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Abstract
Context. Breeding programs aim at improving the genetic characteristics of livestock populations with respect to

productivity, fitness and adaptation, while controlling negative effects such as inbreeding or health and welfare issues.
As breeding is affected by a variety of interdependent factors, the analysis of the effect of certain breeding actions and
the optimisation of a breeding program are highly complex tasks.

Aims. This study was conducted to display the potential of using stochastic simulation to analyse, evaluate and
compare breeding programs and to show how the Modular Breeding Program Simulator (MoBPS) simulation
framework can further enhance this.

Methods. In this study, a simplified version of the breeding program of Göttingen Minipigs was simulated to analyse
the impact of genotyping and optimum contribution selection in regard to both genetic gain and diversity. The software
MoBPS was used as the backend simulation software and was extended to allow for a more realistic modelling of pig
breeding programs. Among others, extensions include the simulation of phenotypes with discrete observations (e.g. teat
count), variable litter sizes, and a breeding value estimation in the associated R-package miraculix that utilises a
graphics processing unit.

Key results. Genotyping with the subsequent use of genomic best linear unbiased prediction (GBLUP) led to
substantial increases in genetic gain (15.3%) compared with a pedigree-based BLUP, while reducing the increase of
inbreeding by 24.8%. The additional use of optimum genetic selection was shown to be favourable compared with the
plain selection of top boars. The use of graphics processing unit-based breeding value estimation with known
heritability was ~100 times faster than the state-of-the-art R-package rrBLUP.

Conclusions. The results regarding the effect of both genotyping and optimal contribution selection are in line with
well established results. Paired with additional new features such as the modelling of discrete phenotypes and adaptable
litter sizes, this confirms MoBPS to be a unique tool for the realistic modelling of modern breeding programs.

Implications. The MoBPS framework provides a powerful tool for scientists and breeders to perform stochastic
simulations to optimise the practical design of modern breeding programs to secure standardised breeding of high-
quality animals and answer associated research questions.
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Introduction

Breeding programs aim at improving the genetic
characteristics of livestock populations with respect to
productivity, fitness and adaptation, while controlling
negative effects such as inbreeding or health and welfare

issues. As breeding is affected by a variety of
interdependent factors, the analysis of the effect of certain
breeding actions and the optimisation of a breeding program
are highly complex tasks. Although quantitative theory, such
as the breeders’ equation (Falconer and Mackay 1996), can
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give approximations when considering single generations or
relatively simple designs, this typically is not sufficient for
todays’ complex breeding programs.

With increasing computing power, a relatively new
approach to answer these questions is the execution of
stochastic simulation by tools such as MoBPS (Pook et al.
2020). Stochastic simulations typically simulate each
individual mating, including recombination events in the
meiosis, and common breeding actions such as the
phenotyping on a per individual basis. In comparison to a
deterministic analysis based on quantitative genetic theory,
such as implemented in ZPLAN+ (Täubert et al. 2010),
stochastic simulations are computationally highly
demanding, especially with respect to the simulation of
meiosis and the estimation of breeding values.

While simulation tools have become more and more
sophisticated and powerful, both research questions of
scientists and practical design questions of breeders have
become more complex at the same pace. Thus, simulation
software frameworks constantly need to grow to allow for a
larger population, to provide more modelling options for
genetic traits, and to include new selection techniques,
while still being accessible to a wide audience and not
overwhelm the potential user by the sheer flood of parameter
options. To help with those issues, Simianer et al. (2021)
recently proposed a unifying concept to describe breeding
programs in a comprehensive, unambiguous and reproducible
way.

Most large-scale breeding programs use genotyping of at
least some individuals to get a more accurate breeding value
estimation, to control inbreeding rates, to confirm the pedigree,
and to potentially reduce the generation interval (Meuwissen
et al. 2001; Schaeffer 2006; Henryon et al. 2014). However, in
small-scale breeding programs, genotyping still represents a
substantial cost factor – and often it is not immediately clear
whether the cost of genotyping is compensated by the benefits
of genomic analysis.

In the present work, we will introduce various new features
in the simulation framework MoBPS to more realistically
model modern breeding programs and will display the
potential of the framework to answer real-world breeding
questions through simulation studies. To this end, we will
exemplarily analyse the potential benefits of genotyping in the
breeding program of Göttingen Minipigs (Reimer et al. 2020).
Göttingen Minipig is the smallest commercially available
minipig breed under a controlled breeding scheme, its
breeding is globally organised in multiple isolated and
independent colonies, and it is used in biomedical research
as an animal model for various human disease areas and in
preclinical toxicology and safety assessment studies (Pedersen
and Mikkelsen 2019). The interested reader is referred to
Simianer and Köhn (2010) for more details. Furthermore,
we will introduce a new graphics processing unit (GPU)-
based implementation to derive the genomic relationship
matrix and to perform genomic best linear unbiased
prediction (GBLUP) by solving the mixed model with
known variance components, which massively reduces the
computing time of this procedure.

Materials and methods

In this study, the R-package MoBPS (Pook et al. 2020) was
used as the backend simulation software. To generate a
realistic initial population, real genomic data of 150
Göttingen Minipigs genotyped with an Affymetrix Axiom�
Porcine Genotyping Array (600K) was used as a set of
founders. On the basis of these individuals, a stock of an
arbitrarily chosen size of 5000 animals was generated by
randomly mating founder individuals. Furthermore, three
generations of random mating within the flock were
simulated to build up a basic pedigree structure. Founder
individuals were assumed to be related according to a
genomic relationship matrix derived following VanRaden
(2008). In case no genomic data are available, a valid
alternative would be the simulation of a far higher number
of generations, say 1000, to build up a basic LD structure
(function: founder.simulation() in MoBPS). For all matings, an
average litter size of 5.6 was assumed, with the distribution of
the litter size given in Table 1. For simplicity reasons, litter
size was assumed to be independent from genetic components.

Three independent quantitative traits were simulated
assuming 1000 underlying purely additive quantitative trait
loci each, with effect sizes drawn from a Gaussian distribution
and heritabilities of h1

2 = 0.3, h2
2 = 0.3 and h3

2 = 0.1
respectively. Traits were standardised to have an underlying
true genetic variance of 100 and all animals were phenotyped
for all three traits. Trait 1 can be thought of as a main growth
trait (such as ‘smallness’, since a small body size is highly
desirable for a porcine animal model), and Trait 3 represents a
typical functional trait such as fertility. Phenotypes of the
second trait were assumed to be observed in a discrete
distribution to mimic a trait such as the teat count, with the
distribution in the founder population given in Table 2. Note
that the underlying trait still has a quantitative background and
only the phenotypic expression is affected by this. An in-depth
description of the generation of discrete value traits can be found
in the MoBPS user guidelines (available at https://github.com/
tpook92/MoBPS). In case real genomic and phenotypic data
would be available, one could consider estimating quantitative
trait loci effects via ridge regressionBLUP toplacemarker effects
onto known-effect regions (effect.estimate.add() in MoBPS).

A schematic overview of the breeding program itself is
given in Fig. 1. The given breeding scheme can also be found
as a template in the MoBPSweb application at www.mobps.de
(Pook et al. 2021). In the following, we will consider five

Table 1. Distribution of the simulated litter size

Litter size Probability (%)

2 5
3 10
4 10
5 20
6 25
7 15
8 10
9 5
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different selection strategies that require different amounts of
genotyping:
(1) Phenotypic selection
(2) Pedigree BLUP (no genotyping)
(3) Single-step genomic BLUP (10% genotyping)
(4) Single-step genomic BLUP (25% genotyping)
(5) Genomic BLUP (100% genotyping)

In case a breeding value estimation was performed, the
animals of the last two generations were used with a pedigree-
depth of 7. The genomic relationship matrix for the genotyped
individuals was derived according to VanRaden (2008), and in
cases in which not all individuals were genotyped, the
combined relationship matrix for genotyped and non-
phenotyped animals was derived via the single-step
framework (Aguilar et al. 2010; Legarra et al. 2014).

The top 50 breeding boars and top 500 breeding sows were
selected on the basis of a selection index, with equal weights on
the three quantitative traits.

As traits were modelled to be uncorrelated and have the
same overall genetic variance, single-trait models were used
for the breeding value estimation and the selection index was a
plain combination of the estimated breeding values. To handle
more complex and realistic scenarios, both modelling of
correlated traits and more complex selection indices that
utilise the reliability of the estimated breeding values and
correlation between traits are implemented in MoBPS (Hazel
and Lush 1942; Miesenberger 1997).

Furthermore, we considered the use of optimum
contribution selection (Meuwissen 1997) for the selection of
the breeding boars. For this, the method introduced in
Wellmann (2019), which is implemented in the R-package
optiSel (Wellmann 2017), was used with the target function to
maximise the breeding value (‘max.BV’), while limiting the
increase in average kinship (‘ub.sKin’). This functionality is
also implemented within the MoBPS framework and was
tested as an alternative selection criterion in all scenarios,
except plain phenotypic selection.

The described breeding cycle was repeated for 10
generations and averages of 50 independent simulations per
scenario were used as results.

To reduce computing times, variance components were
assumed to be known in the mixed model. Furthermore, the
miraculix package was extended to utilise GPU resources. This
GPU version relies on the cutlass and cuSolver libraries
by NVIDIA (see https://github.com/NVIDIA/cutlass) for
optimising memory latency and utilises bit compression to
minimise memory transfers. By combining tailored two-bit
matrix multiplication algorithms with instruction sets of state-
of-the-art GPUs further optimises the actual computing times
required for the breeding value estimation.
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Fig. 1. Schematic overview of the baseline breeding program. This figure is a visualisation generated
via the MoBPSweb graphical interface (www.mobps.de; Pook et al. 2021).

Table 2. Distribution of the teat count in the founder population

Teat count Probability (%)

9 2
10 40
11 20
12 20
13 10
14 5
15 2
16 0.989
17 0.01
18 0.001
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Results

Across the different scenarios, we observed increasing
prediction accuracy when a more sophisticated model was
used for genomic prediction and/or the share of genotyped
animals was increased. For example, the relative gain after 10
breeding cycles was 60.0% higher for the main growth trait
when the phenotypic selection was replaced by a pedigree-
based breeding value estimation (Fig. 2a). The relative gain
when switching from pedigree BLUP (Scenario 2) to GBLUP
(Scenario 5) was still substantial (15.3%), while further gains
when using single-step BLUP were low. The genetic gain for
the teat count trait was slightly lower than for the purely
quantitative trait with the same heritability (Fig. 2b). Note that

the discrete distribution was simulated with a maximum value
of 18, which is reached by a substantial share of the animals
(~10%, Fig. 3), hindering differentiation between top animals
and, thus, also further genetic progress. Details on the obtained
prediction accuracies are given in Fig. 4. As the additive
genetic variance is going down slightly over time, while
residual variances are simulated to remain the same,
prediction accuracies slightly decrease over time. In
practice, the introduction of new genetic variance and a
larger training population over time will usually compensate
for this.

In regard to analysing genetic diversity, average levels of
kinship and inbreeding (Fig. 5) were calculated on the basis of

180

160

140

120

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

100

Trait 1 (h2 = 0.3) Trait 2 (h2 = 0.3) Trait 3 (h2 = 0.1)

Phenotypic selection
Pedigree BLUP (0%)
ssGBLUP (10%)
ssGBLUP (25%)
GBLUP (100%)

G
en

om
ic

 v
al

ue

Generation

(a) (b) (c)

Fig. 2. Average increase in underlying true genomic value for the sow cohort over time for (a) the main growth
trait, (b) teat count, and (c) the fertility trait. 95% confidence bands are given for the average value and based on
50 independent runs each.
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Modular Breeding Program Simulator (MoBPS) Animal Production Science 1985



the share of the genome in identity-by-descent (Donnelly
1983). As underlying points of recombination are known in
MoBPS, this can directly be calculated. Note that this measure
does not account for inbreeding occurring before the founder
generation of the simulation and thus should be seen as an
indicator for the increase of inbreeding only since the founder
generation. Since the overall selection pressure is lowest when
applying phenotypic selection, this results in by far the lowest
increase in both kinship and inbreeding. Although genetic
gains were highest in the scenario using genomic BLUP
(Scenario 5), increases in inbreeding are lower than for all
other BLUP-based scenarios, with GBLUP leading to a
reduction of the average kinship of 24.8%, 22.5% and
18.3% compared with Scenarios 2, 3 and 4 respectively.
Since GBLUP, by design, should be superior to pedigree-
based methods to distinguish between close relatives (e.g. full

sibs) and usually leads to the selection of animals from more
families (Daetwyler et al. 2007), this should not be that
surprising.

The performance of the optimum contribution selection
for selecting breeding boars highly depends on the model
parameter ‘ub.sKin’, which determines the maximum
increase in average kinship per generation and can be
interpreted as a weighting between genetic progress and
genetic diversity. Across all scenarios, results were very
similar; therefore, only Scenario 5 (GBLUP) is presented
here. Overall, there are weightings that lead to both higher
genetic gain and lower average kinship, hence being strictly
better than the plain selection of the top breeding boars. For
example, with similar genetic progress, we have a reduction in
the average kinship by 15.2%, from 0.101 (plain selection)
to 0.086 after 10 generations (Fig. 6). When restricting the
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increase in kinship to 0.005 per generation, this results in a
genetic gain of 43.3 and an average kinship of 0.091
(compared with 42.3 and 0.101 in Scenario 5). When
allowing for an extremely high increase in kinship, the
short-term genetic gain is slightly increased, but after 10
generations, resulting gains are lower as genetic diversity
has decreased heavily.

Depending on the scenario, a single simulation run took
up to 21.9 min on a single core of an Intel Xeon Gold
6154 3.00GHz CPU. Thereof, 10.6 min were used for the
generation of new animals, calculation of pedigree, single-step
and genomic relationship matrices took 1.3, 3.2 and 0.7 min,
and solving of the mixed model equations took 3.8 min. The
whole process of a single breeding value estimation for a
single trait including the calculation of the relationship matrix
for 10 000 full genotyped individuals took 30 s (or 14 and 9 s
when using 5 and 20 cores). The GPU implementation on a
RTX 2080 Ti reduced the 30 s to less than 4 s (Schlather et al.
2021). In comparison, rrBLUP (Endelman 2011), which
estimates also the variance components, would need 198 s.
For a larger number of individuals, the traditional rrBLUP
approach took ~100 times as long as the GPU-based approach
via miraculix (Table 3). Although almost negligible in our
scenarios, the computing times for solving the mixed model
scales cubically with the number of individuals. Therefore, this
is a critical bottleneck for large-scale simulation, as other
computational factors such as the generation of individuals,
scale approximately linear. The assumption of known
heritability might not be true in practice; however, it is
common practice to avoid re-estimating variance
components for every new breeding value estimation.
Especially for large-scale breeding programs, heritability
estimates should be very accurate, so that the impact on the
prediction accuracies should be only minimal.

Discussion

As expected, the use of genomic data improves the accuracy
of genomic prediction and thus leads to higher genetic gain

in the breeding program of Göttingen Minipigs. In a simulation
study, we could quantify the expected gain to be ~15%
between a pedigree-based and a fully genomic evaluation,
while reducing gains in inbreeding by 25%. Note that one of
the main breeding objectives in the Göttingen Minipig is a
uniform reaction in medical tests and, thus, high genetic
similarity among animals is actually desired, while negative
effects of inbreeding must still be avoided. This is a
particularly difficult breeding objective, as low genetic
diversity usually means high inbreeding and vice versa.

The benefits of genotyping go even further, as it allows to
validate the pedigree data and enables further downstream
analyses such as genome-wide association studies.
Furthermore, genotyping should be of even higher benefit
when estimating breeding values for non-phenotyped animals
to potentially save phenotyping costs and/or reduce the
generation interval (Schaeffer 2006). Assuming genotyping
costs of 25e per animal, the yearly costs of genotyping will
sum up to 125 000e. A breeding company needs to offset these
costs against the potential benefits. Note that MoBPS could also
answer follow-up questions and/or be used to assess more
complex genotyping strategies by using different marker
density arrays, use of (pooled) sequencing, and similar, which
were neglected here. Furthermore, we can confirm that the use of
optimal contribution selection can lead to strict improvements
over the plain selection of top breeding boars with equal
contributions and thus should be implemented in any case.

As a more general note, the present study has provided an
exemplary case on the use of stochastic simulation to evaluate
and compare breeding strategies. Without any doubt, our
simulation study is a simplification of reality, as the
underlying traits are usually much more complex, both in
terms of genetic architecture and in how they are derived
(e.g. the weight trait in the Göttingen Minipig is a weighted
combination of multiple weight measurements at different age
points;Köhnet al. 2007).As this, in the end, should still result in a
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Fig. 6. The realised average kinship versus the genetic gain after 10
generations of optimum contribution selection (line) against Scenario 5
(cross). Realisation that are both right and below the non-OGS scenario
(cross) indicate strict improvements of the breeding programs in regard to
kinship and genetic gain (red area).

Table 3. Computing time in seconds for a single breeding value
estimation, including the calculation of the genomic relationship
matrix and solving of the mixed model (as performed in Scenario 5),
depending on the number of included animals and the implementation

Number of
animals

CPU
(rrBLUP)B

CPU
(known

heritability)
1 core

CPU
(known

heritability)
5 core

CPU
(known

heritability)
20 core

GPU
(known

heritability)

1000 1.02 0.40 0.19 0.17 0.17
2000 3.52 1.46 0.44 0.28 0.36
5000 26.9 7.51 2.52 2.54 1.18
10 000 197.5 29.8 13.7 8.75 3.79
15 000 629.5 72.0 28.1 20.9 7.98
20 000 1401.5 132.7 55.0 39.0 14.6
30 000 –A 372.0 129.4 90.0 35.8

AComputations crashed when using rrBLUP with 30 000 individuals
after ~1.5 h.

BThe R-package rrBLUP (Endelman 2011) was used for the baseline
implementation. Both approaches for known heritability use the
R-package miraculix (Schlather et al. 2021).
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trait that approximately corresponds to a Gaussian distribution,
this should only have a small impact on the overall results.

In general, before setting up a simulation study, the most
important factors influencing the simulation should be
identified. The inclusion of any such factor should be well
considered, as it might unnecessarily increase the complexity
of the model. Note that many model extensions will affect
different scenarios in similar ways. Thus, the estimation of the
overall effects might be slightly off; however, the relative
differences among scenarios will typically still be accurately
estimated. As this is usually of interest in a simulation study,
we generally recommend keeping a simulation study on an
appropriate level of simplification. However, if a more
complex design is needed after all, modern simulation
software such as MoBPS provides a variety of features for
modelling, such breeding programs (Büttgen et al. 2020) in a
flexible but still highly efficient way.

The new features introduced to the MoBPS simulation
framework allow for both more realistic modelling of
common breeding actions (e.g. optimum contribution
selection, adaptable litter sizes) and trait architectures
(e.g. discretely distributed phenotypes), which, to our
knowledge, are not implemented in any other stochastic
simulation framework. Note that a variety of other features
have been added since the initial release of MoBPS (Pook et al.
2020) to handle subpopulations, calculate average offspring
performance, use different arrays for genotyping or features to
automatically avoid fullsib/halfsib matings that are not
relevant for the present study but further enhance the design
options in the MoBPS framework. In combination with the
graphical user interface (Pook et al. 2021), the variety of pre-
implemented methods allows the simple use of the MoBPS
framework not only for research but also for users without
scripting experience, in industry, or to assist teaching of
breeding program design. At the same time, the flexibility
and modular structure allows researchers to assess new and
experimental methodology, such as new selection techniques
or a new breeding value estimation approach. MoBPS then
only takes care of the background processes (e.g. meiosis,
trait simulation, data storage) and enables the simulation of an
even wider range of breeding programs. Additionally, the high
computation efficiency of MoBPS in regard to both highly
efficient storage (Pook et al. 2020) and faster computing than
with other simulators enables the efficient simulation of a high
number of runs of various scenarios.

Just a single simulation run for each considered scenario
will usually not be enough to detect differences between
designs unless they are of large effect. In contrast to real-
world breeding programs, it is, however, possible to repeat
simulations without requiring a large amount of time or
financial effort (besides extended computational needs).
Furthermore, external factors that potentially affect the
outcome do not need to be controlled. This enables the
extended statistical analysis of minor changes of a
breeding scheme. In contrast to most deterministic
simulations (Täubert et al. 2010) or analyses based on
quantitative genetics and selection theory (Falconer and
Mackay 1996), the use of stochastic simulation further
allows for the estimation of the variability of the outcome.

Variability can be accounted for by the calculation of
confidence intervals, but also the direct analysis of
individual simulations to make sure a certain breeding
target is reached with a given probability. In particular, for
large-scale breeding programs, mimicking all computational
steps performed in practice for each generation in each run of
each scenario computationally can be very costly, thus
highlighting the need for both simplifications and highly
efficient software. For the breeding value estimation, we
recommend the use of known heritabilities, as resulting
prediction accuracies are only mildly affected and variance
components are at least approximately known (and in many
practical breeding programs are not even estimated in each
cycle either). As computing time of the breeding value
estimation scales cubically, further simplifications, such as
the use of approximate algorithms, such asthe algorithm for
proven and young (Misztal 2016), or the down-scaling of
cohort sizes, might be considered.

Data availability

The script used to perform the simulations can be found at
https://github.com/tpook92/MoBPS/tree/master/Exemplary_
scripts. Genomic data used in the simulations is available on
reasonable request to the corresponding author (Torsten.
pook@uni-goettingen.de).
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