
A Mathematical Review of Polyphase Filterbank Implementations

for Radio Astronomy

Christopher Harris
A,C and Karen Haines

B

A
ICRAR, The University of Western Australia, M468, 35 Stirling Hwy, Crawley 6009, Australia

B
WASP, The University of Western Australia, M024, 35 Stirling Hwy, Crawley 6009, Australia

C
Corresponding author. Email: christopher.harris@icrar.org

Abstract: The technique of polyphase filterbanks is commonly used for signal processing in radio

astronomy. The rapid and ongoing evolution of parallel hardware architectures requires optimised imple-

mentations of such techniques to be redeveloped. However, much of the published research regarding

polyphase filterbanks refers the reader to signal processing books with a more general scope. Furthermore,

these references tend to focus on the design of filters, rather than their implementation. For this reason, this

work presents a mathematical background for the implementation of a polyphase filterbank specific to radio

astronomy. It also addresses the advantages and disadvantages of polyphase filterbanks in comparison with

more commonly used techniques.
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1 Introduction

Polyphase filterbanks are used to augment the one-

dimensional fast Fourier transform (FFT) in radio

astronomy signal processing, in order to reduce the spectral

leakage effect. This effect can cause strong radio sources in

an output channel of the FFT to hide fainter sources in

other output channels. As reviewed in this work, the

polyphase filterbank provides a computationally efficient

approach that is well suited to radio astronomy applica-

tions. Such applications are predominantly implemented

based on power-efficient Field Programmable Gate Array

(FPGA) architectures. However, mainstream computing

architectures can also be used for applications where

acquiring FPGA hardware and developing the associated

softwarewould be considered too costly, or that require the

flexibility of general purpose processors.

As serial CPU development has become limited by

excessive power consumption preventing higher clock

speeds, the resulting move to parallelism has given rise to

a diverse range of mainstream computing architectures.

Examples of such architectural paradigms include multi-

core CPU processors, GPU computing, and heteroge-

neous processors containing a variety of cores. Radio

astronomy is exploring the use of such architectures for its

processing needs (Wayth, et al. 2007; Harris, Haines, &

Staveley-Smith 2008; Wayth, Greenhill, & Briggs 2009;

Kondo, et al. 2010; Fluke, et al. 2011). However, such

exploration requires the re-implementation of algorithms

to take optimal advantage of the parallel processing

capabilities.

For the polyphase filterbank, such implementations

require an understanding of how the polyphase filter

works, but the filter function itself remains unchanged.

Digital signal processing and the design of filter functions

are well documented, and this work draws from several

standard texts (Oppenheim, Willsky, & Young 1983;

Oppenheim & Schafer 2009; Crochiere & Rabiner 1983).

However, such general purpose texts are broad in scope,

and tend to focus on the analytical design of such filters

rather than their implementation. This work provides a

condensed presentation of the polyphase filterbank spe-

cifically targeted to radio astronomy applications.

The remainder of this work begins with Section 2,

which briefly reviews the Fourier transform and its role in

signal processing. Section 3 then discusses spectral leak-

age and its effect on signal processing applications that

use the fast Fourier transform. Section 4 reviews com-

monly used approaches to reducing spectral leakage,

specifically analysis filters and windowing. Section 5

reviews the polyphase filterbank, providing a detailed

mathematical description and a discussion of its compu-

tational complexity and its effects on the temporal and

spectral resolution of the signal. Section 6 provides a

simple serial implementation of the polyphase filterbank.

Section 7 then summarises the concepts presented in

this work.

2 Digital Signal Processing

The Fourier transform and its generalisation the z trans-

form provide a theoretical basis for the spectral analysis of

a signal. In particular, they facilitate the conversion of

signals between the time domain and the frequency

domain. For the continuous-time signal x(t), defined for
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the time domain �N# t#N, the Fourier transform of

the signal X(v) can be obtained for the range of fre-

quencies �N#v#N using the analysis Equation 1.

The reverse transform is achieved by the synthesis

Equation 2.

X ðoÞ ¼
Z 1

�1
xðtÞe�j2potdt ð1Þ

xðtÞ ¼
Z 1

�1
X ðoÞe j2potdo ð2Þ

While these equations form a theoretical basis for

spectral analysis, in digital signal processing the signals

are neither continuous-time nor of infinite duration.

Instead, processingmust occur on discrete signals of finite

duration, in the form of a finite set of samples. For this

reason, discrete versions of the above equations must be

used. However, this introduces artifacts known as

spectral leakage. The following section describes the

cause and effects of spectral leakage in greater detail.

3 Spectral Leakage

The discrete Fourier transform (DFT) is commonly used

in digital signal processing, due largely to the develop-

ment of its efficient implementation, the FFT. Consider a

discrete-time signal x[n] consisting of N samples with

n2 [0, N� 1]. The DFT of x[n] is shown in the analysis

Equation 3, producing a set ofN spectral coefficientsX[k],

with k 2 ½0;N � 1�. The original signal x[n] can be

obtained from the spectral coefficients via the synthesis

Equation 4.

X ½k� ¼
XN�1

n¼0

x½n�e�jð2p=NÞkn ð3Þ

x½n� ¼ 1

N

XN�1

k¼0

X ½k�e jð2p=NÞkn ð4Þ

However, because x[n] is a finite-length discrete

sampling of the true signal x(t), the spectral coefficients X

[k] obtained from Equation 3 can respond to frequencies

well outside the vicinity of k. Since the discrete Fourier

transform is linear, substituting a complex sinusoid x½n� ¼
e jð2p=NÞnn of frequency n allows the derivation of the

power-spectral density of the frequency response

jXkðnÞj2 of X ½k�, shown in Equation 5. To derive this

frequency response, the DFT is first applied to x[n]:

XkðnÞ ¼
XN�1

n¼0

x½n�e�jð2p=NÞkn

¼
XN�1

n¼0

e jð2p=NÞnne�jð2p=NÞkn

¼
XN�1

n¼0

e�jð2p=NÞðk�nÞn

The result is a geometric series of N terms, the sum of

which can be evaluated as:

XkðnÞ ¼ 1� e�j2pðk�nÞ

1� e�jð2p=NÞðk�nÞ

This expression can be factorised, which allows the

application of Euler’s formula to yield:

XkðnÞ ¼ e�jpðk�nÞ

e�jðp=NÞðk�nÞ
ðejpðk�nÞ � e�jpðk�nÞÞ

ðejðpNÞðk�nÞ � e�jðp
N
Þðk�nÞÞ

¼ e�jðp
N
ÞðN�1Þðk�nÞ sinðpðk � nÞÞ

sinððp=NÞðk � nÞÞ

The power-spectral density of the frequency response

can then be obtained by multiplying by the conjugate:

jXkðnÞj2¼ XkðnÞXkðnÞ

¼ sin2ðpðk � nÞÞ
sin2ððp=NÞðk � nÞÞ

ð5Þ

The frequency response for the first channel X[0] of a

length N¼ 1024 DFT is shown in Figure 1. The response

for the other channels is identical, but offset by n¼ k.

While the main lobe of the response X0(n) is centred on

n¼ 0, there are side lobes that exist in every other channel.

This is undesirable in radio astronomy, since faint spectral

features can be hidden by bright spectral features in other

channels. The unwanted response to adjacent channels

caused by these sidelobes is commonly referred to as

spectral leakage.

If the sampling rate is increased to the limit of

continuous sampling while the total duration of the

sampled signal remains constant, the frequency response
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Figure 1 Plain FFT frequency response. Shown is the normalised

frequency response of the first channel of the FFT to a complex

sinusoidal signal with a frequency n indicated by the x axis. A length

N¼ 1024 FFT was used to generate these values. There are side-

lobes present in addition to the main lobe in the response, which can

cause larger spectral features to swamp smaller spectral features in

adjacent channels.
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tends to the sinc function of Equation 7. This can be

shown by utilising the trigonometric limit in Equation 6,

and normalising the response by 1/N2 to account for a

continuous power distribution rather the per element

distribution of the discrete case:

lim
x!0

sin ðxÞ
x

¼ 1 ð6Þ

lim
N!1

jXkðnÞj2
N2

¼ lim
N!1

sin2ðpðk � nÞÞ
N2 sin2ððp=NÞðk � nÞÞ

¼ sin2ðpðk � nÞÞ
N 2ððp=NÞðk � nÞÞ2

¼ sin2ðpðk � nÞÞ
ðpðk � nÞÞ2

¼ sinc2ðk � nÞ

ð7Þ

where the sinc function is defined as

sinc ðxÞ ¼ sin ðpxÞ=ðpxÞ ; x 6¼ 0

1 ; x ¼ 0

�
ð8Þ

The sinc function is the continuous Fourier transform

of a rectangular function. It appears in the frequency

response because the input to the DFT is of limited

duration, rather than infinite duration. In effect the input

consists of a rectangularwindowing of the true signal. The

introduction of this rectangular window in the time

domain results in the sinc response in the frequency

domain. As seen in Equation 5, the discrete sampling of

the signal causes the aliasing of this true sinc response.

The following section will discuss the use of windowed

filters to alter the frequency response and reduce the effect

of spectral leakage.

4 Filters and Windowing

The effects of spectral leakage, discussed in the previous

section, can be reduced by altering the signal prior to the

DFT. Specifically, an analysis filter h[n] can be used to

weight the signal values as shown in Equation 3, and in

the process adjust the frequency response. Although the

intent of this work is to focus on the implementation of the

polyphase filterbank, a filter is required for the discussion

to be meaningful. For clarity, a simple non-optimal filter

design will be used and is presented in this section. (The

approach of subsequent sections is also valid for more

advanced filter designs, for which the authors recommend

Oppenheim & Schafer 2009.)

Y ½k� ¼
XN�1

n¼0

h½n�x½n�e�jð2p=NÞkn ð9Þ

The first step in determining the values of h[n] in this

naive approach is to obtain the continuous version of the

filter h(t) by taking the inverse Fourier transform of the

desired spectral response H(n). For radio astronomy, the

desired response is typically a normalised rectangular

function in the frequency domain as shown in Equa-

tion 10. A phase shift of N/2 must be included in H(n)
since the DFT equations use the range n 2 ½0;N � 1� as
opposed to n 2 ½�N=2;N=2� 1�.

HðnÞ ¼ Ne�j2pðN=2Þn ; jnjo1=ð2NÞ
0 ; elsewhere

(
ð10Þ

Thus integrating HðnÞ and applying Euler’s formula

obtains h(t) as:

hðtÞ ¼
Z 1

�1
HðnÞe j2pntdn

¼
Z 1=ð2NÞ

�1=ð2NÞ
Ne�j2pðN=2Þne j2pntdn

¼
Z 1=ð2NÞ

�1=ð2NÞ
Ne j2pðt�N=2Þndn

¼ N

j2pðt � N=2Þ ½e
j2pðt�N=2Þn�1=ð2NÞ

�1=ð2NÞ

¼ N

pðt � N=2Þ
1

2j
ðe jpðt�N=2Þ=N � e�jpðt�N=2Þ=N Þ

¼ sinðpðt � N=2Þ=NÞ
pðt � N=2Þ=N

Using the sinc function defined in Equation 8, the

continuous version of the analysis filter becomes:

hðtÞ ¼ sinc ððt � N=2Þ=NÞ ð11Þ

This result resembles that of the previous section, due

to mathematical similarities between the normal and

inverse Fourier transforms. Not only is the sinc function

the Fourier transform of the rectangular function, it is also

the inverse Fourier transform of the rectangular function.

While the sinc function was appearing as an undesirable

artifact in the spectral response due to a rectangular

windowing in the previous section, here it forms the filter

that is to be used to obtain a spectral response that

resembles a rectangular function.

Unfortunately, a true rectangular response is impossi-

ble, as h(t) is continuous and has infinite duration. To be

usable, it must first be converted to the discrete-time

analysis filter h[n]. This is achieved by using the window-

ing function w(t) to discretely sample the continuous

filter at n 2 ½0;N � 1� as shown in Equation 12, which

not only creates a discretely sampled filter but also

truncates it to have finite duration.

h½n� ¼ hðnÞwðnÞ ð12Þ

The choice of windowing function is crucial, as it

effects the distribution of the main lobe and sidelobes in

the spectral response. The windowing function here has a

A Mathematical Review of Polyphase Filterbank Implementations 319



far greater impact on the spectral response than the con-

tinuous filter. For example, using a rectangular window

wR(t) defined in Equation 13 with the continuous filter in

Equation 11 will result in sidelobes that are almost as

large as those of the previous section. However, the sinc

filter will be used to adjust the width of the frequency

response for the polyphase filterbank in the subsequent

section, and hence it has been introduced here.

There exists a wide range of windowing functions,

including the rectangular, Bartlett, Hanning, Hamming,

Blackman, and Kaiser (Oppenheim & Schafer 2009;

Crochiere & Rabiner 1983) as well as many others. In

general, such functions reduce the size of the sidelobes to

a varying degree at the cost of a wider main lobe. For the

purposes of this work, aHanningwindowwH(t) as defined

in Equation 14 will be used.

wRðtÞ ¼
1 ; 0o toN

0 ; elsewhere

�
ð13Þ

wH ðtÞ ¼
1
2
� 1

2
cosð2pt

N
Þ ; 0o toN

0 ; elsewhere

�
ð14Þ

Thus, using a Hanning-windowed sinc function as the

analysis filter h[n], the spectral response of each channel

Y[k] to the range of frequencies n present in the signal x[n]
can be obtained by evaluating Equation 9 for a complex

sinusoid x½n� ¼ e jð2p=NÞnn. This has been computed for a

lengthN¼ 1024DFT and is graphed in Figure 2 alongside

the response to the plain DFT of the previous section.

Note that the sidelobes are indeed smaller, at the cost of a

widermain lobe. For certain types of applications, this can

be further improved using the polyphase techniques pre-

sented in the following section.

5 Polyphase Filterbanks

The use of filtering was shown in the previous section to

adjust the frequency response of the output channels X[k]

of the DFT. In particular, the spectral leakage due to

sidelobes in the frequency response could be reduced, but

with the result that the width of the main lobe of the

response was increased. This behaviour can be leveraged

to further reduce the effects of spectral leakage while

achieving a well-defined main lobe if additional samples

of the original signal are available.

Consider an increase in the number of samples in x[n]

by a factor of P, such that n 2 ½0;M � 1� whereM¼NP.

For the purposes of this work, the sampling rate is

assumed to remain constant, and the additional signal

samples are instead obtained by sampling for a longer

period of time. The additional samples would allow a

larger DFT to be used, resulting in an increase in the

number of output channels by a factor of P. If the width of

the main lobe of the channel response were increased by

the same factor of P, then calculating only every Pth

channel would result in smaller sidelobes for the same

number of output channels as the original DFT. Thus the

desired filter response is:

HPðnÞ ¼ Ne�j2pðM=2Þn ; jnjoP=ð2MÞ
0 ; elsewhere

(
ð15Þ

The methodology of the previous section for the

derivation of Equation 11 can be then applied. Note that

the limits can be simplified to those of the original,

resulting in an almost identical derivation except for the

ratio of the width to the offset of the filter:

hPðtÞ ¼
Z 1

�1
HPðnÞe j2pntdn

¼
Z P=ð2MÞ

�P=ð2MÞ
Ne�j2pðM=2Þne j2pntdn

¼
Z 1=ð2NÞ

�1=ð2NÞ
Ne j2pðt�M=2Þndn

¼ N

j2pðt �M=2Þ ½e
j2pðt�M=2Þn�1=ð2NÞ

�1=ð2NÞ

¼ sinðpðt �M=2Þ=NÞ
pðt �M=2Þ=N

¼ sinc ððt �M=2Þ=NÞ

The window function must also be modified by

stretching it to cover the larger filter length:

wPðtÞ ¼
1
2
� 1

2
cosð2pt=MÞ ; 0o toM

0 ; elsewhere

�

Sampling the continuous filter hP(t) with this window

function wP(t) at n 2 ½0;M � 1� obtains the polyphase

filter:

hP½n� ¼ hPðnÞwPðnÞ ð16Þ
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Figure 2 Windowed FFT frequency response. Shown is the

normalised frequency response of the first channel of a sinc-filtered

and Hanning-windowed FFT to a complex sinusoidal signal with a

frequency n indicated by the x-axis. A length N¼ 1024 FFT was

used to generate these values. Also plotted is the normalised

frequency response of the plain FFT from Figure 2. The windowing

has reduced the height of the sidelobes, but at the cost of a wider

main lobe.
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Since the DFT need only be calculated for every Pth

channel, a polyphase structure combined with a smaller

DFT of length N can be used instead to implement this

technique efficiently. Adapting Equation 9 to the larger

number of samples M and the polyphase filter given by

Equation 16, a variable substitution of k0 ¼ k=P for k0 2
½0;N � 1� can be performed to remove redundant chan-

nels, and a polyphase structure can be introduced to

remove redundant operations with the substitution m¼
nþNr (Bunton 2003). Note thatNr can be removed from

the exponent as it creates a phase offset that is a multiple

of 2p in the complex sinusoid.

Z½k� ¼
XM�1

m¼0

hP½m�x½m�e�jð2p
M
Þkm

Z½k0� ¼
XM�1

m¼0

hP½m�x½m�e�jð2p
N
Þk0m

¼
XN�1

n¼0

XP�1

r¼0

hP½nþ Nr�x½nþ Nr�e�jð2p
N
ÞðnþNrÞk0

¼
XN�1

n¼0

XP�1

r¼0

hP½nþ Nr�x½nþ Nr�e�jð2p
N
ÞðnÞk0

¼
XN�1

n¼0

½
XP�1

r¼0

hP½nþ Nr�x½nþ Nr��e�jð2p
N
Þnk0

¼
XN�1

n¼0

b½n�e�jð2p
N
Þnk0

ð17Þ
Thus the polyphase filterbank output Z½k0� can be

calculated using a DFT of length N that is applied to a

polyphase structure b[n] defined by Equation 18. Both the

polyphase structure and the subsequent Fourier transform

are illustrated in Figure 3.

b½n� ¼
XP�1

r¼0

hP½nþ Nr�x½nþ Nr� ð18Þ

The spectral response of the filterbank output Z½k0� is
shown for P¼ 8 taps and a length N¼ 1024 DFT in Fig-

ure 4. A tap in this context refers to the number of phases

P used in the polyphase structure. The filterbank response

has a main lobe that is a much closer approximation to

the ideal rectangular function response. Additionally, the

sidelobes are much smaller than the approaches of the

previous sections. This improvement has been achieved

purely through the use of the additional signal samples,

which results in a loss of resolution in the time-domain

location of the spectral features. However, in radio

astronomy this resolution is usually lost in accumulation

processes that are used to increase the signal-to-noise

ratio. Thus, in these situations, if the reduction of spectral

leakage is required, the polyphase filterbank presented in

this section is ideal.

In terms of computational cost, the polyphase filter-

bank as described has a computational complexity of

OðNðPþ logðNÞÞÞ. This is a small increase over the

approaches of the previous sections, which had a compu-

tational complexity of OðNlogðNÞÞ, but is still much less

than theOðMlogðMÞÞ complexity that the larger lengthM

DFT would have. These complexities assume an efficient

FFT implementation of the DFT, and that the filters are

precalculated.

Signal

Filter

FFT

Polyphase structure

Fourier transform

Figure 3 Polyphase filterbank operations. Shown are the opera-

tions for a P¼ 4 tap polyphase filterbank, operating on M¼ 24

signal elements with a filter of the same length. Both the filter and

the signal are first multiplied together, and the result is then

segmented into taps of length N¼M/P¼ 6 and added together.

The result at this stage is the b[n] of Equation 18. An FFT is then

applied to complete the polyphase filterbank, producing Z½k0� of
Equation 17. The output length depends on whether the data

elements and FFT input are real or complex. Typically larger values

ofM and N would be used; the smaller values have been chosen for

clarity.
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Figure 4 Polyphase filterbank frequency response. Shown is the

normalised frequency response of the first channel of a sinc-filtered

and Hanning-windowed polyphase filterbank to a complex sinusoi-

dal signal with a frequency n indicated by the x axis. The filterbank
used P¼ 8 taps and a length N¼ 1024 FFT was used to generate

these values. Also plotted is the normalised frequency response of

the plain FFT and windowed FFT from Figure 2. The polyphase

filter has significantly lower sidelobes, and a main lobe that is much

closer to a rectangular function than the other responses. These

improvements have been achieved through a loss of precision in the

time domain. However, for radio astronomy signal processing this

temporal precision is usually discarded during accumulation

processes.

A Mathematical Review of Polyphase Filterbank Implementations 321



It should also be noted that the polyphase structure is

not dependant on the simple example filter presented in

this work. The derivation of Equation 17 remain valid for

more complex and optimal filters as well. Such filters can

be used if the width of the frequency response is adjusted

accordingly.

6 Serial Implementation

Having presented the mathematical framework for a

polyphase filterbank, this section presents a polyphase

filterbank implementation. The following implementa-

tion is a simple, serial design that only performs a single

transform of the data, and bears little resemblance to the

optimised code required for good performance on the

parallel architectures described in the introduction.

However, when designing such optimised parallel code a

serial reference implementation is often useful, and for

this reason it is included here.

The following pseudocode first declares arrays to hold

data, and then generates the filter described by Equa-

tion 16. Note that the values of N,M, and P correspond to

the variables of the previous section. After the signal has

been acquired, the polyphase structure is applied as

described by Equation 18. In this code the data is assumed

to be real-valued, and a length N real-to-complex FFT is

then called to produce N/2þ 1 output values. Optimised

FFT libraries for architectures are typically available due

to the widespread use of the FFT transform, and its

implementation is outside the scope of this work. The

output is then written as the final stage of the pseudocode

implementation.

// declarations
filter[M]
signal[M]
b[N]
output[N/2+1]

// generate filter
FOR i in M

// sinc function
filter[i] = sinc((i-M/2)/N)
// window
filter[i] *= 0.5-0.5*cos(2*PI*i/M)

ENDFOR

// acquire signal
READ signal

// perform polyphase structure
FOR i in N

b[i] = 0
FOR j in P

b[i] += filter[j*N+i]*signal[j*N+i]
ENDFOR

ENDFOR

// perform FFT
CALL fft(b,output,N)

// write output
WRITE output

For complex-valued data, a complex-to-complex FFT

would be required and the output would consist of N

values. On some architectures, padding real-valued data

and using a complex-to-complex FFTmay result in better

data alignment for subsequent processing stages. It should

be possible to substitute more sophisticated filter designs,

as long as the frequency response has been widened to

account for the additional taps of the polyphase structure.

7 Conclusion

This work has condensed information from a number of

sources to provide an explanation of the mathematics

required to implement a polyphase filterbank. In partic-

ular, the focus of this explanation has been radio astron-

omy. The polyphase filterbank is shown to suppress the

spectral leakage effect of the DFT in a manner superior to

that of the standard FFT, or a windowed FFT, albeit with

some minimal costs.

Such costs include a higher computational complexity

and a reduced temporal resolution. However, the com-

putational complexity of the polyphase filterbank is

significantly less than that of the larger-length windowed

FFT towhich it ismathematically equivalent. Furthermore,

for radio astronomy, the loss of temporal resolution is

irrelevant given such information is typically lost in subse-

quent accumulation operations. It is these characteristics

that are responsible for the widespread use of polyphase

filterbanks in radio astronomy signal processing.
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