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ABSTRACT

Context. Cow survival is an important trait for dairy farm profitability and animal welfare, yet it is
difficult to improve because of its complexity arising, in part, fromvaried reasons for culling and delay in
getting actual culling data, which leads to low accuracy and instability of genetic predictions. Aims. To
explore the benefits of partitioning the cow survival trait into ‘early survival’ (survival coded as a binary
trait from the first to the second lactation) and ‘late survival’ (survival from the second to later lactations)
on genetic predictions in addition to predictors of culling decisions. Methods. The raw phenotypic
survival records for 1 619 542Holstein and 331 996 Jersey cowswere used in our study. All cowswithin
each herd were allocated to either a reference or validation set. The accuracy and stability of genetic
predictions were compared across lactations in the validation set. Further, we estimated the phenotypic
and genetic correlation between overall, early or late cow survival and production, type, workability, and
fertility traits using bivariate siremodels.Keyresults. The heritability of overall survival in Jerseys (0.069
± 0.003) was higher than in Holsteins (0.044 ± 0.001). The heritability of early survival was higher than
that of late survival in Holstein (0.039 ± 0.002 vs 0.036 ± 0.001) and Jersey (0.080 ± 0.006 vs 0.053 ± 
0.003). The genetic correlation between early and late survival was high in both breeds (0.770± 0.017 in
Holstein and 0.772 ± 0.028 in Jersey). Adding survival information up to the sixth lactation had a large
effect on genetic predictions of overall and late survival, whereas the predictions of early survival
remained the same across lactations. Milk and protein yields, somatic cell score, fertility and tempera-
mentwere highly correlatedwith early survival inHolstein and Jersey.However, the genetic correlations
between production, type or workability traits and late survival were generally weaker than those and
early survival. Conclusions. Early and late survival should be considered as different traits in genetic
evaluations, because they are associated with different culling decisions. Implications. Partitioning cow
survival into early and late survival and analysing them as two correlated traits could improve the accuracy
and the stability of estimated breeding values compared with analysing overall survival as a single trait.

Keywords: calving interval, cow survival rate, longevity, milk traits, prediction accuracy, prediction
stability, type traits, workability traits.

Introduction

In addition to welfare and direct economic benefits, improving longevity or cow survival 
reduces replacement costs, medicine and treatment expenses (veterinary costs) and 
methane emissions (Sewalem et al. 2006; Pritchard et al. 2013; Zhang et al. 2019). 
Although survival has a high relative weight or percentage emphasis (~8%) in Australia’s 
national selection index, namely, the balanced performance index (BPI), this weight was 
almost doubled (~13%) in the sustainability index (SI) launched nationally in Australia 
in 2022 (DataGene 2022a). The aim of the SI is to reduce methane emission intensity, 
which is achieved through increasing the relative emphasis on feed saved and survival 
traits compared with BPI (Pryce et al. 2015; Richardson et al. 2022). 

Longevity in dairy cows is often defined as productive life (number of days the cows are 
in milk in their whole life or up to 84 months of age) or number of completed lactations 
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(Hu et al. 2021). The latter definition for cow survival seems 
to be more suitable for countries with predominantly seasonal 
pasture-based dairy production system because the exact cow 
exit time from herds and the underlying culling reason are 
often not recorded precisely. Consequently, calving events 
are used to identify completed lactations, more specifically 
survival up to the nine calving events is used in genetic 
evaluations in Australia (Madgwick and Goddard 1989). 

The reasons for culling a cow from the first to the second 
lactation are often different from the factors influencing 
survival of cows in later lactations. Further, the economic 
benefits of improving survival rate is highest in the first 
lactation (Holtsmark et al. 2009). We anticipated that culling 
reasons in the first lactation could be associated with milk 
production (voluntary culling) and workability traits. 
Whereas in later lactations, poor fertility and high somatic cell 
score could be the major underlying reason for removing cows 
from herds (involuntary culling; Workie et al. 2021). 

Actual cow survival cannot be recorded before the end of 
productive life. Survival can also be considered as success or 
failure of a cow to reach a certain age or life event such as 
calving. These binary codes associated with different numbers 
of calving events could be analysed as a single or correlated 
traits using linear or threshold models (Holtsmark et al. 
2009). Yet, for the first successful survival binary score, cows 
need to have two calving events. Therefore, predictor traits are 
often used in many countries, such as conformation traits 
that are used either to predict cow survival indirectly, or improve 
the accuracy of genetic predictions (Forabosco et al. 2009; 
Khansefid et al. 2021). It is reasonable to take censored survival 
data into account, especially for young cows, by using appropriate 
methods, such as proportional-hazards models (Forabosco et al. 
2009; Sasaki 2013). Considering censored data in a multi-trait 
model with binary survival codes and predictor traits has been 
reported to have no or limited benefits, and could increase the 
complexity of the model significantly (Holtsmark et al. 2009). 

In the present study, we analysed the binary cow survival 
codes in Holstein and Jersey to (1) explore the cow survival 
rate across lactations, (2) estimate the genetic correlation 
between ‘early survival’ (survival from the first to the second 
lactation) and ‘late survival’ (survival from the second to the 
eighth lactation), (3) estimate the phenotypic and genetic 
correlations between overall, early or late survival and 
production, conformation, workability and fertility traits, and 
(4) estimate the accuracy, bias and stability of genetic
predictions for overall, early and late survival across lactations. 

Materials and methods

Data

We used the data provided by DataGene Pty Ltd (Melbourne, 
Australia) and Holstein Australia (Melbourne, Australia) in 
our study. Pure Holstein and Jersey cows were identified 

according to DataGene four-character breed codes. Cows 
were excluded from the analyses where their sires were 
unknown, or they belonged to a contemporary group (herd– 
year–season) in their first calving with fewer than five cows. 
The final dataset contained raw survival data for 1 619 542 
Holstein cows (5 174 127 records) and 331 996 Jersey cows 
(1 150 690 records). The year of first calving for almost all 
these cows was between 1980 and 2020. The cow survival 
records (1 = survived to the next lactation, 0 = failed to 
survive to the next lactation) consisted of survival records 
up to the eighth lactation. 

By using the above data, first, we calculated the stayability of 
the cows across nine calving  events  (i.e. eight  lactations),  as  well  
as average herdlife, average number of lactations and replace-
ment rate in Holstein and Jersey cows (Table 1). We defined 
stayability as the probability of cows surviving to a specific 
number of calvings. We partitioned survival or ‘overall survival’ 
to ‘early survival’ (survival from the first to the second lactation) 
and ‘late survival’ (survival from the second to later lactations), 
because the traits associated with culling decisions could be 
different in the first and subsequent lactations. 

For the cows that had survival data, we extracted their first-
lactation production (12 traits), conformation (25 linear- and 
5 composite-type traits), body condition score (BCS), workability 

Table 1. Stayabilty or probability a cow remains in the herd up to the
9th calving in Holstein and Jersey.

Calving Holstein Jersey
number Number Stayability Number Stayability

of records (%) of records (%)

1 1 619 542 100.00 331 996 100.00

2 1 619 542 80.43 331 996 82.49

3 1 156 487 64.60 253 208 66.60

4 823 818 51.64 188 843 53.19

5 588 877 40.06 139 381 40.94

6 411 342 29.69 99 339 29.89

7 277 699 21.13 67 637 20.56

8 181 326 14.39 43 494 13.46

9 115 036 9.53 26 792 8.45

Average 4.11 4.16
herdlifeA

Average 3.37 3.34
lactation
numberB

Replacement 24.30 24.06
rate (%)C
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(3 traits), and fertility (first calving interval) records from the 
DataGene Database (DataGene 2022b). 

The predicted ‘305-day’ milk, fat, protein and lactose yields 
were obtained from DataGene. Additionally, the adjusted test-
day deviation records (‘Test-day’) were predicted using 
ASReml (Gilmour et al. 2022). The ‘Test-day’ record for each 
cow (i.e. effect of Cowl) was calculated as follows: 

yijklm = μ + Herdi:TestDatej + Monthk + polðDIM,8Þ 
+ polðAge,2Þ + Cowl + eijklm,

where, yijklm is the test-day record (milk, fat, protein, lactose 
yields and percentages or somatic cell score) in the first 
lactation; μ is the effect of overall mean; Herdi.TestDatej is 
the effect of the ith herd at the jth test date; Monthk is the 
effect of the kth calving month; pol(DIM,8) and pol(Age,2) 
are the regression coefficients of legendre polynomials of 
order 1–8 for days in milk (DIM) and of order 1–2 for age 
at calving in months; Cowl ~ N(0, Iσ2c) and eijklm ~ N(0, Iσ2e) 
are the random effect of the lth cow and the random residual 
term respectively. 

The pedigree information was also provided by DataGene 
and used to perform genetic analyses. Using ASReml (Gilmour 
et al. 2022), we pruned the pedigree and extracted breed-
specific pedigree files that contained the relatives of the 
cows with survival records back to 20 and 19 generations 
in Holstein and Jersey respectively. 

Heritability of cow survival

The variance components and heritability (h2) of overall, 
early and late survival in Holstein and Jersey were 
estimated by univariate sire models by using ASReml 
(Gilmour et al. 2022), as follows: 

y = Xb + Zu + e, 

where, y is the vector of cow survival data (for Lactation 1–8 
in overall survival, for Lactation 1 in early survival, and for 
Lactation 2–8 in late lactation); b is the vector of fixed 
effects (mean and herd–year–season, as well as parity number 
for overall and late survival); u ~ N(0, Aσ2u) contains the 
predicted transmitting abilities (PTAs) of sires and A is the 
numerator relationship matrix; e ~ N(0, Iσ2e) contains 
random residual effects and I is the identity matrix; X and Z 
are design matrices relating the phenotypes to the fixed and 
random effects respectively. 

Genetic correlation between early and late
survival

Using ASReml (Gilmour et al. 2022), we estimated genetic 
correlation between early and late survival within Holstein 
and Jersey, by a bivariate sire model, as follows: 

Accuracy and stability of genetic predictions for
cow survival

The cow survival dataset was divided into two groups with 
almost the same number of cows. Based on the herds the 
cows calved for the first time, cows within the same herds 
were all allocated to either the first group (reference set), 
or the second group (validation set). We explored the effect 
of including survival records up to different number of 
lactations in the reference set on the genetic predictions for 
overall, early and late survival in the validation set. To have 
a fair comparison between predictions in different models, we 
used the variance components estimated when survival 
records for all lactations were included in the model. Further, 
to reduce the runtime, especially for the larger analyses 
(Holstein bivariate models), we ran animal models by solving 
the mixed-model equations with preconditioned conjugate 
gradient (PCG) method (Tsuruta et al. 2001) implemented 
in ASReml (Gilmour et al. 2022). 

We calculated the accuracy and bias of estimated breeding 
values (EBVs) for the cows in the validation set and their sires. 
The accuracy of EBVs was calculated according to the reduc-
tion in error sum of squares (or alternatively error variance) 
due to fitting cow or sire EBVs in the model. 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
SSEM1 − SSEM2Accuracy = 

SSEM2

where, SSEM1 and SSEM2 are the error sum of squares for 
Models M1 and M2 respectively. M1 contains the fixed effects 
as well as linear effect of EBVs and is used to regress the 
survival phenotypes (overall, early or late survival) on EBVs 
of either cows in the validation set or their sires, whereas 
M2 contains only the fixed effects. M2 is the model often 
used to adjust phenotypes for the fixed effects. Therefore, the 
calculated prediction accuracy in this formula is in fact the 
correlation coefficient between survival EBVs and phenotypes 
adjusted for fixed effects. 

1033

where, y1 and y2 contain the early and late survival records
respectively; b fi ff1, u1 and e1 are the vectors of xed e ects
(mean and herd–year–season), PTAs of sires and residual effects
for early survival respectively; b2, u2 and e2 are the vectors of
fixed effects (mean, herd–year–season and parity number),
PTAs of sires and residual effects for late survival respectively;
and X , ff1 Z1, X2 and Z2 are design matrices. The genetic e ects� �� �� �� �

Aσ2 Awere driven from ~ N 0, u1 σu1,2 . As a cowAσ 2
u2,1 Aσu2

needs to survive to the second lactation to have a late survival
record, the random residual covariance between early and late
survival was set to zero. Therefore, the residual effects were�� ��� ���

Iσ2e1 0driven from ~ N 0, 0 σ2
.I e2

� �� � � �� �� �� � � �� �� �� � �� ��
y1 X

= 1 0 b1 Z
+ 1 0 u1 e

+ 1 ,y2 0 X2 b2 0 Z2 u2 e2

www.publish.csiro.au/an


M. Khansefid et al. Animal Production Science

The prediction bias was defined as the regression coeffi-
cient of phenotypes on EBVs (bSurvival,EBV) in M1. Consequently, 
when cow survival phenotypes were regressed on their own 
EBVs and their sires EBVs, bSurvival,EBV should be close to 1 
and 0.5 respectively. 

Correlation between overall, early and late
survival and other traits

Using a univariate sire model, we estimated the variance 
components and h2 for first-lactation milk production, milk 
components and somatic cell score (305-day and Test-day), 
conformation traits, BCS, workability traits, and first calving 
interval in Holstein and Jersey. The model was like the 
univariate sire model used to estimate h2 for survival. 
However, the fixed effects in the model were different and 
included the overall mean for all traits; herd–year–season, 
month of calving, age at calving for calving interval and 
305-day milk traits; herd–year–season for test-day milk traits; 
and herd–year–classifier, age and DIM at classification date 
for BCS, conformation and workability traits. 

Using the variance components from the univariate models 
as starting values, we ran bivariate sire models to calculate the 
phenotypic and genetic correlations between overall, early 
or late survival and the traits measured in first lactation, 
described in the previous paragraph. We estimated residual 
covariance between survival and all traits except for the 
calving interval between first and second calving, which 
was set to zero, because of the necessity to survive to the 
second calving to have a calving-interval record. Hence, we 
reported only the genetic correlation between survival and 
first calving interval. 

Results

Cow survival

The cow survival rate of Australian cows in herds is shown in 
Table 1. The survival of Holstein and Jersey cows across 
lactations was very similar to each other during 1980– 
2020. However, in the first few lactations, the survival rate 
of Jersey cows was slightly higher than that of Holstein cows. 
In both breeds, the proportion of cows surviving to the next 
lactation declined with age. For instance, about 80% of 
Holstein cows survived from the first to second lactation, but 
this rate was reduced to 65% in the eighth lactation. 
Consequently, only 9.53% and 8.45% of Holstein and 
Jersey cows had more than nine calvings respectively (i.e. 
eight or more completed lactations). As a result of reduction 
in survival rate by age, the average number of lactations of 
cows in herds was less than average herdlife. 

The estimated h2 for overall, early and late survival as well 
as genetic correlation between early and late survival are 
shown in Table 2. The h2 ± s.e. of overall survival in Jersey 

Table 2. Summary statistics and the estimated heritability (h2) for
overall, early and late survival as well as genetic correlation (rg)
between early and late survival in Holstein and Jersey.

Breed Overall Early Late
survival survival survival

Holstein

Number of records 5 174 127 1 619 542 3 554 585

Number of cows 1 619 542 1 619 542 1 156 487

Number of sires 23 535 23 535 22 653

Phenotypic varianceA 0.151 ± 0.000 0.135 ± 0.000 0.155 ± 0.000
Ah2 ± s.e. 0.044 ± 0.001 0.039 ± 0.002 0.036 ± 0.001
Brg ± s.e. 0.770 ± 0.017

Jersey

Number of records 1 150 690 331 996 818 694

Number of cows 331 996 331 996 253 208

Number of sires 8252 8252 8000

Phenotypic varianceA 0.153 ± 0.000 0.127 ± 0.000 0.162 ± 0.000
Ah2 ± s.e. 0.069 ± 0.003 0.080 ± 0.006 0.053 ± 0.003
Brg ± s.e. 0.772 ± 0.028

AEstimated using univariate sire models.
BEstimated using bivariate sire models.

(0.069 ± 0.003) was higher than that in Holstein (0.044 ± 
0.001). The h2 of early survival was higher than that of late 
survival in Holstein (0.039 ± 0.002 vs 0.036 ± 0.001), and 
in Jersey (0.080 ± 0.006 vs 0.053 ± 0.003). The genetic 
correlation between early and late survival was high in 
Holstein (0.770 ± 0.017) and Jersey (0.772 ± 0.028). 

Accuracy, bias and stability of genetic predictions
for cow survival

Prediction accuracy and bias of EBVs for overall, early and late 
survival are shown for Holstein sires and cows in Figs 1, 2, and 
for Jersey sires and cows in Figs 3, 4, respectively. The overall, 
early and late survival phenotypes of the cows in the 
validation set were regressed on their own EBVs, or on EBV 
of their sires for overall, early and late survival. In these 
figures, the columns are highlighted with red lines where 
the phenotypes and the EBVs are associated with the same 
trait (e.g. survival phenotypes and EBVs are for early 
survival). Although the early survival phenotypes remained 
the same across lactations, the bivariate models used to 
estimate EBVs for early and late survival could include different 
number of lactations for late survival. Further, using genetic 
correlation between early and late survival in bivariate 
models, we could estimate late survival EBVs when we only 
had survival phenotypes for the first lactation. 

The accuracy of EBVs was generally low in both Holsteins 
and Jerseys. However, the highest accuracy and lowest bias of 
predictions were achieved when the phenotypes and the EBVs 
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Fig. 2. Prediction accuracy (correlation coefficient between their own survival phenotypes and EBVs), and prediction bias (regression
coefficient of their own survival phenotypes on their sires EBVs) of Holstein cows in the validation set.

1035

0.
03

8
0.

03
8

0.
03

8

0.
04

3
0.

04
0

0.
04

2

0.
04

7
0.

04
1

0.
04

6

0.
05

0
0.

04
2

0.
04

9

0.
05

1
0.

04
3

0.
05

0

0.
05

2
0.

04
4

0.
05

1

0.
05

2
0.

04
4

0.
05

1

0.
05

2
0.

04
4

0.
05

1

0.
04

4
0.

04
4

0.
04

4

0.
04

4
0.

04
5

0.
03

9

0.
04

3
0.

04
5

0.
03

8

0.
04

1
0.

04
5

0.
03

7

0.
04

0
0.

04
6

0.
03

5

0.
03

9
0.

04
6

0.
03

4

0.
03

9
0.

04
5

0.
03

4

0.
03

9
0.

04
6

0.
03

3

0.
03

3
0.

03
3

0.
03

3

0.
03

9
0.

03
5

0.
04

1

0.
04

5
0.

03
7 0.
04

6

0.
04

8
0.

03
8 0.

05
0

0.
05

0
0.

03
9 0.

05
1

0.
05

1
0.

03
9 0.

05
2

0.
05

1
0.

04
0 0.

05
3

0.
05

2
0.

04
0 0.

05
3

0.
37

9
0.

38
4 0.

48
9

0.
42

5
0.

39
9

0.
42

4

0.
45

3
0.

41
0

0.
45

2

0.
45

5
0.

41
6

0.
45

1

0.
44

8
0.

42
1

0.
43

8

0.
44

1
0.

42
4

0.
42

9

0.
43

7
0.

42
6

0.
42

4

0.
43

8
0.

42
7

0.
42

3

0.
42

7
0.

43
4 0.

55
1

0.
42

7
0.

44
1

0.
39

2

0.
40

5
0.

44
0

0.
36

8

0.
37

6
0.

43
8

0.
33

8

0.
35

1
0.

43
6

0.
31

0

0.
33

5 0.
43

4
0.

29
4

0.
32

5 0.
43

3
0.

28
4

0.
32

4 0.
43

4
0.

28
2

0.
33

8
0.

34
3 0.

43
6

0.
39

9
0.

36
1

0.
42

1

0.
44

2
0.

37
6 0.
46

6

0.
45

2
0.

38
5 0.
47

2

0.
45

0
0.

39
1

0.
46

2

0.
44

5
0.

39
3

0.
45

3

0.
44

3
0.

39
6

0.
44

9

0.
44

5
0.

39
8

0.
45

0

Late survival
Correlation coefficient

Late survival
Regression coefficient

Early survival
Correlation coefficient

Early survival
Regression coefficient

Survival
Correlation coefficient

Survival
Regression coefficient

1
1−

2
1−

3
1−

4
1−

5
1−

6
1−

7
1−

8 1
1−

2
1−

3
1−

4
1−

5
1−

6
1−

7
1−

8

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.2

0.4

0.0

0.1

0.2

0.3

0.4

0.00

0.01

0.02

0.03

0.04

0.05

0.00

0.01

0.02

0.03

0.04

0.00

0.02

0.04

Lactations used to calculate EBVs

Model Univariate (survival)    Bivariate (early survival)    Bivariate (late survival)    

Fig. 1. Prediction accuracy (correlation coefficient between daughters’ survival phenotypes and their sires EBVs), and prediction bias
(regression coefficient of daughters’ survival phenotypes on their sires EBVs) of Holstein sires in the validation set.

0.
04

0
0.

04
0

0.
04

0

0.
04

5
0.

04
2

0.
04

4

0.
05

0
0.

04
3

0.
04

9

0.
05

3
0.

04
5

0.
05

2

0.
05

5
0.

04
5

0.
05

4

0.
05

6
0.

04
6

0.
05

5

0.
05

6
0.

04
6

0.
05

5

0.
05

6
0.

04
7

0.
05

5

0.
04

8
0.

04
8

0.
04

8

0.
04

9
0.

05
0

0.
04

5

0.
04

8
0.

05
0

0.
04

3

0.
04

7
0.

05
0

0.
04

2

0.
04

6
0.

05
0

0.
04

1

0.
04

5
0.

05
0

0.
04

0

0.
04

4
0.

05
0

0.
03

9

0.
04

4
0.

05
0

0.
03

9

0.
03

4
0.

03
4

0.
03

4

0.
04

1
0.

03
6

0.
04

3

0.
04

7
0.

03
8 0.
04

9

0.
05

1
0.

04
0 0.

05
3

0.
05

3
0.

04
0 0.

05
5

0.
05

4
0.

04
1 0.

05
6

0.
05

5
0.

04
1 0.

05
7

0.
05

5
0.

04
2 0.

05
7

0.
72

5
0.

73
4 0.

93
6

0.
81

5
0.

76
6

0.
82

3

0.
87

4
0.

78
8

0.
88

1

0.
87

9
0.

80
3

0.
88

2

0.
86

5
0.

81
4

0.
85

8

0.
85

0
0.

82
0

0.
84

0

0.
84

2
0.

82
4

0.
83

1

0.
84

6
0.

82
8

0.
83

0

0.
84

6
0.

85
8 1.

09
2

0.
85

1
0.

87
3

0.
80

1

0.
81

6
0.

87
4

0.
75

6

0.
76

0
0.

87
0

0.
69

9

0.
70

8
0.

86
6

0.
64

3

0.
67

4 0.
86

2
0.

60
8

0.
65

3 0.
85

9
0.

58
6

0.
64

9 0.
86

0
0.

58
0

0.
63

7
0.

64
6 0.
82

2

0.
76

0
0.

68
5

0.
81

2

0.
84

8
0.

71
4 0.

90
4

0.
87

0
0.

73
4 0.

91
9

0.
86

7
0.

74
7 0.
90

1

0.
85

7
0.

75
4

0.
88

5

0.
85

3
0.

76
0

0.
87

9

0.
86

0
0.

76
5

0.
88

2

Late survival
Correlation coefficient

Late survival
Regression coefficient

Early survival
Correlation coefficient

Early survival
Regression coefficient

Survival
Correlation coefficient

Survival
Regression coefficient

1
1−

2
1−

3
1−

4
1−

5
1−

6
1−

7
1−

8 1
1−

2
1−

3
1−

4
1−

5
1−

6
1−

7
1−

8

0.00

0.25

0.50

0.75

0.0

0.3

0.6

0.9

0.00

0.25

0.50

0.75

0.00

0.02

0.04

0.00

0.01

0.02

0.03

0.04

0.05

0.00

0.02

0.04

Lactations used to calculate EBVs

Model Univariate (survival)    Bivariate (early survival)    Bivariate (late survival)    

www.publish.csiro.au/an


Fig. 4. Prediction accuracy (correlation coefficient between their own survival phenotypes and EBVs), and prediction bias (regression
coefficient of their own survival phenotypes on their sires EBVs) of Jersey cows in the validation set.
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Fig. 3. Prediction accuracy (correlation coefficient between daughters’ survival phenotypes and their sires EBVs), and prediction bias
(regression coefficient of daughters’ survival phenotypes on their sires EBVs) of Jersey sires in the validation set.
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were associated with the same trait. As we expected, early 
survival was the most stable prediction across lactations 
(i.e. the accuracy and bias of EBVs did not change by 
adding survival records of subsequent lactations to the 
prediction model). For overall survival and late survival, 
the genetic predictions became stable after the sixth lactation. 

Correlation between cow survival and other
traits

The h2 of some commonly recorded phenotypes and their 
phenotypic and genetic correlations with overall, early and 
late survival are shown in Table 3 for Holstein and in Table 4 
for Jersey. Generally, the phenotypic correlations between 
cow survival and other traits were lower than the genetic 
correlations. 

The genetic correlations between milk production traits in 
the first lactation and early survival were higher than their 
correlation with late survival. In Holsteins, overall and early 
survival were highly correlated with 305-day milk production 
traits. However, there was a weak correlation between late 
survival and 305-day milk traits, and also survival and test-
day milk traits. In Jerseys, there was a high genetic correlation 
between overall, early or late survival and milk production 
traits. In Holstein 305-day protein yield (0.45 ± 0.02) and 
in Jersey 305-day protein and fat yields (both 0.71 ± 0.03) 
had the highest genetic correlation with overall survival. 
The genetic correlation between somatic cell count and late 
survival was stronger than that with early survival in Holstein 
(−0.39 ± 0.03 vs −0.26 ± 0.03) and Jersey (−0.30 ± 0.06 vs 
−0.18 ± 0.06). 

The genetic correlation between conformation traits and 
survival were often low in Holstein. In Jersey, the correlations 
were higher but were associated with large standard errors. 
However, pin set had low to moderate genetic correlation 
with overall survival in Holstein (0.17 ± 0.02) and Jersey 
(0.35 ± 0.07). Body depth (−0.31 ± 0.03), angularity 
(−0.19 ± 0.03) and udder depth (0.31 ± 0.02) in Holstein, 
and angularity (0.46 ± 0.07) and the type traits associated 
with body size (stature and body length) or milk production 
such as udder depth (0.22 ± 0.08) in Jersey, were genetically 
correlated with overall survival. There was a positive genetic 
correlation between survival and overall type, as well as 
composite mammary system in Holstein and Jersey. 

The genetic correlation between workability traits and 
survival was strong in Holstein and Jersey. The correlations 
between workability traits and early survival were stronger 
than those between workability traits and late survival. 
Likeability had the highest correlation with early survival in 
Holstein (−0.48 ± 0.03) and Jersey (−0.72 ± 0.04). The most 
and least desirable cows by farmers were scored one and five 
for likeability respectively. Similarly, low scores are associated 
with placid temperament and very fast milking speed. Hence, 
we expected negative correlation between workability traits 
and cow survival. 

Fertility (first calving interval) was highly correlated with 
early, late and overall survival in Holstein and Jersey. The 
genetic correlation between early survival and fertility was 
much higher in Holstein (−0.61 ± 0.04) than in Jersey 
(−0.27 ± 0.11). 

Discussion

Survival of a cow depends on its ability to live (avoid death) 
and perform well (avoid being culled). Cow survival rate 
gradually declined with lactation number in both Holstein 
and Jersey. This is in line with previously reported cow 
survival rates in the USA (Nieuwhof et al. 1989), New 
Zealand (Harris 1989), and Norway (Holtsmark et al. 2009) 
and highlighted the importance of including the effect of 
parity in genetic evaluations for survival. The average 
number of lactations for cows remaining in the herd was 
~4.1 in our study. This is still high despite the reduction in 
number of dairy cows in Australia, especially since 2000 
(DataGene 2022c). 

The h2 of early survival was larger than that of late survival. 
This could be due to higher h2 of the traits underlying culling 
decisions in early survival (milk production traits and 
likeability) than in late survival (fertility and somatic cell 
score). The h2 estimates for overall, early and late survival 
were very similar to the reported h2 for cow survival in 
Australian Holsteins by Haile-Mariam et al. (2003) (0.02) 
and Haile-Mariam and Pryce (2015) (0.03–0.07). Generally, 
the h2 estimates for survival analysed as binary scores with 
a linear model were low in different breeds and across 
different countries (Sasaki 2013). However, the relative 
emphasis of survival is large in BPI (Byrne et al. 2016) and 
is almost doubled in the SI due to its relationship with 
lowering methane emissions (Richardson et al. 2022). 
Hence, improving the accuracy of genetic predictions could 
lead to greater genetic gain for survival, which has a large 
economic as well as environmental impact. 

Holtsmark et al. (2009) reported the genetic correlation 
between survival in the first and second (0.85 ± 0.02), 
second and third (0.93 ± 0.02), and first and third (0.66 ± 
0.03) lactations. They concluded that survival in the first 
lactation could be considered as a different trait from 
survival in later lactations. In our study, the lowest genetic 
correlation was observed between survival in the first and 
survival in the second lactation. However, we reported the 
genetic correlation only between survival in the first lacta-
tion (i.e. early survival) and survival in the later lactations 
(i.e. late survival) in our paper. The genetic correlation 
between early and late survival was high, but lower than one. 
Therefore, a multi-trait model could be a suitable method for 
analysing these two correlated traits. 

In the present study, there was a strong positive correlation 
between early survival and milk production traits, and there 

1037

https://0.03�0.07
www.publish.csiro.au/an


M. Khansefid et al. Animal Production Science

Table 3. The estimated heritability (h2) and the genetic (rg) and phenotypic (rp) correlations between overall, early or late survival and production,
type, workability, and fertility traits in Holstein.

Trait Number Ah2 ± s.e. Overall survival Early survival Late survival
of records Brp ± s.e. Brg ± s.e. Brp ± s.e. Brg ± s.e. Brp ± s.e. Brg ± s.e.

Production traitsC

Milk yield (305-day) 810 904 0.21 ± 0.01 0.43 ± 0.00 0.33 ± 0.02 0.41 ± 0.00 0.36 ± 0.03 0.04 ± 0.00 −0.06 ± 0.03

Fat yield (305-day) 810 867 0.20 ± 0.01 0.43 ± 0.00 0.36 ± 0.02 0.41 ± 0.00 0.32 ± 0.03 0.05 ± 0.00 −0.02 ± 0.03

Protein yield (305-day) 810 892 0.18 ± 0.01 0.45 ± 0.00 0.45 ± 0.02 0.43 ± 0.00 0.45 ± 0.03 0.05 ± 0.00 0.00 ± 0.03

Lactose yield (305-day) 228 080 0.20 ± 0.01 0.44 ± 0.00 0.33 ± 0.04 0.43 ± 0.00 0.33 ± 0.04 0.05 ± 0.00 −0.04 ± 0.05

Milk yield (test-day) 874 451 0.25 ± 0.01 0.17 ± 0.00 0.06 ± 0.02 0.16 ± 0.00 0.13 ± 0.03 0.04 ± 0.00 −0.09 ± 0.03

Fat yield (test-day) 874 451 0.24 ± 0.01 0.14 ± 0.00 0.06 ± 0.02 0.13 ± 0.00 0.06 ± 0.03 0.04 ± 0.00 −0.07 ± 0.03

Protein yield (test-day) 874 449 0.22 ± 0.01 0.18 ± 0.00 0.13 ± 0.02 0.17 ± 0.00 0.20 ± 0.03 0.05 ± 0.00 −0.04 ± 0.03

Lactose yield (test-day) 242 989 0.24 ± 0.01 0.16 ± 0.00 0.02 ± 0.03 0.16 ± 0.00 0.08 ± 0.04 0.05 ± 0.00 −0.07 ± 0.04

Fat % (test-day) 874 451 0.49 ± 0.01 −0.02 ± 0.00 0.01 ± 0.02 −0.02 ± 0.00 −0.05 ± 0.03 0.00 ± 0.00 0.02 ± 0.02

Protein % (test-day) 874 449 0.52 ± 0.01 0.01 ± 0.00 0.11 ± 0.02 0.01 ± 0.00 0.07 ± 0.03 0.01 ± 0.00 0.10 ± 0.02

Lactose % (test-day) 242 989 0.46 ± 0.01 0.08 ± 0.00 0.18 ± 0.03 0.07 ± 0.00 0.16 ± 0.04 0.03 ± 0.00 0.13 ± 0.04

Somatic cell score (test-day) 874 117 0.15 ± 0.00 −0.11 ± 0.00 −0.39 ± 0.02 −0.10 ± 0.00 −0.26 ± 0.03 −0.05 ± 0.00 −0.39 ± 0.03

Type traits

Foot angle 424 574 0.14 ± 0.01 0.01 ± 0.00 0.03 ± 0.03 0.00 ± 0.00 −0.09 ± 0.04 0.00 ± 0.00 0.05 ± 0.04

Heel depth 154 274 0.10 ± 0.01 0.01 ± 0.00 −0.04 ± 0.06 0.01 ± 0.00 −0.13 ± 0.07 0.01 ± 0.00 0.00 ± 0.07

Rear legs – rear view 269 327 0.08 ± 0.01 0.04 ± 0.00 0.10 ± 0.05 0.03 ± 0.00 −0.03 ± 0.06 0.02 ± 0.00 0.09 ± 0.06

Rear legs – side view 543 842 0.13 ± 0.01 −0.01 ± 0.00 −0.02 ± 0.03 −0.01 ± 0.00 0.04 ± 0.04 0.00 ± 0.00 −0.03 ± 0.04

Bone quality 545 565 0.24 ± 0.01 0.00 ± 0.00 −0.01 ± 0.03 0.00 ± 0.00 −0.02 ± 0.03 0.00 ± 0.00 −0.02 ± 0.03

Pin set 543 843 0.30 ± 0.01 0.02 ± 0.00 0.17 ± 0.02 0.02 ± 0.00 0.19 ± 0.03 0.02 ± 0.00 0.16 ± 0.03

Pin width 545 543 0.27 ± 0.01 0.02 ± 0.00 −0.02 ± 0.03 0.01 ± 0.00 −0.08 ± 0.03 0.00 ± 0.00 −0.07 ± 0.03

Rump length 312 532 0.23 ± 0.01 0.04 ± 0.00 0.07 ± 0.03 0.04 ± 0.00 0.06 ± 0.04 0.02 ± 0.00 0.00 ± 0.04

Loin strength 284 674 0.15 ± 0.01 0.02 ± 0.00 −0.06 ± 0.04 0.02 ± 0.00 0.04 ± 0.05 0.00 ± 0.00 −0.10 ± 0.04

Stature 545 559 0.40 ± 0.01 0.03 ± 0.00 −0.01 ± 0.02 0.02 ± 0.00 −0.08 ± 0.03 0.00 ± 0.00 −0.04 ± 0.03

Muzzle width 545 530 0.20 ± 0.01 0.02 ± 0.00 −0.09 ± 0.03 0.02 ± 0.00 −0.14 ± 0.03 0.00 ± 0.00 −0.09 ± 0.03

Chest width 545 562 0.20 ± 0.01 0.03 ± 0.00 −0.01 ± 0.03 0.03 ± 0.00 0.02 ± 0.04 0.00 ± 0.00 −0.07 ± 0.03

Body depth 422 841 0.30 ± 0.01 0.01 ± 0.00 −0.31 ± 0.03 0.01 ± 0.00 −0.27 ± 0.03 −0.03 ± 0.00 −0.35 ± 0.03

Angularity 545 561 0.21 ± 0.01 0.00 ± 0.00 −0.19 ± 0.03 0.00 ± 0.00 −0.20 ± 0.03 0.00 ± 0.00 −0.20 ± 0.03

Body length 312 539 0.26 ± 0.01 0.04 ± 0.00 0.05 ± 0.03 0.04 ± 0.00 −0.03 ± 0.04 0.02 ± 0.00 0.01 ± 0.04

Udder depth 424 560 0.35 ± 0.01 0.02 ± 0.00 0.31 ± 0.02 0.01 ± 0.00 0.14 ± 0.03 0.04 ± 0.00 0.33 ± 0.03

Udder texture 545 535 0.16 ± 0.01 0.04 ± 0.00 −0.08 ± 0.03 0.03 ± 0.00 −0.05 ± 0.04 0.01 ± 0.00 −0.13 ± 0.04

Median suspensory 545 563 0.18 ± 0.01 0.05 ± 0.00 0.06 ± 0.03 0.05 ± 0.00 0.03 ± 0.04 0.02 ± 0.00 0.03 ± 0.03

Fore attachment 545 572 0.18 ± 0.01 0.05 ± 0.00 0.18 ± 0.03 0.04 ± 0.00 0.07 ± 0.04 0.02 ± 0.00 0.09 ± 0.03

Front-teat placement 543 841 0.30 ± 0.01 0.03 ± 0.00 0.06 ± 0.02 0.03 ± 0.00 0.02 ± 0.03 0.01 ± 0.00 0.02 ± 0.03

Rear attachment height 545 569 0.22 ± 0.01 0.05 ± 0.00 0.09 ± 0.03 0.04 ± 0.00 0.02 ± 0.03 0.02 ± 0.00 0.00 ± 0.03

Rear attachment width 545 569 0.19 ± 0.01 0.07 ± 0.00 −0.03 ± 0.03 0.07 ± 0.00 0.03 ± 0.04 0.02 ± 0.00 −0.13 ± 0.03

Rear-teat placement 232 556 0.25 ± 0.01 0.00 ± 0.00 −0.06 ± 0.04 0.00 ± 0.00 −0.05 ± 0.05 −0.01 ± 0.00 −0.10 ± 0.05

Teat length 424 142 0.34 ± 0.01 0.00 ± 0.00 −0.14 ± 0.03 0.00 ± 0.00 −0.12 ± 0.03 0.00 ± 0.00 −0.18 ± 0.03

Front end height 75 181 0.16 ± 0.01 0.01 ± 0.01 −0.04 ± 0.07 0.01 ± 0.01 −0.23 ± 0.08 0.00 ± 0.01 −0.05 ± 0.09

Composite feet and legs 392 190 0.09 ± 0.01 0.05 ± 0.00 0.12 ± 0.04 0.04 ± 0.00 −0.03 ± 0.05 0.03 ± 0.00 0.08 ± 0.05

Composite rump 392 183 0.24 ± 0.01 0.06 ± 0.00 0.14 ± 0.03 0.05 ± 0.00 0.14 ± 0.04 0.03 ± 0.00 0.08 ± 0.04

Composite dairy strength 392 197 0.27 ± 0.01 0.07 ± 0.00 −0.11 ± 0.03 0.06 ± 0.00 −0.13 ± 0.04 0.01 ± 0.00 −0.21 ± 0.04

(Continued on next page)
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Table 3. (Continued).

Trait Number Ah2 ± s.e. Overall survival Early survival Late survival
of records Brp ± s.e. Brg ± s.e. Brp ± s.e. Brg ± s.e. Brp ± s.e. Brg ± s.e.

Composite mammary system 545 259 0.23 ± 0.01 0.11 ± 0.00 0.18 ± 0.03 0.10 ± 0.00 0.11 ± 0.03 0.05 ± 0.00 0.07 ± 0.03

Composite overall type 545 523 0.23 ± 0.01 0.13 ± 0.00 0.14 ± 0.03 0.12 ± 0.00 0.08 ± 0.04 0.06 ± 0.00 0.01 ± 0.03

Body condition score 152 456 0.12 ± 0.01 0.02 ± 0.00 0.16 ± 0.06 0.02 ± 0.00 0.16 ± 0.07 0.01 ± 0.01 0.05 ± 0.07

Workability traits

Milking speed 846 783 0.15 ± 0.00 −0.06 ± 0.00 −0.24 ± 0.02 −0.06 ± 0.00 −0.25 ± 0.03 −0.03 ± 0.00 −0.16 ± 0.03

Temperament 846 783 0.12 ± 0.00 −0.11 ± 0.00 −0.29 ± 0.02 −0.10 ± 0.00 −0.36 ± 0.03 −0.05 ± 0.00 −0.14 ± 0.03

Likability 846 783 0.14 ± 0.00 −0.20 ± 0.00 −0.44 ± 0.02 −0.19 ± 0.00 −0.48 ± 0.03 −0.08 ± 0.00 −0.24 ± 0.03

FertilityC

Calving interval 711 274 0.03 ± 0.00 0D −0.48 ± 0.04 0D −0.61 ± 0.04 0D −0.43 ± 0.05

AEstimated using univariate sire models.
BEstimated using bivariate sire models.
CEstimated on the basis of first-lactation data.
DThe residual covariances were set to zero and, consequently, the phenotypic correlations were reported as zero.

Table 4. The estimated heritability (h2) and the genetic (rg) and phenotypic (rp) correlations between overall, early or late survival and production,
type, workability, and fertility traits in Jersey.

Trait Number Ah2 ± s.e. Overall survival Early survival Late survival
of records Brp ± s.e. Brg ± s.e. Brp ± s.e. Brg ± s.e. Brp ± s.e. Brg ± s.e.

Production traitsC

Milk yield (305-day) 139 772 0.28 ± 0.01 0.48 ± 0.00 0.60 ± 0.03 0.45 ± 0.00 0.41 ± 0.05 0.12 ± 0.00 0.28 ± 0.05

Fat yield (305-day) 139 770 0.19 ± 0.01 0.50 ± 0.00 0.71 ± 0.03 0.46 ± 0.00 0.52 ± 0.05 0.13 ± 0.00 0.38 ± 0.05

Protein yield (305-day) 139 770 0.20 ± 0.01 0.50 ± 0.00 0.71 ± 0.03 0.47 ± 0.00 0.52 ± 0.05 0.13 ± 0.00 0.37 ± 0.05

Lactose yield (305-day) 46 024 0.20 ± 0.02 0.47 ± 0.00 0.62 ± 0.05 0.43 ± 0.00 0.44 ± 0.08 0.09 ± 0.01 0.30 ± 0.08

Milk yield (test-day) 151 860 0.35 ± 0.02 0.22 ± 0.00 0.42 ± 0.03 0.20 ± 0.00 0.29 ± 0.05 0.12 ± 0.00 0.26 ± 0.05

Fat yield (test-day) 151 860 0.26 ± 0.01 0.21 ± 0.00 0.51 ± 0.03 0.19 ± 0.00 0.36 ± 0.05 0.13 ± 0.00 0.36 ± 0.05

Protein yield (test-day) 151 860 0.28 ± 0.01 0.23 ± 0.00 0.52 ± 0.03 0.20 ± 0.00 0.37 ± 0.05 0.13 ± 0.00 0.36 ± 0.05

Lactose yield (test-day) 44 673 0.28 ± 0.02 0.21 ± 0.01 0.44 ± 0.06 0.19 ± 0.01 0.32 ± 0.08 0.10 ± 0.01 0.30 ± 0.08

Fat % (test-day) 151 860 0.60 ± 0.02 0.00 ± 0.00 −0.04 ± 0.04 0.00 ± 0.00 −0.02 ± 0.05 0.00 ± 0.00 0.00 ± 0.04

Protein % (test-day) 151 860 0.61 ± 0.02 −0.02 ± 0.00 −0.03 ± 0.04 −0.02 ± 0.00 −0.03 ± 0.05 −0.01 ± 0.00 0.00 ± 0.04

Lactose % (test-day) 44 673 0.45 ± 0.03 0.08 ± 0.01 0.10 ± 0.06 0.07 ± 0.01 0.05 ± 0.08 0.03 ± 0.01 0.09 ± 0.07

Somatic cell score (test-day) 151 815 0.14 ± 0.01 −0.10 ± 0.00 −0.32 ± 0.05 −0.09 ± 0.00 −0.18 ± 0.06 −0.05 ± 0.00 −0.30 ± 0.06

Type traits

Foot angle 25 734 0.10 ± 0.02 0.01 ± 0.01 0.14 ± 0.11 0.01 ± 0.01 0.22 ± 0.12 −0.01 ± 0.01 0.07 ± 0.12

Heel depth 1205 0.17 ± 0.11 0.02 ± 0.04 0.19 ± 0.25 0.04 ± 0.04 0.25 ± 0.26 0.01 ± 0.05 −0.04 ± 0.26

Rear legs – rear view 13 833 1.15 ± 0.07 0.06 ± 0.01 0.59 ± 0.06 0.03 ± 0.01 0.05 ± 0.10 0.03 ± 0.01 0.54 ± 0.07

Rear legs – side view 29 947 0.08 ± 0.01 −0.02 ± 0.01 −0.05 ± 0.12 −0.03 ± 0.01 −0.14 ± 0.13 −0.01 ± 0.01 0.07 ± 0.13

Bone quality 32 734 0.14 ± 0.02 0.03 ± 0.01 0.41 ± 0.08 0.02 ± 0.01 0.38 ± 0.10 0.00 ± 0.01 0.23 ± 0.10

Pin set 29 946 0.28 ± 0.03 0.01 ± 0.01 0.35 ± 0.07 0.00 ± 0.01 0.20 ± 0.08 0.02 ± 0.01 0.24 ± 0.08

Pin width 32 734 0.14 ± 0.02 0.05 ± 0.01 0.37 ± 0.08 0.05 ± 0.01 0.22 ± 0.10 0.02 ± 0.01 0.23 ± 0.09

Rump length 30 667 0.15 ± 0.02 0.05 ± 0.01 0.40 ± 0.08 0.05 ± 0.01 0.35 ± 0.10 0.03 ± 0.01 0.23 ± 0.10

Loin strength 32 653 0.13 ± 0.02 0.05 ± 0.01 0.33 ± 0.09 0.04 ± 0.01 0.13 ± 0.11 0.02 ± 0.01 0.23 ± 0.10

Stature 32 739 0.33 ± 0.03 0.07 ± 0.01 0.28 ± 0.06 0.06 ± 0.01 0.12 ± 0.08 0.04 ± 0.01 0.21 ± 0.07

(Continued on next page)
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Table 4. (Continued).

Trait Number Ah2 ± s.e. Overall survival Early survival Late survival
of records Brp ± s.e. Brg ± s.e. Brp ± s.e. Brg ± s.e. Brp ± s.e. Brg ± s.e.

Muzzle width 32 730 0.17 ± 0.02 0.05 ± 0.01 0.17 ± 0.08 0.05 ± 0.01 0.23 ± 0.09 0.03 ± 0.01 0.03 ± 0.09

Chest width 32 737 0.13 ± 0.02 0.05 ± 0.01 0.16 ± 0.08 0.05 ± 0.01 0.18 ± 0.10 0.03 ± 0.01 0.02 ± 0.09

Body depth 22 943 0.27 ± 0.03 0.07 ± 0.01 0.00 ± 0.09 0.07 ± 0.01 0.13 ± 0.10 0.01 ± 0.01 −0.13 ± 0.09

Angularity 32 738 0.21 ± 0.02 0.07 ± 0.01 0.46 ± 0.07 0.07 ± 0.01 0.47 ± 0.08 0.03 ± 0.01 0.27 ± 0.08

Body length 30 675 0.28 ± 0.03 0.06 ± 0.01 0.37 ± 0.07 0.05 ± 0.01 0.23 ± 0.08 0.04 ± 0.01 0.31 ± 0.08

Udder depth 25 735 0.23 ± 0.03 0.02 ± 0.01 0.22 ± 0.08 0.02 ± 0.01 0.05 ± 0.09 0.03 ± 0.01 0.27 ± 0.09

Udder texture 32 739 0.14 ± 0.02 0.10 ± 0.01 0.57 ± 0.06 0.09 ± 0.01 0.56 ± 0.08 0.03 ± 0.01 0.30 ± 0.09

Median suspensory 32 740 0.21 ± 0.02 0.08 ± 0.01 0.42 ± 0.07 0.08 ± 0.01 0.36 ± 0.08 0.05 ± 0.01 0.32 ± 0.08

Fore attachment 32 736 0.25 ± 0.03 0.07 ± 0.01 0.44 ± 0.06 0.06 ± 0.01 0.27 ± 0.08 0.03 ± 0.01 0.31 ± 0.08

Front-teat placement 29 947 0.30 ± 0.03 0.06 ± 0.01 0.30 ± 0.07 0.06 ± 0.01 0.21 ± 0.08 0.03 ± 0.01 0.25 ± 0.08

Rear attachment height 32 739 0.26 ± 0.03 0.09 ± 0.01 0.48 ± 0.06 0.08 ± 0.01 0.25 ± 0.08 0.04 ± 0.01 0.35 ± 0.07

Rear attachment width 32 739 0.18 ± 0.02 0.10 ± 0.01 0.45 ± 0.07 0.09 ± 0.01 0.44 ± 0.08 0.04 ± 0.01 0.24 ± 0.08

Rear-teat placement 13 521 0.25 ± 0.04 0.06 ± 0.01 0.52 ± 0.09 0.06 ± 0.01 0.57 ± 0.11 0.06 ± 0.01 0.43 ± 0.11

Teat length 25 720 0.24 ± 0.03 0.00 ± 0.01 −0.06 ± 0.08 0.00 ± 0.01 0.01 ± 0.10 0.01 ± 0.01 −0.07 ± 0.09

Front end height 447 0.17 ± 0.20 0.03 ± 0.07 −0.21 ± 0.57 0.01 ± 0.07 −0.88 ± 0.49 0.08 ± 0.07 0.45 ± 0.94

Composite feet and legs 1205 0.19 ± 0.11 0.07 ± 0.04 0.73 ± 0.17 0.08 ± 0.04 0.51 ± 0.28 0.08 ± 0.05 0.72 ± 0.32

Composite rump 1205 0.11 ± 0.08 −0.01 ± 0.04 −0.02 ± 0.53 −0.02 ± 0.05 −0.03 ± 0.64 −0.01 ± 0.05 0.06 ± 0.45

Composite dairy strength 1205 0.52 ± 0.15 0.09 ± 0.04 0.22 ± 0.19 0.10 ± 0.04 0.08 ± 0.23 −0.03 ± 0.05 0.27 ± 0.19

Composite mammary system 29 749 0.23 ± 0.03 0.16 ± 0.01 0.61 ± 0.05 0.14 ± 0.01 0.48 ± 0.08 0.09 ± 0.01 0.43 ± 0.07

Composite overall type 32 408 0.21 ± 0.02 0.17 ± 0.01 0.62 ± 0.05 0.16 ± 0.01 0.52 ± 0.07 0.10 ± 0.01 0.41 ± 0.07

Body condition score 1205 0.15 ± 0.10 0.05 ± 0.04 −0.08 ± 0.45 0.08 ± 0.04 0.79 ± 0.29 −0.02 ± 0.05 −0.38 ± 0.45

Workability traits

Milking speed 147 223 0.16 ± 0.01 −0.09 ± 0.00 −0.28 ± 0.05 −0.08 ± 0.00 −0.21 ± 0.06 −0.05 ± 0.00 −0.17 ± 0.06

Temperament 147 223 0.17 ± 0.01 −0.15 ± 0.00 −0.47 ± 0.04 −0.13 ± 0.00 −0.42 ± 0.05 −0.06 ± 0.00 −0.26 ± 0.06

Likability 147 223 0.23 ± 0.01 −0.27 ± 0.00 −0.73 ± 0.03 −0.25 ± 0.00 −0.72 ± 0.04 −0.12 ± 0.00 −0.51 ± 0.05

FertilityC

Calving interval 128 242 0.02 ± 0.00 0D −0.33 ± 0.09 0D −0.27 ± 0.11 0D −0.27 ± 0.10

AEstimated using univariate sire models.
BEstimated using bivariate sire models.
CEstimated on the basis of first-lactation data.
DThe residual covariances were set to zero and, consequently, the phenotypic correlations were reported as zero.

was a strong correlation between late survival and fertility 
and somatic cell score. Therefore, farmers are more likely 
to cull cows for low production in their first lactation, 
while fertility and health traits influence survival of the 
cows in subsequent lactations. These results were in line 
with the findings of Workie et al. (2021). We could assume 
that early survival is a better predictor for voluntary culling 
and late survival is a better predictor for involuntary 
culling. In Holsteins, late survival is almost independent of 
milk production and could be considered to be similar to 
functional survival (Weigel et al. 2003; Holtsmark et al. 
2009). However, milk production appears to still be important 
for culling decisions in later lactations in Jerseys. The moder-
ate to large genetic correlation between survival and type 

traits represents deliberate culling for small size and poor 
type in Jerseys as well. The genetic correlations between 
late survival and milk production traits as well as some type 
traits are different between Jersey and Holstein, probably 
because the reasons for culling cows or their relative impor-
tance, especially in multiparous cows, are different across 
breeds. For instance, milk production has a high impact on 
culling decisions in Jersey, whereas in Holstein fertility is 
of higher importance. 

Although we used only the first-lactation milk records and 
calving interval to calculate correlations between production 
or fertility and survival, this does not appear to have contri-
buted to the higher correlation between production traits 
and early survival than that between production traits and 
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late survival. For instance, the genetic correlation between 
first-lactation somatic cell scores and late survival was even 
higher than that between first-lactation somatic cell scores 
and early survival. Generally, the correlation between most 
of the conformation traits, such as mammary system, or pin 
set and survival could be associated with their effect on either 
production or reproduction traits (Zavadilová et al. 2011). 
Workability traits were also strongly correlated with survival, 
which could be associated with their moderate to high 
correlation with production traits and also their direct 
effect on culling decisions. 

The phenotypic and genetic correlations between overall 
survival and production or conformation traits were similar, 
but not exactly the same as those previously reported by 
Khansefid et al. (2021). In the present study, we used raw 
binary survival scores instead of survival trait deviations. 
We also kept all survival records back to 1980, which are 
currently used in national cow survival evaluations by 
DataGene. We assumed that survival was a same trait across 
four decades. This could be a debatable assumption as the 
reasons for culling cows could have changed across years to 
meet the needs of a changing business environment in the 
dairy industry. Haile-Mariam and Pryce (2015) and Workie 
et al. (2021) reported that the h2 of survival and the culling 
probabilities due to different reasons changed across years. 
To be able to still use the historical survival data in genetic 
evaluations, survival across certain year intervals could be 
potentially analysed as different traits in a multi-trait model. 
However, the practicality of such a model for routine national 
genetic evaluations and its impacts on prediction accuracy 
and bias is yet to be investigated. 

The prediction accuracy in the validation set was low 
for overall survival (univariate model), and early and late 
survival (bivariate model). Further, the predictions were 
slightly biased, which could be associated with inaccurate 
estimation of variance components, as we assumed that survival 
was a same trait across four decades. However, according to 
Haile-Mariam and Pryce (2015), survival changes genetically 
over time. Considering survival in the first lactation as a 
separate trait in the model resulted in a more accurate and 
stable genetic prediction across lactations. Further, this 
could reduce the prediction bias for early survival compared 
with analysing survival in the first lactation by using a 
univariate model. The reduction in prediction bias for early 
survival in bivariate models could be due to using accurate 
variance components for early survival instead of estimated 
variance components for overall survival. The reduction in 
prediction bias for late survival was less obvious, especially 
in Jerseys, probably because the variance components for 
late survival (survival in lactations two to eight) were closer 
to those estimated for overall survival (survival in lactation 
one to eight). Due to using appropriate variance components 
and the same definition for survival in the validation set, each 
of the overall, early and late survival phenotypes was 
predicted the best (highest accuracy and lowest bias), with 

the EBVs being associated with the same trait. There was 
little change in the accuracy of predictions from adding data 
from the seventh and eighth lactations, perhaps because only 
a small proportion of cows record survival to the seventh and 
eighth lactations. 

The EBVs for early and late survival can be combined and 
presented as a single trait to the industry. Further, different 
predictor traits for early and late survival could be incorpo-
rated to calculate survival index. As early survival was highly 
correlated with milk and protein yields, double counting 
should be avoided in selection indices when recalculating 
the economic weights, or simply reducing the economic 
weights for production traits according to the genetic correlation 
between milk traits and early survival. 

Conclusions

The genetic correlation between survival in the first lactation 
and later lactations was high, but still different from one. 
Genetic correlations between other traits and survival were 
different for early and late survival, probably due to different 
reasons for culling in first lactation and in later lactations. 
Therefore, partitioning survival to early and late survival 
and analysing them as two correlated traits could be an easy 
and practical method to indirectly incorporate the culling 
reasons into genetic evaluations of cow survival. In a bivariate 
model, the genetic predictions for early survival were stable 
and less biased than those for overall survival, and, for late 
survival, inclusion of more than six lactations had no benefit 
on the accuracy or bias of the EBVs. 
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