfringens (Cp) deeper into 
the mucosa and crypts, causing focal necrosis (Shini et al. 
2020a; Fig. 3 HISTO: c, d, h, l). The presence of Cp, intimately 
associated with necrotic lesions of intestinal mucosa, was also 
essential for the diagnosis of NE, and Gram-staining of ileal 
tissue permitted identification and enumeration of Cp (Fig. 3, 
HISTO: b, d; Shini et al. 2020b). The electron microscopy 
study of ileal tissue allowed the examination of enterocyte 
condition and demonstrated the value of this approach, as 
birds with subclinical NE displayed only very mild or no signs 
of the disease. In terms of ultrastructural examination of 
mucosa, the condition of epithelium and enterocytes, and 
their content and features, such as mitochondria, lysosomes, 
endoplasmic reticulum, tight junction (TJ) and microvilli can 
show the state of mucosa health (Fig. 3 SEM: a–d; TEM:  
a–d, 4). Other cells and structural components of the intestinal
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the results interpreted is required (Bedford 2018). The pH
decreases as the digesta passes from the crop into the
proventriculus and gizzard, and then becomes progressively
less acidic when it reaches the small intestine (Jeurissen et al.
2002; Denbow 2015). Many probiotics decrease the ileal pH in
broilers, and this mechanism is related to increases in commensal
microbial growth or destruction of pathogenic bacteria (see
section Mechanisms of probiotic action). However, it has been
suggested that digesta pH measurement must be conducted in a
manner that avoids artefacts that can be introduced by exposing
digesta to air or touching the intestinal wall with the pH probe
(Jeurissen et al. 2002).

Finally, an increase of metabolites or nutrient concentration
in the excreta can reflect gut problems and therefore could
serve as biomarkers. For example, excess of undigested feed
particles, or starch, fat or unabsorbed bile acids/salts in excreta
might indicate problems with digestion and absorption or
permeability in the small intestine. In the case of bile, the
majority of bile acids (over 90%) are actively absorbed in the
distal ileum, and only less than 10% are lost in the excreta
(Scanes and Pierzchala-Koziec 2014; Ticho et al. 2019); an
excess in excreta could be an indicator of reduced
enterohepatic recycling. However, a word of caution with
the use of excreta biomarkers. The avian excreta sample is
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Fig. 3. Histology and electron microscopy images from control, necrotic enteritis (NE)-challenged, NE and H57 and H57 birds. Control chicks
(21-day-old) were fed a basal wheat/soybean diet (not supplemented with the probiotic H57) and not treated with any pathogen; NE chicks received a
co-infection with Eimeria vaccine and Clostridium perfringens (Cp) and were fed the basal diet not supplemented with the probiotic H57; NE and H57
chicks were exposed to Eimeria vaccine and Cp, and fed the basal diet supplemented with the probiotic H57; H57 chicks were not treated with any
pathogen, but were fed the basal diet supplemented with the probiotic. Histopathology (HISTO, Gram stain) showing (a) normal villi from a control
chicken, and (b, c) swollen and damaged tip of villi with the presence of Eimeria oocytes and Clostridium perfiringens, and (d) damaged mucosa from
chickens with subclinical NE. (b–d) Scanning electron micrographs (SEM) from (a) a H57-fed chicken, and (b–d) chickens with NE, showing
damaged tip of a villus or a group of villi. Transmission electron micrographs (TEM), showing enterocytes (En) and goblet cells (GC) in NE birds (a),
and (b) in birds with subclinical NE, showing an enterocyte undergoing necrosis (NeE), an oocyte (Oo), enterocytes with damaged microvilli (red
arrow) and (c, d) damaged mitochondria (Mt), and a necrotic area of the epithelium (purple arrow).
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Gut microbiota

We have known for many years that there is microbial activity
throughout the avian digestive tract from the presence of
volatile or short-chain fatty acids (Annison et al. 1968).
With the advent of molecular techniques, it has been shown
that there is a diverse microbiota throughout the avian GIT
(Rychlik 2020), which has a determinant role in gut health
(Broom 2019). The ‘elephant in the room’ in relation to gut
homeostasis is the microbiota with its greatest concentration in
the caeca. In birds, the caeca are important sites of
fermentation. Compared with other parts of GIT, the
caecum contains a more diverse and stable microbial
community, including anaerobes (Oakley et al. 2014).
However, gut health evaluations target the distal portion of
the small intestine or ileum. This section of the GIT has a vital
role in digestion, absorption and mucosal immunity (see Box
2) and it is rich in microbiota (less rich and diverse microbial
populations than in caeca). The importance of gut microbes to
bird performance and productivity is starting to be unravelled
using bacterial 16S rRNA (rRNA) gene sequencing (Stanley
et al. 2014; Kollarcikova et al. 2019), but our understanding of
the diversity of the microbiota from different GIT segments is
still very limited. However, the composition and diversity of
mucosa-associated microbiota seems to be a more interesting
indicator of intestinal homeostasis, due to its close proximity
to the intestinal tissue and its important biological role in the
development of mucosal immunity (Shang et al. 2018) and
bird physiology through the endocrine responses of the
microbiota (Villageliu

̃

and Lyte 2017).
A diverse and normal (or commensal) microflora

(microbiome) is associated with the epithelial and mucosal
surfaces of a chicken’s body (including the skin, gut, cloaca,
oral cavity, upper respiratory tract, oviduct and lungs), which
is a complex invisible organ that is integrated into the biology
of the host. The role is to maintain homeostasis and protect
against invading microbes. This normal microflora is usually
stable, with specific genera populating various body regions
during particular periods in the bird’s life. It is represented by
a large variety of microbial communities, involving several

Box 2. Ileum

The ileum is the most distal section of the small intestine and extends from vitelline diverticulum (formerly Meckel’s diverticulum) to the
ileo–caecal junction. It has an important role in digestion and absorption, and mucosal immunity. The ileum exhibits several unique features of
the mucosal immune system, or gut-associated lymphoid tissues (GALT). These features include lymphoid cells located in the epithelial lining
(intraepithelial lymphocytes and Paneth cells), the immune cells in the lamina propria, as well as specialised lymphoid structures, such as Peyer’s
patches covered by microfold cells (M-cells), which all play roles in the regulation and stimulation of gut immune defence (Allaire et al. 2018).
Conditions in the ileum are more favourable for microbial growth (including growth of probiotic bacteria) than in the more proximal small intestine
(duodenum and jejunum). The pH (close to neutral), and a longer transit time through the ileum create a suitable environment for microbial growth
and metabolism (Booijink et al. 2010; Gerritsen et al. 2011). Lu et al. (2003) studied ileal microbiota and found that Lactobacillus was the major
group (70%), followed by members of the family Clostridiaceae (11%), Streptococcus (6.5%) and Enterococcus (6.5%). The presence of
segmented filamentous bacteria (SFB), Candidatus savagella, a unique group of commensal bacteria, attached to the ileal epithelium during the
first 3–4 weeks of a bird’s life, reinforces the ileum’s critical role in innate and adaptive immunity (Goodwin et al. 1991; Ericsson et al. 2014).
Hence, many researchers select the ileum as an organ of interest, when evaluating gut health. Likewise, those interested in nutrient metabolism
often sample from the ileum as it is the last segment of the small intestine where digestion and absorption is essentially complete. However, the
jejunum is the segment of small intestine where most absorption occurs, and the caecum, a part of large intestine, contains the highest microbial cell
densities in the GIT.
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a mixture of faeces and urine, and contains metabolites from 
the ileum, and those excreted in urine or generated by bacterial 
fermentation in the caeca. Thus, avian excreta values will 
therefore reflect both GIT and post-absorptive metabolism 
problems. For example, calcium concentrations in excreta 
reflect both incomplete feed digestibility and urinary 
excretion. The relative importance of both routes of 
excretion will depend on gut homeostasis and the metabolic 
status of the bird (Li et al. 2017).

Poultry house dust may be another source in which to 
measure markers for subclinical infection. Ahaduzzaman 
et al. (2021) found that in the case of NE-subclinical and 
NE-clinical flocks, high levels of Eimeria spp. and 
C. perfringens were detected in dust after inoculation, 
followed by a gradual decline over time, while in the 
control flock, C. perfringens and netB were detected at low 
levels. Recent research has also shown improved litter quality 
and decreased ammonia emissions after feeding probiotics to 
poultry. Dietary B. subtilis supplementation reduced ammonia 
emission in laying hens, by improving the activity of enzymes 
and N utilisation (Zhang et al. 2012). Park et al. (2016) also 
reported that a shift of excreta faecal microbial composition 
following E. faecium supplementation in laying hens and 
B. subtilis in broilers (Park and Kim 2015) was  
accompanied by increased nutrient retention and reduction 
in nutrient excretion, leading to improved nutrient 
digestibility and reduced excreta ammonia emissions. 
Ducatelle et al. (2018) proposed that volatile organic 
compounds (VOCs) from chicken excreta were potential 
novel markers of intestinal health, whereas previously, 
VOCs were considered only for their contribution to 
malodourous and environmental pollution. Although, it had 
been shown that different VOC profiles occur in chickens with 
and without Campylobacter infection (Garner et al. 2008). Six 
compounds (hexanal, E-2-octenal, pyrrole, ethyl ethanoate, 
methyl alcohol and 2-heptanone) were identified and used 
together, to classify excreta samples as positive or negative 
for Campylobacter. These biogases were recommended as 
biomarkers for Campylobacter infection.
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thousands of different taxonomic units of bacteria, fungi,
viruses, bacteriophages, archaea and eukaryotes. The
chick’s microbiome is partly acquired from the hen and
egg, but is greatly influenced by environmental factors
(Ding et al. 2017). The bacterial species found in
the chicken gut include four predominant bacterial
phyla (Proteobacteria, Bacteroidetes, Firmicutes, and
Actinobacteria), which account for more than 99.42% of
the total sequences (Oakley et al. 2014; Sun et al. 2018).
Lactobacilli, Streptococci and Escherichia coli are found in
small numbers in the gut. The gut microbiota is constantly
reshaped by contact with the outside environment and might be
damaged when its collective population structure is altered
(Baquero and Nombela 2012). Particular interest has been
paid to the bacterial communities or ‘microbiome’ of the gut,
as it confers health benefits to the host, such as aiding in
the digestion and absorption of nutrients, contributing to
the construction of the intestinal epithelial barrier, the
development and function of the host immune system, and
competing with pathogenic microbes to prevent their harmful
propagation (Kogut and Arsenault 2016; Shang et al. 2018;
Kogut 2019). The gut microbiota is altered by diet, pathogens,
antimicrobials, and other nutritional, hormonal, or both
internal and external behavioural factors (Oakley et al.
2014; Diaz Carrasco et al. 2019; Haberecht et al. 2020).
Both pathogenic and beneficial microbes can be found in
the lumen of the gut or on the gut’s mucosal surface
(Jeurissen et al. 2002). The composition of microflora at
each site could be slightly different and determined by
different factors (Shang et al. 2018); however, they
influence each other and are collectively responsible for
the gut health status. In saying this, when sampling, care
should be taken to assess the microbiota on both sites, as
there could be significant differences between lumen and
mucosa sampling sites.

Discussions of the microbiota normally centre on single
organisms, with the implication that ‘bugs act alone’.
However, there is increasing evidence that many bacteria
form biofilms and the ecological niche, so formed, provides
mutual benefits to the participating bacteria. Biofilm formation
is usually considered a precursor to intestinal disease, but this
is hotly debated (Tytgat et al. 2019). Low doses of antibiotics
induce bacterial biofilm, and antibiotic resistance and infection
recurrence can be connected to biofilm formation. Biofilm-
forming bacteria are highly organised in multicellular bacterial
structures on the intestinal absorption surfaces, thus preventing
normal functions in the ileal mucosa. For C. perfringens,
biofilm formation could play a role in the development of
NE because a biofilm can help bacteria adhere to surfaces, and
this facilitates colonisation and infection (Charlebois et al.
2014). In humans, there is evidence for anti-biofilm activity of
probiotic spore-forming bacilli (Bacillus amyloliquefaciens
B-1895) against clinical and animal urinary tract infection
isolates such as P. mirabilis (Algburi et al. 2020).

Gut dysbiosis, resulting from changes in composition and
function of the gut microbiota and disruption of gut barrier
function, has been reported in poultry. It has been triggered by
non-infectious and infectious factors, including the ban on
AGPs in poultry feed and administration of antibiotics at

therapeutic doses (Ducatelle et al. 2018). Metabolite
concentrations affected by gut microbiota dysbiosis, such as
short-chain fatty acids (SCFAs) and secondary bile acids
influence host metabolism. Microbial fermentation of
carbohydrates results in the production of a range of
SCFAs, predominately acetate, propionate, butyrate and
lactate (Annison et al. 1968; Macfarlane and Macfarlane
2012). The SCFAs, especially butyrate, are the preferred
substrate for the epithelial cells, and are associated with cell
proliferation, differentiation, and apoptosis, increased MUC2
gene expression, and antioxidant activity; all play a part in the
integrity of the gut barrier (Lee and Hase 2014). Therefore,
disturbances of gut health will be reflected in increased or
decreased intestinal permeability to metabolites generated in
the gut. High serum d-lactate concentrations are indicative of
increased intestinal permeability in laying hens (Lei et al.
2013), and increased d-lactate concentrations have been
observed after lipopolysaccharide challenge in broilers (Wu
et al. 2013). Gut dysbiosis also generates toxic metabolites
from protein fermentation and the impaired intestinal barrier
may permit translocation of these toxins into the systemic
circulation (Yadav and Jha 2019).

There is no doubt that feed additives and supplements
such as probiotics, prebiotics, organic acids, and exogenous
enzymes can modulate the intestinal microbial community of
the host to promote health (Adeola and Cowieson 2011; Kim
et al. 2011; Teng and Kim 2018; Araujo et al. 2019; Pereira
et al. 2019; Yadav and Jha 2019; Haberecht et al. 2020) and are
especially recommended for use in poultry to build or re-
establish normal flora during periods of stress and other
challenges that cause immunosuppression.

Probiotics, performance and health

In the past 20 years, there has been an exponential increase in
the use of probiotics in animal agriculture. The estimated
global market value of probiotic supplementation in animal
feed is some US$4.6 billion (Marketsand Markets 2019), and
the benefits of probiotic application have been demonstrated
for animal and bird performance, as described above.
Nevertheless, Applegate et al. (2010) raised important areas
of concern for the use of probiotics by industry, including
unfamiliarity with product, overselling of product effects,
product inconsistency, lack of documented physiological
and microbial effects in vivo, and lack of documented
persistence. In the intervening decade, research has
improved industry’s confidence in the application of
probiotics. However, there are still many areas of uncertainty
and this is exacerbated by the number of probiotic products on
the market with impressive claims of efficacy, many with little
proof. Some areas of probiotic use and application that require
further delineation are discussed in this section.

Probiotics and AGPs

The Food and Drug Administration (FDA) recommends
‘overall reduction in use of all classes of medically
important antimicrobials in food-producing animals;
complete restriction of use of all classes of medically
important antimicrobials in food-producing animals for
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(Bajagai et al. 2016). There have been mixed reports on the
effects of probiotics on broiler performance. Some
investigators have reported positive effects on bird
performance (Palamidi et al. 2016; De Cesare et al. 2017;
Pereira et al. 2019), while others have not seen any significant
probiotic effect (Olnood et al. 2015b; de Souza et al. 2018;
Zarei et al. 2018; Araujo et al. 2019). Similar outcomes have
been reported in humans, with investigators explaining that
‘probiotics don’t work for everyone,’ and suggesting factors
such as strain of probiotic organism, dose, route and period of
administration, and health conditions of the host (Islam 2016),
as being responsible for these discrepancies. These factors
could also apply to production animals.

While effects of probiotics in ameliorating gut infections
are well established (Higgins et al. 2010; Menconi et al. 2011;
Huff et al. 2015; Forte et al. 2016; de Souza et al. 2018; Shini
et al. 2020b, 2021), other beneficial effects on liver, bone and
muscle, egg and meat quality (Watkins and Kratzer 1983;
Mutuş et al. 2006; Lutful Kabir 2009; Wideman et al. 2012;
Zheng et al. 2014, 2016; Cengiz et al. 2015; Bai et al. 2017;
Yan et al. 2019) have been reported and should be considered
when probiotics are applied. All these effects contribute to
enhanced performance and profitability, and improved health
and welfare of flocks. However, many of these claimed
benefits of probiotic use are difficult to quantify in a
production setting and require further investigation.

Is it best to use multi-strain probiotics?

Commercially available probiotics contain different bacterial
species and strains that are often isolated from a variety of
habitats. Some products contain single species (strains), some
contain multiple species (strains), with others containing
multiple isolates of the same species (Smith 2014; Bajagai
et al. 2016; Aalaei et al. 2019). There are other products that
contain probiotic organisms in combination with prebiotics,
organic acids, essential oils and phytogenics, but discussion
of these mixtures is outside the scope of the present review.
The probiotic strain is considered essential for effectiveness. A
single-strain probiotic can be very effective if the bacterial
strain is carefully selected for the circumstances under which
it will be used. The selection of a probiotic strain should take
into account the relevant functional properties of the strain,
and whether it can be considered safe for poultry and human
consumption; this principle would also apply when designing
a multi-strain (multi-species) probiotic. Multiple species
probiotics most frequently have various combinations
of Lactobacilli (often a few different species or strains),
Streptococcus species, Bifidobacterium species,
Enterococcus species and Bacillus species. The relevance
on using a multi-strain (multi-species) probiotic lies in the
fact that some bacterial strains (species) perform some
functions, whereas others perform different functions, all
contributing to an overall beneficial outcome to meet the
expectations for the use of the probiotic. Moreover, not all
isolates or strains of the same bacterial species have equal
efficacy as a probiotic (Liu et al. 2010). Bacillus
spp. probiotics have been used successfully due to spore
formation and their survival rate and persistence in the GIT
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growth promotion, and complete restriction of use of all 
classes of medically important antimicrobials in food-
producing animals for prevention of infectious diseases that 
have not yet been clinically diagnosed’ (FDA 2017). Concerns 
about drug-resistant superbugs and the lack of new antibiotics 
for treating human and animal diseases, have led to the 
reduction in the use, or in some countries, explicit banning, 
of antibiotics and other antimicrobial agents in food-producing 
animals. This situation has created a void for those involved in 
animal agriculture and promoted a research environment 
seeking to find alternative strategies for the maintenance of 
gut homeostasis. Probiotics have shown many positive effects 
in maintaining and improving gut health by reducing 
inflammation, as do antibiotics (Niewold 2007; Mountzouris  
et al. 2019). However, it is likely that both groups of 
compounds reduce inflammation by different mechanisms. 
It should be pointed out that probiotics are not a therapeutic 
replacement or substitute for antibiotics or other 
antimicrobials; it will take more than one product 
(probiotic, prebiotic, phytogenic, organic acid, essential oil 
or a combination thereof) to replace the beneficial effects that 
AGPs delivered in the past.

Increasing evidence suggests that probiotics assist in the 
maintenance of intestinal integrity. There is a plethora of 
terminology that is used to describe probiotic effects on 
intestinal mucosa, including, maintenance, improvement, 
enhancement, alleviation, control and prevention of 
infections. All of these terms indicate that the probiotic has 
either prevented a pathogen from causing intestinal damage 
(maintained mucosa), or regenerated or improved damaged 
mucosa. However, there is still much to be explored on 
probiotic- and host-related factors that affect the outcomes 
of probiotic use. The benefit of probiotic use is most obvious 
in chickens challenged by stress such as infection rather 
than when chickens are maintained under optimal 
conditions, as is also the case with AGPs. Previous research 
conducted with challenged chickens (by heat or cold stress) or 
with experimentally infected birds, showed that probiotics 
improved growth or feed conversion ratio (FCR; 
Mountzouris et al. 2010; Huff et al. 2015; Park and Kim 
2015; Abudabos et al. 2016; Shini et al. 2020b). In most of 
cases, intestinal health of challenged birds was maintained or 
improved, and this could have been the reason for improved 
performance in many trials with challenged birds. We have 
demonstrated with electron microscopy that birds challenged 
with subclinical NE and fed the probiotic Bacillus 
amyloliquefaciens strain H57 (H57), maintained the cellular 
architecture of the ileal epithelium comparable to control birds, 
whereas birds without H57 supplementation had a damaged 
and disintegrated mucosa (Shini et al. 2021); NE-challenged 
and H57-ed birds also showed a significant decrease in FCR 
against NE (1.28 vs 1.36), and achieved a FCR similar to 
control birds (1.28 vs 1.27 respectively; Shini et al. 2020b).

Do probiotics always work?

A large number of investigators have used diets supplemented 
with probiotics and studied their efficacy on bird performance; 
however, the outcomes have not always been consistent
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(Cutting 2011). Many Bacillus spp. produce enzymes and
bacteriocins, potentially enhancing their mode of action in
the gut (Cutting 2011). There are many commercial products
that are single- or multi-strain probiotics, but the benefits of
using more than one strain or species in a single product has
not been clearly established (Zhao et al. 2013). However,
single-strain probiotics have unique properties, and using a
single-strain probiotic makes it easier to differentiate the
effectiveness and understand the mode of action of a
probiotic. Therefore, single-strain probiotics are easier to
patent, whereas multi-strain probiotics are not, often lacking
clinical studies for the correct combination of strains.
Examples of microorganisms in single- and multi-strain/
species probiotic products, commercially used in animal
feeds, including poultry, have been detailed in a report by
Bajagai et al. (2016), along with the effect on poultry (broilers
and laying hens) performance.

What other factors determine probiotic efficacy?

There is general agreement among researchers and
manufacturers for more quality control studies regarding
formulation, route of administration and delivery system,
dose and dosage regimen of strain-specific probiotic
products. These studies should be undertaken before the
release of a commercial product (Weese and Martin 2011)
and are crucial for appropriate application and achieving the
desired health and performance outcomes (Kechagia et al.
2013; de Simone 2019).

Administration of probiotics on farms can be via feed or
drinking water; adding to feed is the most commonly used
method for poultry. Heat-stable probiotic products can be
added to feed before pelleting or applied post-pelleting
(spray-coating), or delivered through litter. Olnood et al.
(2015b) showed that different routes (feed, water, litter, and
gavage) for administering L. johnsonii did not significantly
influence broiler growth performance. Furthermore, there were
no statistically significant differences among the various routes
of administration on the gut microflora, but individual oral
application (gavage) resulted in the greatest reduction in
intestinal counts of Enterobacteria and C. perfringens, an
outcome regarded as a key attribute for probiotic
application in poultry diets (Olnood et al. 2015b). In
another study, administration in drinking water appeared to
be superior over supplementation in feed, in terms of
performance and immune competence of birds (Karimi
Torshizi et al. 2010).

As for dosage, FAO/WHO guidelines emphasise that ‘when
administered in adequate amounts, probiotics confer a health
benefit to the host’ (FAO/WHO 2006; Morelli and Capurso
2012). The dose of a probiotic is the number of viable
microbial cells in a given product, derived by plate
counting the total number of colony-forming units (CFUs)
in a given volume, and expressed as CFU/g or mL. The
minimum effective concentration of probiotics in feed or
water is debated; however, it is generally accepted that
probiotic products should have a minimum concentration of
106 CFU/g or mL. For humans, it is recommended that a total
of 108–109 probiotic microorganisms need to be taken daily for

the probiotic to be effective (Kechagia et al. 2013; Forssten
and Ouwehand 2020). However, clinical studies have shown
that the concentration of a probiotic needs to be 106 CFU/mL
in the small intestine and 108 CFU/g in the colon to obtain a
clinical effect in the gut (Minelli and Benini 2008). For
poultry, probiotic application is based on the manufacturer’s
recommendations for dose and duration of administration. In a
recent study (S. Shini, unpubl. data), a diet supplemented with
graded doses of H57 at 0, 106, 107 and 108 CFU/g feed was fed
to broiler chickens and half of the birds were challenged with
subclinical NE. The data showed that there was a dose effect.
Birds challenged with NE and fed H57 at 107 and 108 CFU/g
feed, had similar growth rates, and these birds performed better
than did birds fed H57 at 0 and 106 CFU/g feed. FCR was
significantly improved in birds challenged with NE and fed
the highest dose of H57. From these data, it appears that
there is a threshold dose for performance in challenged
birds and it was concluded that the dose of 107 CFU/g feed
would be satisfactory for field application, as it improves the
performance of challenged birds and is more economical. At
necropsy, the lower dose (106 CFU/g feed) of H57 also showed
benefits on mucosal health of challenged birds. Tomaszewska
et al. (2018) demonstrated that the influence of probiotic
administration on tibia geometry was also dose-dependent
in female turkeys.

Other factors that could influence probiotic efficacy are
poultry species, the breed, age, and health or disease
conditions. Most probiotic work with poultry is undertaken
with broilers, but the same response may not occur in other
avian species (Edens 2003). Similar improved growth rates
from probiotic use are seen in chickens and turkeys (Smith
2014), but less in ducks where overfeeding causes significant
changes to metabolism, microbial diversity and growth (Even
et al. 2018). The use of different broiler breeds could also have
been the reason for contrasting results when using the same
probiotic. For example, studies with an E. faecium strain
showed different results on performance when conducted
with different broiler breeds; Cao et al. (2013) found an
effect on growth in male Cobb broilers, while Zhao et al.
(2013) did not find any effect in Ross broilers. The use of
probiotics has shown to be more effective in young birds, as
this coincides with the critical period of GIT microbial
colonisation (Applegate et al. 2010). This is very important
for chicks hatched from artificially incubated eggs, thus
lacking contact with hens, resulting in delayed development
of the intestinal microflora. As birds grow, the microflora
becomes more diverse and tends to become relatively
stable. Diet content is also likely to be a contributing factor
to probiotic efficacy (Lutful Kabir 2009).

The results of many clinical investigations in humans
suggest that probiotics may be useful in preventing and
treating various health conditions and diseases; however,
efficacy depends on the health and disease status, including
clinical indications (acute or chronic). There is evidence that
probiotics are effective for acute infectious diarrhoea,
antibiotic associated diarrhoea, Clostridium difficile
associated diarrhoea, hepatic encephalopathy, ulcerative
colitis, irritable bowel syndrome, functional gastrointestinal
disorders, and necrotising enterocolitis; conversely, there is
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and deactivating anti-nutritional factors present in poultry
diets (Yadav and Jha 2019). Similar enzymes are routinely
added to poultry diets to improve nutrient digestibility and
to degrade anti-nutritive factors (Bedford 2000, 2018;
Ravindran 2013). Probiotics have also been shown to
increase the abundance of segmented filamentous bacteria
(SFB), the indigenous bacteria that are found in ileal
microflora of chicks (Shini et al. 2021). Liao et al. (2012)
manipulated the colonisation of SFB in chickens by feeding
Lactobacillus delbrueckii at hatch, resulting in SFB
colonisation occurring 4 days earlier, with implications
for regulation of the immune response, and this mechanism
is explored below.

Maintenance of intestinal barrier integrity

The intestinal epithelium is a dynamic bidirectional layer that
functions as a frontier-barrier, accepting or refusing movement
of intraluminal particles into adjacent enterocytes and
underlying microvasculature. The junctional complexes
between enterocytes maintain the integrity of the epithelial
barrier by regulating paracellular permeability and are
composed of TJ, gap junctions, adherens junctions (AJ),
and desmosomes as shown in Fig. 4. The TJ and AJ
constitute the apical junctional complex, the primary
structure that regulates the intestinal barrier. Tight junctions
include four integral transmembrane proteins (occludin,
claudin, junctional adhesion molecule, and tricellulin) that
interact with the actin cytoskeleton (Ulluwishewa et al.
2011). The DS and GJ are involved in cell–cell adhesion,
and intracellular communication respectively. The paracellular
barrier in normal intestinal tissue is characterised by high
expression levels of TJ proteins and a low paracellular
permeability (or a tight epithelium), while mucosal
inflammation is frequently associated with decreased
expression of junctional proteins (or a leaky epithelium).
The integrity of the mucosal barrier is important, for the
digestion and absorption of nutrients, and it is considered
the first line of defence against pathogens and toxic
molecules. The disruption of its integrity is the primary
cause of disturbed physiology, and inefficient feed
utilisation. Hence, there is great interest to understand how
probiotics can assist in improving gut mucosal integrity,
barrier function and nutrient metabolism.

Several mechanisms appear to be associated with the role of
probiotics in improving mucosal barrier integrity, and
protecting it from a variety of insults. It has been suggested
that probiotics enhance the mucosal barrier by increasing the
production of mucus, inhibiting bacterial translocation, and
strengthening TJ in a manner similar to that of normal gut
microbiota (La Fata et al. 2018). There is also a growing body
of evidence indicating that bioactive molecules released by
some probiotics activate various cell-signalling pathways that
strengthen the TJ and preserve mucosal barrier function (Rao
and Samak 2013). Changes in absorption occurring in
coccidiosis and NE have been linked to changes in
intestinal permeability, a feature of intestinal barrier
function (Williams 2005; Ducatelle et al. 2018). Many
luminal and systemic factors can independently influence
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evidence that probiotics are not effective for acute pancreatitis 
and Crohn’s disease (Wilkins and Sequoia 2017). In poultry, 
enteric diseases have become a major concern after the 
exclusion of AGPs, and feed additives including probiotics 
have had varying degrees of success in combating these 
diseases, probably due to the factors outlined above, and 
the stress and disease challenges faced by birds on farm.

Mechanisms of probiotic action
Probiotics contain live bacterial cultures, but how they induce 
their effects remains unclear. This is a complex area of biology 
in which there are multiple players; consequently, many 
possible modes of action and pathways are involved. 
Several mechanisms have been established or proposed and 
it is likely that the beneficial effects of probiotics are mediated 
by multiple mechanisms, and some of these mechanisms are 
outlined below.

Modulation of intestinal microbiota

The gut microbiota is one component of an animal’s 
microbiota that colonises all epithelial and mucosal surfaces 
of the GIT. Overall health and wellbeing is dependent on a 
balanced gut microbiota and delivery to the host of microbial-
derived metabolites. Probiotics are considered to be one of the 
best alternatives to antibiotics, especially in terms of 
modulating the intestinal microbiota. The inclusion of 
probiotics in the diet has shown to help maintain or rebuild 
the intestinal microbiome by stimulating the growth of 
beneficial indigenous microorganisms such as Lactobacilli 
and Bifidobacteria (Gagliardi et al. 2018). These bacteria 
have the ability to limit the direct contact of pathogenic 
bacteria with the epithelium by competitive exclusion for 
access to mucosal surfaces, nutrients, and the creation of 
harsh environmental conditions in the lumen for pathogens. 
Competitive exclusion has been found to be effective in 
inhibiting intestinal colonisation by Salmonella, Shigella, 
Clostridium and Listeria (Naidu et al. 1999; Bermudez-
Brito et al. 2012; Park  and  Kim  2015). A probiotic strain of 
L. plantarum has been reported to induce MUC2 and MUC3 
mucins, thus inhibiting the adhesion of pathogenic E. coli 
(Mack et al. 1999). It has been observed that many probiotic 
bacteria show a greater capacity to adhere to the chicken’s 
intestinal mucosa than do pathogens and, therefore, displace 
them (Collado et al. 2005). It has also been demonstrated that 
many probiotics favour the survival of beneficial bacteria such 
as Lactobacilli because they decrease intestinal pH (Olnood 
et al. 2015a; Shini et al. 2020b; Zaghari et al. 2020). Lactic 
acid production is increased by B. amyloliquefaciens, which 
most probably explains the drop in ileum pH (Wu et al. 2011; 
Salim et al. 2013; Shini  et al. 2020b) associated with feeding 
this probiotic species.

Probiotics can modify the ecosystem of the GIT by the 
production and release of enzymes, bacteriocins, and other 
secondary compounds into the gut. For example, many 
Bacillus spp., including B. amyloliquefaciens, produce large 
quantities of extracellular enzymes such as amylase, protease 
and lipase, and some cellulases and xylanases (Elshaghabee 
et al. 2017), that can assist by increasing nutrient digestibility
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barrier function and cause leakage of plasma proteins and
diarrhoea (Quigley 2016; Camilleri 2019). Electron
microscopy using a NE broiler model (co-infection with
coccidiosis and Cp) demonstrated enterocyte injury and loss
of cellular integrity (damage of intercellular connections)
within the epithelium due to erosions and ulcerations
caused by Eimeria oocytes and Cp (Figs 3, 4). It was
thought that barrier dysfunction contributed to diarrhoea via
a leak flux mechanism. Birds challenged with NE and treated
with a probiotic H57 had preserved ileal mucosa and normal
enterocytes and TJ (Shini et al. 2020a).

Coccidiosis and NE-related diarrhoea and malabsorption
have been associated with reduced nutrient digestion and
performance (Turk 1972; Witlock and Ruff 1977).
However, epithelial damage in Eimeria infected birds
appears to be less severe than in NE birds; therefore, a
higher absorptive area is available, contributing to a slightly
better performance in Eimeria-infected birds than in NE-
challenged birds (Shini et al. 2020b). In our experiments
with H57, it was demonstrated that the probiotic can
maintain the intestinal epithelial barrier by improving

epithelial cell morphology, in particular mitochondria, and
preserving the enterocyte apical junctional complex (which
includes TJ; Fig. 4; Shini et al. 2021). Mitochondria have a
crucial role in the regulation of gut functions such as intestinal
barrier integrity and mucosal immune responses (Jackson and
Theiss 2020). Enterocyte mitochondria are involved in the
regulation of numerous aspects of cellular activity, including,
but not limited to, apoptosis, Ca2+ signalling, and redox
homeostasis of the cell (Kang and Pervaiz 2012). Our
findings suggest that the maintenance of the epithelial
barrier is an energy-dependent process, thus swollen,
irregular, vacuolated, or cristae-damaged mitochondria
(observed in NE birds), are associated with loss of ATP
(ATP) generation and release of oxygen radicals in
enterocytes. Subsequent apoptotic necrosis of enterocytes
and impaired energy metabolism of epithelial cells evoke a
variety of insults, allowing spread of infection. Similar
degenerative changes and mitochondrial dysfunction,
including oxidative stress and impaired ATP production, are
also observed in the intestines of patients with inflammatory
bowel disease. In an experiment with broiler chicks, an early

Fig. 4. Transmission electron micrographs of the apical enterocyte region from the ileal epithelium of healthy and unhealthy 21-day-old chicks.
Magnified areas from a normal epithelium (top row, two first images) show details of the apical junctional complex (AJC) region with tight junction
(TJ) and adhesive junction (AJ); the desmosome (DS) and microvilli (Mv), mitochondria (M) and gap junction (GJ) are also shown. The images next
are from chickens with subclinical necrotic enteritis (NE), displaying intact microvilli, but swollen or damaged mitochondria (M), widening
(sacculation) of the AJC in the AJ and DS areas (purple arrow), and electron-dense bodies (EDB) and an intraepithelial lymphocyte (IEL) migrated
from lamina propria (bottom row, image left).
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maintaining a chronic immune response. Hence, it affects
bird health and performance. The exposure to pathogens
induces the intestinal defence mechanisms and the first
response is the innate (non-specific) response, including the
inflammatory response. Innate immune cells (including
dendritic cells) can respond and detect microbial fragments
through pattern recognition receptors, and mount a robust
immune response against pathogens. In fact, most probiotics
appear to be potentially well tolerated by immune cells (Plaza-
Díaz et al. 2017). Probiotics are considered to be regulators of
inflammation (Lescheid 2014; Peng et al. 2020). Multiple
mechanisms of action have been suggested to explain the
protective and anti-inflammatory effects of probiotics in
modulating intestinal inflammation. Probiotics enhance
production of SCFAs with anti-inflammatory properties
(e.g. butyrate), as well as increase synthesis of
antimicrobial peptides (bacteriocins) that influence
inflammation resolution pathways in the mucosa (Wang
et al. 2016; Tarradas et al. 2020). It has been proposed that
probiotics that target the innate immune system and stimulate
it, could be more advantageous. This is because this type of
response is quick, multicomponent and non-specific
(Swaggerty et al. 2019), offering local and systemic
benefits, especially for young birds. Subsequently,
components of acquired (specific) immune response would
be induced, such as B- and T-lymphocytes and their products,
(antibodies and interleukins), and a more specific immune
response mounted.
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Fig. 5. Schematic diagram illustrating potential mechanisms involving probiotic bacteria in partnership with commensal bacteria, including segmented
filamentous bacteria (SFB), to maintain a balanced immune response, thereby contributing to intestinal homeostasis. Probiotics suppress pathogenic Th17
cells and induce steady-state Th17 cells. The relationship between probiotics and Th17 cells is dependent on host conditions/state, whether at steady or
inflammation (dysbiosis) state. Probiotics also improve the colonisation and subsequent adhesion of commensal bacteria, including SFB, on epithelial cells
(enterocyte), which directly influence several protective immune responses, such as the development of lymphoid tissue (Payer’s patches, PP), stimulation
and the accumulation of Th17 cells in the mucosa, the secretion of immunoglobulin A (IgA) and antimicrobial proteins (Am-P) within the mucus
layer, and intraepithelial lymphocytes and M-cells (yellow star) barrier protection. The electron micrographs (left and right) present evidence of cells and
ultrastructural features involved in the mode of action of probiotics as modulators of intestinal immune response.
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infection with Salmonella enterica induced paracellular 
transport leakage and mucosal barrier dysfunction, but these 
adverse effects were prevented by the administration of a 
probiotic culture derived from poultry gut proprietary 
strains of lactic acid bacteria (Prado-Rebolledo et al. 2017). 
It has also been shown that B. subtilis 747 improved epithelial 
barrier integrity of chickens by elevating occludin 
concentrations in the TJ (Park et al. 2020).

Modulation of inflammatory and immune responses
Probiotics influence host immunity, without invading host 
tissues. Probiotics are living microorganisms and as such 
the intestinal mucosa responds to probiotic exposure 
through innate and acquired immune mechanisms, as it does 
for other ‘foreign agents.’ However, the response to 
commensal and probiotic bacteria is a ‘good thing,’ and it 
accounts for a substantial part of their immunomodulatory 
effects. The reaction starts with an inflammatory response that 
activates immune cells, cytokines and chemokines, acute 
phase proteins and other signalling mediators to protect the 
body (Abdulkhaleq et al. 2018). Inflammation is a complex 
and fine-tuned mechanism and may act as both a ‘friend and 
foe’ (Kjekshus 2015). Normally, it is followed by resolution, 
and this is an active and highly regulated cellular and 
molecular process required to protect against deleterious 
consequences of the inflammatory response (Serhan et al. 
2007). Unresolved inflammation can lead to intestinal or 
system diseases, and increases in energy expenditure for
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The intestinal surface is also protected from invasion of
foreign antigens by an efficient protective layer of ‘partners in
slime’, including a mucus layer (which contains mucin and
glycocalyx layers) and chemical barriers such as antimicrobial
proteins (Johansson et al. 2013). Other mucosal partners,
including antigen specific secretory IgA, and mucus
associated microbiota (commensal bacteria, e.g. SFB), all
play an important role in the initiation of an integration of
an immune response (Fig. 5). In experiments with the probiotic
H57, we demonstrated that birds exposed to NE and
supplemented with H57 produced a better immune response
than NE-challenged birds not supplemented with H57; more
precisely, birds treated with H57 had increased abundance of
goblet cells and intraepithelial lymphocytes (Shini et al.
2020b), and elevated levels of defensin (Gal-6) mRNA
expression (S. Shini, unpubl. data). An exciting aspect of
the experiments with H57 was finding SFB, and evaluating
its abundance and morphology. Interestingly, there were
more SFB attached to villi in birds exposed to ‘foreign
microorganisms’ (pathogens and the probiotic), i.e. NE, NE-
H57 and H57 birds, than in control birds. However, the
abundance was lower in H57 birds than in NE-exposed
birds (Shini et al. 2021). It appeared that H57 regulates the
abundance of SFB, in NE-challenged H57-fed birds, most
probably by suppressing pathogenic Th17 cells and
inducing steady-state Th17 cells (Fig. 5).

Segmented filamentous bacteria (SFB) are intestinal
commensal microorganisms with important roles in host
immunology and physiology (Box 3; Ivanov and Littman
2010; Ericsson et al. 2014), and they are host specific. SFB
are found on the ileal mucosa (Fig. 3), and participate in the
activation of naïveCD4T+cells to becomeTh17 cells,which are
capable of producing IL-17 cytokines with a proinflammatory
role in the generation of the mucosal (IgA) immune response
(Sczesnak et al. 2011). Probiotics favouring SFB could therefore
have an effect in stimulating the immune response in the gut.
There is evidence that probiotics have an anti-inflammatory
effect, which is a consequence of downregulation of IL-17
production and other proinflammatory Th17-secreted
cytokines (Tanabe 2013). IL-17 is beneficial in controlling

dysbiosis in the gut, but may be harmful if dysregulated
(Fig. 5). In the case of overgrown SFB, accumulation of Th17
cells in the ileumcould lead to damaging inflammatory effects, as
was the case with NE-challenged birds. Supplementation with
the probiotic H57 limited the SFB expansion and the Th17
associated proinflammatory response in NE-H57 birds
(Fig. 5). It is suggested that probiotics (through beneficial
bacteria, and SFB) induce a moderate steady-state Th17
cellular response, and an appropriate production of IL-17,
while pathogenic-induced inflammatory Th17 cells are
involved in the development of inflammation and dysbiosis of
resident microbes (Tanabe 2013; Flannigan and Denning 2018).

Investigations with Salmonella have found that probiotics
stimulate thegut immune system,protecting against infection, by
improving the phagocytic activity of peritoneal and spleen
macrophages, increasing the antibody response, and
improving protection against Salmonella infection (Martin
Manuel et al. 2017). Lactobacillus sp. was used as a vehicle
for an orally administered avian influenza virus vaccine, andwas
found to be effective in inducing the systemic and mucosal
immune responses with higher anti-haemagglutinin-specific
IgA and IgG concentrations (Wang et al. 2013). It was
suggested that the acquired immune responses were
dependent on the Lactobacillus as a recombinant. Lee et al.
(2010) studied the effects of Bacillus spp. as direct-fed
microbials on immune characteristics in broiler chickens, and
found that cytokine mRNA concentrations (IL-13, IL-6, IL-17
and IL-10) in intraepithelial lymphocytes were increased,
decreased or unchanged, depending on the strain used. It was
suggested that the direct-fed microbials in the present study
showed immunomodulating effects and enhanced host
protective immunity against enteric pathogens in broiler
chickens. Earlier studies by (Chichlowski et al. 2007) had
suggested decreased expression of IL-6 (a proinflammatory
cytokine), and increased expression of IL-10 (an anti-
inflammatory cytokine). Whereas Haghighi et al. (2008)
associated the repression of IL-12 and IFN-gamma
(proinflammatory cytokines) expression with the effect of
probiotic-mediated reduction and intestinal colonisation of
Salmonella typhimurium. Further studies are required to

Box 3. Segmented filamentous bacteria

Candidatus savagella or segmented filamentous bacteria (SFB), a genetic relative of the genus Clostridium, are unique microorganisms identified
as Gram-positive, anaerobic, spore-forming bacteria, colonising the ileum of many young vertebrates, including chickens (Klaasen et al. 1992;
Ericsson et al. 2014). SFB are host-specific indigenous bacteria ranging from 0.7 to1.8 mM in diameter and up to 80 mM in length and have
important roles in modulating host immunology and physiology (Ivanov and Littman 2010; Ericsson et al. 2014). SFB are involved in regulating
postnatal development and maturation of immune responses in the gut of mammals and some birds (chicken and turkey). SFB have a unique
morphology, life cycle and binding location. They intimately interact with the host, most notably, firmly attaching to epithelial cells of the distal
ileum by one end of the filament (holdfast) to form multicellular filaments, as well as single ‘holdfasts’ and spores, i.e. vegetative and dormant
reproductive cells (Chase and Erlandsen 1976).

SFB have gained attention due to their capacity to induce and stimulate multiple types of intestinal lymphoid tissue (Peyer’s patches and IEL).
SFB are found attached to the ileal mucosa (Fig. 3), and stimulate helper 17 (Th17), which are capable of producing IL-17 cytokines with a
proinflammatory role in the generation of the mucosal (IgA) immune response (Ivanov and Littman 2010; Ericsson et al. 2014; Hedblom et al.
2018). As part of the commensal microbiota, SFB have a key role in post-hatching maturation of gut immunity, especially mucosal immunity, and
participate in the activation of naïve CD4+ T cells to become Th17 cells, which are capable of producing IL-17 cytokines (Sczesnak et al. 2011).
Chicken SFB (Fig. 5) have an important role in the critical transition period from innate and maternal immunity to adaptive immunity, especially
during the first 3 weeks post-hatch. In chickens, B. amyloliquefaciens, (H57) reduced the SFB expansion and potentially down-regulated the Th17
associated proinflammatory response (Shini et al. 2021).
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scavenging, most probably due to release of enzymes and
improved digestion and absorption of nutrients (Shini et al.
2019).

Modification of digestion and metabolism

Since the early studies of Marie Coates and her colleagues with
germ-free birds, there has been an appreciation of the
importance of the gut microflora to the nutrition of the host
(Coates 1986). Many commensal bacteria, including
probiotics, produce enzymes to breakdown feed substrates
to permit bacterial metabolism, and these enzymes may also
facilitate digestion by the host (Bajagai et al. 2016; Rowland
et al. 2018). In addition to enzymes, probiotics secrete many
other compounds that can interact directly or indirectly with
the nutritional status of the host. The SCFA butyrate is a good
example and can act as an energy source for enterocytes
as mentioned above. As discussed in the present review,
probiotics improve the integrity of epithelial barrier,
consequently increasing nutrient absorption and, ultimately,
improving feed efficiency. Probiotics can indirectly modify the
gut homeostasis by helping in the assimilation of nutrients
through activation of the transport system from ATP generated
by improved digestion. A significant sign of reduced digestion
and absorption is the change in excreta quality (also discussed
above) and the presence of watery excreta or undigested feed
particles in the excreta. An absence of pasty vent in chickens
indicates normal digestion and absorption. De Cesare et al.
(2017) demonstrated that supplementation with Lactobacillus
acidophilus D2/CSL (CECT 4529) at the recommended
dietary dosage of 1 · 109 CFU/kg feed significantly
improved nutrient digestibility, particularly crude fat and
protein, and reduced the incidence of pasty vent in broiler
chickens. In our study with H57, broiler chicks exposed to NE
and fed the probiotic H57 had a significant improvement of
FCR, and a low pasty vent occurrence (Shini et al. 2020b). The
modification of digestion and metabolism by probiotics is very
complex, with both direct and indirect aspects (the probiotic
itself or probiotic-derived products) and occurs in conjunction
with the activities and actions of the normal microbiota and
microbiota-related products. It involves many pathways,
which influence the overall metabolism of the host and are
responsible for feed efficiency.

Concluding overview and future directions

Following the reduction or ban of AGPs in poultry feed, there
has been worldwide interest in the application of alternative
feed additives, especially probiotics. Recent advances on the
effects of probiotics in improving poultry gut health and bird
productivity have been discussed and the following was
concluded from the review:
(1) Gut health is a complex phenomenon that includes all the

biological structures of the intestinal tract and their
functions, along with the genetic and physiological
makeup of the host, the diet being consumed, and the
intestinal microbiota. The dynamic interactions of these
different components determine gut homeostasis and the
health status of the gut.
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determine the precise action of probiotics on the immune 
response. These findings will be key to delineating the 
immune pathways modulated by probiotics, and in identifying 
more adequate approaches to optimise gut health and 
performance in poultry.

Improvement of oxidative status
Several studies claim that probiotic supplementation improves 
antioxidant activity and reduces cell damage caused by 
oxidation (Aluwong et al. 2013; Persichetti et al. 2014; 
Wang et al. 2017). Probiotic lactic acid bacteria modulate 
the redox status of the host via their metal ion-chelating ability, 
antioxidant systems, regulation of signalling pathways, 
enzyme producing ROS, and intestinal microbiota. An 
increase in the activity of antioxidative enzymes protects 
cells from oxidative stress-induced damage. Most of 
investigators measure the antioxidant activity using the 
content of serum (total antioxidant capacity), superoxide 
dismutase (SOD) and glutathione peroxidase to assess the 
antioxidant effect of probiotics. However, most of studies 
have been conducted in vitro and, it is difficult to relate 
these results to reactions in vivo.

Cao et al. (2019) used the supernatant from ileum mucosa 
to determine the myeloperoxidase, nitric oxide, SOD, catalase 
and malondialdehyde after treatments with dietary 
L. plantarum 1.2567. They observed significantly improved 
anti-inflammatory and antioxidant activity in broiler 
chickens with Cp-induced NE. Another investigator used 
two different probiotics (Bacillus subtilis and B. cereus) 
and did not find any antioxidant effect using total 
antioxidant capacity, SOD, and hydrogen peroxide 
measurements (Abudabos et al. 2016). A probiotic 
containing both Clostridium butyricum and a combination 
of Saccharomyces boulardii and Pediococcus acidilactici 
was beneficial when added to the diets of the laying hen, as 
it enhanced intestinal development and improved antioxidant 
activity in the gut (Xiang et al. 2019). The probiotic treated 
hens exhibited decreased levels of reactive oxygen species 
(ROS) in ileum and caecum, and reduced malondialdehyde in 
serum (Xiang et al. 2019).

In our experiments with H57, we did not measure any 
antioxidative biomarker; however, we assessed the effect of 
probiotic H57 indirectly by evaluating enterocyte morphology 
and mitochondrial abundance and morphology. The 
ultramicroscopy of the ileal epithelium showed severe 
enterocyte damage, and loss of cellular integrity in NE 
birds. Mitochondria, in particular, had morphological 
alterations; they were irregular in form, containing electron-
lucent regions of matrix, swollen or damaged cristae, most 
probably due to oxidative stress, resulting in increased ROS 
exposure and lowered ATP production (Figs 3, 4). In control, 
H57 and NE-H57 birds, most mitochondria were round or 
elongated, with mild or no structural damage, and displayed 
well preserved structure (Fig. 4). Mitochondrial damage and 
dysfunction were found in NE birds, which impaired ATP 
production, causing cell necrosis. Dietary addition of H57 
appears to maintain mitochondrial morphology and improve 
their efficiency in terms of mitochondrial ROS production and
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(2) Achievement of gut homeostasis involves several
physiological, microbiological, immunological and
physical functions that maintain intestinal dynamic
balance or homeostasis.

(3) Determination of gut health or homeostasis is difficult to
ascertain, especially when disturbances are chronic or in
the case of subclinical disease. Physical appearance of the
bird may give an indication that there is GIT disturbance.
Excreta is an invaluable source of information of clinical
and subclinical infections and biomarkers are being
developed for leaky gut.

(4) Biomarkers are indirect measures but for determination of
subtle changes in gut structure, electron microscopy is the
method of choice. Using electron microscopy has also
provided insights into how the action of a probiotic
maintains gut wall integrity.

(5) The mechanisms of probiotic action are complex and
include local and systemic changes, and corresponding
effects on the gut microbiota, intestinal barrier integrity,
immunity, oxidation status and feed efficiency.

(6) Gut homeostasis is an important link to bird productivity,
but there are circumstances when productivity gains are
not seen when diets are supplemented with probiotics.
Many factors are likely to contribute to this outcome, but a
key factor is a stressful environment; a situation in which
probiotics enhance bird performance.

The increasing demand for probiotics by the poultry
industry demonstrates the benefits that probiotics can bring
to poultry productivity. Despite the great deal of research that
has been published on probiotics and avian gut health, as
outlined above, many questions remain unanswered. Advances
in microbial and molecular methods will increase our
understanding of the factors that determine gut homeostasis,
in particular the interactions of diet, indigenous microbiota
and host metabolism, especially of the intestinal mucosa.
Such studies should clarify mechanisms of probiotic action
and define mechanistic attributes of different probiotic
organisms. This should provide insights into why probiotics
are not uniformly successful in the field and inform the
development of next-generation probiotics. It will also
provide basic information for studies that combine different
feed additives to achieve gut homeostasis. To accomplish
these outcomes, there will need to be rigorous in vitro and
in vivo testing under standard conditions that represent field
conditions. This will be greatly enhanced by the development
of relevant biomarkers that access the efficacy of probiotics.
It is important that future specific probiotic products are
designed for strategic field application.
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