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Abstract 

A mechanism for crimp in wool fibres is proposed in which the inner root sheath of the wool follicle 
and the fibre cuticle rotate around the fibre cortex in the region just above the follicle bulb. The 
rotational movement of the fibre cuticle is passed on to groups of microfibrils in the cortical cells 
of the fibre through a gearing action, which causes them to be twisted into helices or spirals with 
the result that the cortical cells tend to shorten. The fibre deforms while still in the follicle causing 
the position of the fibre cortex near the bulb to change. This changes the magnitude and direction of 
the rotational movement of the inner root sheath and cuticle. A mathematical model of the mechanism 
is developed and several crimp forms, produced by using the model, are compared to those commonly 
observed. 

Introduction 

The shape or form of crimp in individual fibres in wool has been described in 
detail by Rossouw (1931) and Chapman (1965). There appear to be three main forms: 

(1) An alternating helix (dish-shaped wave) described by Chapman (1965) as 
a wave 'wrapped around part of a cylindrical surface with the axis of the wave 
lengthwise along the cylinder'. The axis of the wave itself usually spirals 
slowly, so that 'the orientation of the wave ... changes after the formation 
of several crimps (e.g. 2-8) [making] the dish-shaped wave form less obvious'. 
An example may be seen in Fig. lao 

(2) A helix as in Fig. ld. 
(3) Uniplanar waves (Fig. Ie), although less frequently observed than forms (1) 

and (2). This form is 'more frequent in wool with a very prominent and some­
what exaggerated staple crimp' (Chapman 1965). 

Changes in crimp form along a fibre are apparently commonplace (Barker and Norris 
1930). For example, a helical form may suddenly change from a left-handed to a 
right-handed helix, or a dish-shaped wave may change to a spiral. Nevertheless, 
the forms described in (1), (2) and (3) above appear to be the basis of the forms 
observed. The mechanism for crimp proposed in this paper is capable of producing 
all three basic forms, but only forms (1) and (2) will be demonstrated. Form (3), 
in terms of the mechanism, depends on small differences in the physical properties 
of the ortho- and para cortex, the details of which will not be discussed. 
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Fig. 1. Oblique longitudinal view (a), and view from above (b) and from the side (c) of the crimp 
form described as an alternating helix. This form is characteristic of fibres in staples of Merino wool. 
Oblique longitudinal view of the crimp form described as a helix (d) and of the crimp form 
described as uniplanar (e). [Figures reproduced by permission from Chapman (1965)]. 
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Fig. 2. Longitudinal section of a wool 
follicle (a) and cross-section in the 
upper part of the keratogenous zone 
(b), indicating the main anatomical 
features with particular emphasis on 
the fibre and inner root sheath. For 
more detail see Auber (1950). 
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In the past 50 years, there has been a number of models suggested to explain 
crimp in wool fibres. These have ranged from purely descriptive mathematical 
models, such as that proposed by Barker and Norris (1930), with no explanation of 
the mechanism responsible, to detailed physical models of the follicle, displaying 
the possible effects of changes in the follicle shape (Auber 1950; Mercer 1961; 
Chapman 1965). Chapman (1965) has listed the proposed mechanisms, emphasizing 
the trend which has occurred, from models in which the shape of the follicle is 
assumed to be the effect rather than the cause of crimp, to models where a changing 
follicle shape determines the crimp characteristics. The problem in the latter group 
of models becomes one of proposing a mechanism which causes the follicle to flex 
and twist; no satisfactory mechanism has ever been suggested. For example, Chapman 
(1965) suggested that the arrector pili musculature attached to primary follicles 
would cause the follicles to flex and twist. Chapman (unpublished data) has subse­
quently shown that follicles continue to produce crimped fibres after the arrector 
pili have been removed. 

In this paper, a mechanism is proposed which is capable of predicting many of 
the observed characteristics of crimp in wool and all the observed crimp waveforms 
listed above. The mechanism involves feedback, since it depends on small movements 
within the follicle caused by crimp itself, and, therefore, cannot be strictly classed 
with either of the model groups mentioned above. 

Outline of the Mechanism of Crimp Formation in Qualitative Terms 

A longitudinal section of a wool follicle is shown in Fig. 2a. Mitotic activity 
is confined to the bulb. As the cells develop and divide they migrate up the follicle, 
differentiating into a number of roughly cylindrical layers referred to as outer root 
sheath, inner root sheath and fibre. The inner root sheath is divided further into 
three layers, indicated in Fig. 2b. The fibre consists of a cortex [plus medulla when 
the diameter is large enough (Auber 1950)] surrounded by the fibre cuticle. The 
cortex commonly consists of two hemicylinders. Although other geometrical arrange­
ments are also found (Amad and Lang 1957), this bilateral division of the cortex into 
two hemicylinders is the one which is usually associated with crimp (Horio and 
Kondo 1953). In such a case it is known that the cells divide and develop more 
rapidly on one side of the bulb than on the other (Fraser 1964). It is suggested that 
this gives rise to a bilateral pressure distribution in the bulb with the high-pressure 
side being associated with the presumptive paracortex. 

It is proposed that as the cells migrate out of the bulb into the region just above 
the follicle bulb (suprabulb) the bilateral pressure distribution, together with the 
geometrical asymmetry of the bulb (e.g. slightly spiral-shaped), are sufficient to 
cause the cells of the inner root sheath and cuticle (i.e. of both the fibre and inner 
root sheath) to move around the fibre cortex to some extent (Fig. 3a). In the distal 
part of the bulb and in the suprabulb the fibre cuticle cells have already flattened 
to a significant degree (Auber 1950). The fibre cuticle is, therefore, like a thin annular 
cylinder rotating about the fibre cortex. In the supra bulb the cortical cells are 
elongated so that they appear spindle-shaped (Auber 1950). Micro- and macrofibrils 
are forming within the cells and are distributed periphero-axially to a significant 
extent, their long axis being parallel to the presumptive fibre (Auber 1950). It is 
suggested that bunches of fibrils within the fibre cortex behave as 'cogged cylinders' 
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and that the rotational movement of the fibre cuticle is passed on to the contents of 
the cortical cells through a gearing action. It will be argued later that the gearing 
action occurs mainly at the centres of the cortical cells (because the cells are tightly 
joined at their ends along the long axis with neighbouring cells). The net result is that 
each bunch of microfibrils will be twisted into a spiral and each cortical cell will 
tend to shorten. In order that the paracortex should lie on the inside of the curved 
wool fibre, consistent with observation (Horio and Kondo 1953), it is necessary 
that the twisting of the microfibrils be more effective (e.g. less slippage between 
engaging cogs) in the para- than in the orthocortex. The paracortical cells will, 
therefore, tend to shorten more than the cells of the orthocortex. If this were the 
complete picture then the fibre, once it emerges from the skin, would deform to the 
shape of a true circular helix. 

i 
(a) (b) 

Low 

High 8 
0-.~ 

Fig. 3. Cross-sections through the suprabulb, showing the position of the fibre cortex relative to the 
follicle wall. The bilateral pressure distribution is indicated by High, showing the region of high 
pressure associated with the paracortex, and Low, the- region of low pressure. The ortho- and 
paracortex are indicated by 0 and P, respectively. The rotational movement of the inner root sheath 
is shown as a solid arrow drawn between the high and low pressure regions in the follicle. In (a) the 
inner root sheath rotates clockwise. The cortical cells will eventually tend to untwist in an anti­
clockwise direction causing the fibre cortex to move to the lower left quadrant (b) stopping the inner 
root sheath movement. The pressure gradient, however, remains and an anticlockwise movement 
of the inner root sheath begins (c). Once this part of the fibre moves into the effective region (see 
text) the untwisting of the cortical cells will at first tend to offset the previous movement of the fibre 
and eventually drive it into the lower right quadrant (d). The anticlockwise movement of the inner 
root sheath is stopped while the pressure gradient, once again, remains so that conditions eventually 
return to the situation in 3(a). 
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As t,he fibre develops and moves up the follicle, however, the stresses induced 
in the fibre in the suprabulb cause the fibre to deform slightly while still in the follicle. 
This sets off a sequence of events which repeats itself over and over again. The 
fibre, tending to deform to a helix while still in the follicle, forces the fibre cortex 
in the suprabulb to move over to the side of the follicle (Fig. 3b). This reduces 
the rotational movement of the inner root sheath and cuticle, which is the cause of 
the tendency to deform, and eventually stops it. The bilateral pressure distribution 
remains, however, so that the inner root sheath and cuticle in the suprabulb begin 
to rotate in the opposite direction around the fibre (Fig. 3c). (A more complete 
description of these events is given later.) The fibre now being formed, once it reaches 
the upper part of the follicle, will tend to deform to a helix of opposite direction 
(e.g. a left-handed instead of a right-handed helix). This causes the fibre cortex in 
the suprabulb to move away from the side of the follicle towards the opposite side 
where, once again, it stops the rotational movement (Fig. 3d). The rotational 
movement begins again in the opposite direction, returning the situation to the point 
4S indicated initially in Fig. 3a. The fibre which now emerges will tend to deform to 
an alternating helix, i.e. a helix which keeps reversing its direction [see Introduction, 
form (1)]. 

There is a third factor which must be taken into consideration. In general the 
follicle bulb is not only deflected as shown in Fig. 2b, but curves slightly so that it 
tends to spiral. It is suggested that a spiral-shaped bulb will cause the rotational 
movement of the inner root sheath to be greater in one direction than in the other, 
leading to an alternating helix which rolls either slowly [see the description of form (1)] 
or more rapidly, depending on the degree to which the follicle bulb itself spirals. 
If the bias introduced by the spiral shape of the bulb is great enough so that the 
rotational movement never reverses, then the fibre which emerges will deform to a 
distorted helix [form (2)], an example of which will be given later. 

The mechanism, as outlined above, is based upon a series of assumptions, as follows: 
(1) There is a net rotation of the inner root sheath and cuticle about the fibre 

cortex in the region of the suprabulb. 
(2) The rotational movement of the fibre cuticle in the suprabulb region is passed 

on to the elongated cortical cells and the microfibrils contained within them, 
through a gearing action in which bunches of microfibrils, known to be 
aligned to a significant extent with the axis of the fibre (Auber 1950), act as 
if they are 'cogged cylindrical gears'. The 'gears' are envisaged as extending 
nearly the full length of the cell. 

(3) The gearing action is confined mainly to the centres of the cortical cells. 
A small amount of twisting of the lower ends of the cells relative to the upper 
ends about the axis of the fibre also occurs. 

(4) The gearing action is more effective in the cells of the paracortex than of 
the orthocortex. 

(5) Young's modulus for both the inner root sheath and fibre increases with 
distance up the follicle. 

(6) The net rotational movement, K, adjusts towards its equilibrium value, K., 
at a rate proportional to the difference K - K.(P), where K. depends on the 
position (P, defined later) of the fibre cortex relative to the follicle wall. 

(7) The modulus of Ke is not altered by the movement of the cortex near the bulb. 
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It is envisaged that the rotational movement is concentrated in the cylindrical 
layers of cells making up the inner root sheath and cuticle [cf. assumption (1)] but 
there may well be differential movement between layers. Differential movement 
of cell layers up the follicle has been observed in wool follicles (Chapman 1971). 

In the examples discussed later the total net rotational movement of the fibre 
cuticle relative to the fibre cortex, denoted by K, is assumed to be 0·4 rad or about 
one-sixteenth of a full rotation. In the mathematical model this has been found to 
be sufficient to produce the observed crimp forms. 

In summary the consequences of the rotational movement are as follows: 
(1) Internal shear and longitudinal stresses will be induced in the cells of the cortex 

through the twisting of groups of microfibrils into 'spirals'. 
(2) The fibre will bend and twist to some extent while still in the follicle in response 

to the internal stresses within the fibre. 
(3) Any bending and twisting of the fibre within the follicle will cause the position 

of the fibre cortex relative to the follicle wall in the suprabulb region to change. 
(4) A change in the relative position of the fibre in the suprabulb region will 

cause a change in the magnitude and perhaps the direction of the net rotational 
movement of the inner root sheath and cuticle cells in this region. 

These effects constitute a feedback loop since any change in the magnitude of 
the rotational movement (4) will cause a change in the magnitude of the internal 
shear and longitudinal stresses induced in the cells of the cortex (1). The consequences 
(1)-(4) will now be discussed in detail and a quantitative description of the mechanism 
will be developed. 

A Mathematical Model of the Mechanism 

Glossary of Symbols 

Symbol 

i 
A 
a 

Al 
Cp 

D 
d 
Ei 

f 

gi 
K(t) 

K.(P) 
Ko 
Ks 

Lr 
L1 
L2 

Unit 

(rad) 
(rad) 

(mm2) 

(mm) 
(mm) 

(g day-2 
mm-1) 

(rad) 

(rad) 
(rad) 
(rad) 

(mm) 
(mm) 
(mm) 

Meaning 

Subscript; i = o,p,m denotes orthocortex, paracortex or matrix, respectively 
Angle of pitch of a circular helix formed by the fibre 
Angle of pitch of a circular helix formed by macrofibrils within the cortical 

cells 
Cross-sectional area of fibre component i = O,p 
Crimp prominence defined as the straight fibre length divided by the relaxed 

fibre length, i.e. length of the crimped fibre 
Fibre diameter 
Diameter of a 'cylinder' of microfibrils characteristic of cell type 
Young's modulus of fibre component i = O,p; it is often assumed in the 

paper that Eo = Ep = E 
Rotational movement which causes twisting of the cortical cells about the 

fibre axis is expressed as a fraction f of K(t) 
Effectiveness of gearing action in cortical cell, i = O,p 
Net rotational movement of the fibre cuticle relative to the fibre cortex, 

which in general changes with time t 
Equilibrium value of K(t) which depends on P(t) 
Constant used to define K. as a function of P(t )-d. equation (13) 
Bias in the value of K.(P) due to the spiralled shape of the follicle bulb-cf. 

equation (17) 
Follicle length 
Distance up the follicle at which fibre curvature begins to affect P(t) 
Distance up the follicle at which fibre curvature ceases to affect P(t) 
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Symbol 

L, 

I 
tJ.l 
M, 

pet) 

R 
Rh 
ret) 

T 
v 
z 

'oc* 
p-' 

Om 
0, 

GI 

<II 

Pi 

Unit 

(gmm2 
day-2) 
(mm) 
(mm) 
(mm4) 

(mm) 
(mm) 
(mm) 
(days) 

(days) 
(mm day-') 

(mm) 

(days) 

(rad mm-') 
(rad mm-I ) 

(rad) 

(g day-2 
mm-' rad-') 

Meaning 

Torque arising from fibre components i = o,p,m 

Length of cortical cell 
Change in length of cortical cell due to twisting of microfibrils 
Second moments of area of fibre component i = o,p,m about the centre of 

the fibre 
Quantity of arbitrary scale indicating the position of the fibre cortex 

relative to the follicle wall in the suprabulb region, as a function of time, t 
Radius of curvature of the fibre 
Radius of curvature of a circular helix formed by the fibre 
Crimp form produced in three-dimensional space 
Time defined so that t = 0 at the time the tip of the fibre, above the skin 

surface, was being formed 
Period of oscillation in K(t) and pet) 
Fibre length growth rate 
Distance up the follicle measured from the base of the bulb 

Arbitrary constant used to defined pet) 
Time constant for a change in K(t), i.e. time required for K(t) to move 

two-thirds of the way towards a new equilibrium value 
Angle of twist of hardened fibre per unit fibre length 
Effective angle of twist per unit fibre length remaining in the hardened 

fibre component i = O,p 
Longitudinal strain in fibre component i = O,p due to twisting of macrofibrils 
If r(t) traces out a circular helix in the z-direction, then <II is the phase 

angle of the point r(t) on the circle in the xy-plane 
Shear modulus of fibre component i = o,p,m 

Induction of Stress in the Cortical Cells [Assumption (2)] 

Rogers (1959a) has observed that cortical cells 'interdigitate with adjacent cells' 
through 'finger-like processes' at their ends. The drawings of cortical-cell packing 
by Auber (1950) suggest that this process is already beginning in the suprabulb 
through corrugation or convolution of cell membranes at the ends of the cells, as 
shown in Fig. 4a. Mercer (1961) regards this type of 'interdigitation of confronted 
membranes' as indicative of strong adhesion and states that 'desmosomes (tight 
junctions between cell membranes) usually form on such surfaces to add to the 
adhesion'. It follows that cortical cells in the suprabulb must be tightly joined, at 
their ends along the long axis, with cells above the supra bulb where no rotational 
movement of the fibre cuticle and inner root sheath occurs. The lengthwise joining of 
the cortical cells with neighbouring cells (Fig. 4a) would, therefore, tend to prevent 
the cortex in the supra bulb region from being rotated as a whole. The extent to 
which the fibre cortex does rotate with the fibre cuticle is, by definition, not included 
in K. The proposed gearing action [assumption (2)], however, could occur, but would 
be confined mainly to the central regions of the cells as indicated in Fig. 4a. Some 
twisting of the lower ends of the cells relative to the upper ends about the axis of the 
fibre is also required. It is assumed later that the lower ends of the cells are twisted 
O· 12 rad (70) about the fibre axis, in order to explain the twisting observed in the 
hardened fibre. 

The results presented in this paper suggest that about one-quarter of a turn by 
the cortical cells at their centres may be sufficient to produce the observed crimp 
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waveforms. Some breaking of desmosomes at the centres of the cells, where the 
torque is greatest, may be necessary. Chapman and Gemmell (1971) have observed 
broken desmosomes in the suprabulb region. 

(a) 

\, Iii "r '1 Fibre cuticle cells 

-I Cortical cells 

Rotation of cells 

1111IlIIli -000 
I ~ hi ~ lFIJ\ rh,J ~ No rotation 

Interdigitation 
-l'!l~l++lt---Cell nu.cle.us 

" Macroflbnls 

(b) 

c :: 
Fig. 4. (a) Idealized cortical-cell packing arrangement as seen in a longitudinal section of the fibre 
near the follicle bulb. It may be compared with those observed by Auber (1950, Fig. 12). The 
fibre cuticle is assumed to be rotating into the plane of the diagram. The effect of this in rotating 
the central regions of the cells through a gearing action is shown in two dimensions. (b) Cross­
section through the centres of the cortical cells, showing a regular two-dimensional packing arrange­
ment with no voids, in which no cell membrane moves counter to its neighbour. The direction of 
rotation of each cell and the fibre cuticle is indicated. 

Gearing Action [Assumptions (3) and (4)] 

The effect of the gearing action [cf. assumption (3)] is to twist the cylinders of 
microfibrils, causing cylindrical layers of microfibrils to spiral. This is consistent 
with the observations of Rogers (1959b) who attributes the 'whorly' appearance of 
macro fibrils in the orthocortex of wool fibres to spiral-type packing of the microfibrils. 
It is also tempting to suggest that the twisting may, in part, cause 'macrofibrils 
adjacent to the cell boundaries in the paracortex to develop into contiguous masses' 
and in the orthocortex to cause the macrofibrils to be 'predominantly circular in 
cross-section and build up as discrete bundles' as observed by Chapman and Gemmell 
(1971). These suggestions could be tested by comparing the structure of cells not 
influenced by a rotational movement of the inner root sheath (it is shown later in 
the paper that such a situation does occur in a predictable fashion) with those which 
are. 

An example of a two-dimensional packing arrangement of cells across the fibre, 
in which no cell membrane moves counter to its neighbour, is shown in Fig. 4b. 
In reality the packing arrangement is not regular and at least part of some 
membranes will be required to move in the opposite direction from neighbouring 
membranes. If there is sufficient energy associated with the rotational movement of the 
inner root sheath and fibre cuticle, either the opposing cell membranes will be forced 
to break contact with each other or groups of cortical cells will be forced to move 
about each other until a packing arrangement which is stationary with respect to 
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the gearing action is reached, or both will occur. Some of the rotational movement 
of the fibre cuticle may therefore be ineffective in causing the microfibrils to twist. 
This ineffective part of the rotational movement is, by definition, not included in K. 

Consider a group of microfibrils forming a 'cylinder' of diameter d which is 
characteristic of other groups within the cell. Let the fibre diameter be D. The 
fibre cuticle undergoes a net rotation of K rad while in the supra bulb, the sign of K 
specifying the direction of rotation. Ignoring any twisting at the ends of the cell 
the number of twists in the helical structure between the centre and the end of the 
cell is D I KI/2nd. The cortical cells of length, I, will tend to shorten by a distance AI 
and translate the torque causing the twisting into a longitudinal strain given by AI/I. 
The expression for AI is 

AI = DIKlg, 
where 

9 = (1 -sin a)/cos a . (1) 

The expressions for Al and 9 are based on relationships between the length (I), 
axial length, diameter (d) and angle of pitch (a) of a circular helix. The parameter g, 
which has a value between zero and one, will be referred to as the effectiveness of 
the gearing action since it specifies the fraction of the maximum amount of shortening 
theoretically possible (D I KJ) which occurs for a given rotational movement K. 
In general 9 will depend on other factors besides the angle of pitch a. The effect 
of any slippage between 'cylinders' involved in the gearing action, for example, 
should be included in g. 

If the proposed gearing action is responsible for the observed microfibril structure 
(Auber 1950; Rogers 1959b), in the orthocortex d would correspond to the diameter 
of macrofibrils characteristic of the orthocortex while in the paracortex d would 
have a value close to the diameter of the paracortical cells. The fibrillary structure 
would then be consistent with the 'whorls' seen in the orthocortex compared with 
the linear structure seen in the paracortex (Rogers 1959b). With this interpretation 
of the observations it seems reasonable to expect that the effectiveness of the gearing 
action in the paracortex (gp) will be different from that of the orthocortex (go). 
If gp is greater than go, AI will be greater in the para- than in the orthocortex, causing 
the paracortex to lie on the inside of the curved fibre, consistent with observation 
(Horio and Kondo 1953). Significant structural differences have been observed 
(Chapman 1976) between cells of the ortho- and paracortex in the suprabulb which 
could lead to a difference in the effectiveness of the gearing action in the two cell 
types. It seems reasonable to assume therefore that the gearing action is more 
effective in the cells of the paracortex than in the orthocortex [i.e. assumption (4)]. 

Deformation of the Fibre 

As the cells of the fibre cortex move through the upper half of the keratogenous 
zone (Fig. 2a) it has been observed (Chapman 1976) that the matrix, an amorphous 
component which develops between the micro- and macrofibrils, forms simultaneously 
with the microfibrils in both the para- and orthocortical cells. At a later stage 
disulfide bonds are formed, cross-linking the polypeptide chains of keratin which 
tend to be aligned with the axis of the fibre (Onions 1962). This is part of the process 
of hardening (Fig. 2a). The twisted microfibrils are now embedded in an amorphous 
'elastic cement', Le. the matrix. 
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As a first step in determining the deformation of the fibre within the follicle the 
effect of the longitudinal and shear stresses on the completed fibre alone will be 
considered. Once free of the constraint of the follicle, the microfibrils of the cortical 
cells will tend to untwist and release the stresses originally induced in the follicle bulb. 
The matrix prevents a reversal of most of the original movement of the fibre cuticle 
and the associated gearing action. Some release of the induced stresses, at least 
from those cells twisted about the fibre axis, can be achieved by twisting the completed 
(hardened) fibre. The shape of the deformed fibre may be estimated by considering 
the longitudinal and shear stresses separately. The shear stress provided by the 
cross-linking associated with the matrix (other factors such as the fibre cuticle should 
also be included; however, only the matrix will be referred to here) must balance 
the shear stress arising from the twisted microfibrils of the ortho- and paracortical 
cells. Let bm be the amount by which the fibre twists per unit length before equi­
librium between the cortical cells and the matrix is reached. bo and bp are the effective 
angles of twist about the fibre axis per unit fibre length which still remain in the 
ortho- and paracortex, respectively, following the untwisting. A p , /lp' Ao, /lo' and 
Am, /lm are the cross-sectional area and shear moduli of the para-, orthocortex and 
hardened matrix, respectively. In equilibrium the torque Lm, Lo and Lp in these 
three components must balance, i.e. Lm = Lo + Lp. From the relationship between 
shear stress and shear strain for a twisted cylinder it follows that the torque for each 
component is given by 

Li = J ribi/lJi dA i , = o,p,m, 

hence 

/lmMmbm = /lpMpbp +/loMobo, (2) 

where 

bm +bi =fK/I, i = o,p. (3) 

f K is the rotational movement which caused twisting of the cortical cells about 
the fibre axis, expressed as a fraction, f, of K.Mi are the second moments of area 
of each component about the centre of the cylinder (fibre). An expression for bm 

in terms of K may be obtained by substituting equation (3) into equation (2): 

bm = [(/lpMp +/loMo)/(/lpMp +/loMo +/lmMm)]·(fK/I) 

= /lK.fK/I. (4) 

/lK is a ratio involving the shear moduli of various components of the fibre and the 
second moments of area over which they are distributed. 

The longitudinal strains cause the fibre to bend with curvature R -1. An expression 
for R in terms of the mechanical properties of the fibre has been derived in the 
Appendix. If it is assumed, for the sake of simplicity, that Young's modulus for 
the ortho- and paracortex, denoted Eo, Ep , respectively, are equal and that the fibre 
has circular cross-section with Ap = Ao' then 

R = 3nD/16(ep -eo). (5) 

ep and eo are the longitudinal strains in the para- and orthocortex of the emerged 
fibre. They may be expressed in terms of K using equation (1): 
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8j = DIKlgJI, i = o,p (6) 

Substituting equations (6) and (3) in equation (5) produces the following relationship 
for R: 

R = 3nl/16 1 KI(gp -go). (7) 

Equations (4) and (7) relate· the twisting, 15m , and curvature, R-t, at a point x, 
say, along the fibre to the physical properties of the fibre at x and the net rotational 
movement, K, of the inner root sheath and cuticle,which occurred at the time that 
the part of the fibre at x was being formed. If the physical properties and K remain 
unchanged with time then the deformation shape of the fibre would be a circular helix 
with angle of pitch, A, and radius Rh where 

Rh = Rcos2 A, 

A/cosA = nR!5m/2. 

(8) 

(9) 

These equations can be obtained using formulae describing a circular helix (cf. 
Thomas 1962). Substituting for R and 15m in equation (9) from equations (7) and (4) 
would show that the right-hand side of equation (9) depends on the sign of K and is 
independent of its magnitude. If the sign of K changed then the helix would appear 
to suddenly change from being right-handed, for example, to left-handed. 

In general the fibre at each point along its length, both within and outside the 
follicle, will tend to deform to a helical shape with the angle of pitch and the radius 
of curvature determined by the net rotational movement which influenced the develop­
ment of the fibre at that point [see equations (7), (8) and (9)]. The degree to which 
the fibre within the follicle actually deforms will be stronglY,.influenced by the elastic 
properties of the follicle itself.'" 

Relative Position of the Fibre Cortex near the Bulb [cf Assumption (5)] 

The curvature and twisting of the fibre within the follicle will determine the position 
of the fibre cortex, relative to the follicle wall near the bulb. Since the fibre tends to 
deform to a helical shape within the follicle the cortex near the bulb will tend to 
move into one of two adjacent quadrants as shown in Fig. 3. For the purposes of 
the mathematical model it is not necessary to known the precise position. A quantity 
P(t) is introduced as an indicator of the position of the cortex near the bulb at time t. 
P is proportional to the expected displacement of the follicle bulb due to curvature 
of the fibre within the follicle: 

fLf 

P(t) = a* 0 sgn K/R(z) dz . 

a* is a constant, L f is the follicle length and z ranges between zero at the base of the 
bulb and L f at the skin surface. Using equations (A5) and (A6) (Appendix), which 
include the effects of the inner and outer root sheaths, to substitute for R(z) and making 
use of equations (6) and (3) it follows that 

fLf 

pet) = a* 0 G(z)K[t -(z/v)]F(z) dz, 

where 

G(z) = E(z) up Ap D(gp -go)/21, 
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and 

F(z) = [E(z) (10 +lp) + E irs (z) lif5 +EorJorsr l . 

E, E irs and Eors are Young's moduli for the fibre, inner root sheath and outer root 
sheath, respectively, and uP' 10 , Ip, lirs and lors are defined in the Appendix. v is the 
length growth rate of the fibre. Time, t, is defined such that t is zero at the time the 
tip of the emerged fibre was being formed in the follicle bulb. The sign of P determines 
in which of the two quadrants the cortex is located. The magnitude of P gives the 
distance of the cortex from the follicle centre. 

Assumption (5) seems reasonable for the inner root sheath since it is known 
that hardening of the inner root sheath increases with distance from the follicle 
bulb (Auber 1950). The effect of various stages of keratinization on Young's 
modulus for the fibre is not known, although hardening of the fibre also increases 
with distance from the bulb. In addition, if the moisture content of bulb cells is 
similar to that of other tissues at about 80 % and the maximum moisture content 
of keratinized fibre cells (i.e. at 100 % R.H.) is 33 % (Onions 1962), it follows that the 
water content of the fibre must decrease as it moves up the follicle. Young's modulus 
is known to increase in wool fibres with decreasing water content (Onions 1962). 

F(O) 

.. 
Lr 

~G(Lf) 

5: 
t.:l 

5: 
~ 

.. 
5: 
t.:l 

Fig. 5. Example of the functions F(z) 
and G(y), defined in the text, and their 
product as a function of the distance, z, 
from the follicle bulb. z is plotted on 
the horizontal axis as a proportion of 
follicle length, L,. The product F(z) G(z) 
is compared to a step function. 

o ! r I I "'h-- 1.0 

Lf 

z 

Assumption (5) has the consequence that function F(z) in the definition of P (t) 
will decrease with distance, z, from the follicle bulb. G(z) on the other hand will 
increase. A possible example of the functions F(z) and G(z) and their product is 
shown in Fig. 5. Only the values of K associated with position along the fibre between 
Ll and L z would significantly influence P in this case suggesting that P might well 
be approximated by the less complicated expression: 

IL2 

P(t) = rx K[t -(z/v)] dz, 
Ll 

(10) 

where rx is a constant. This is equivalent to using a step function, shown in Fig. 5, 
as the weighting function of K. Equation (10) may also be written in the differential 
form, 

dP(t)/dt = cw{K[t -(Ll/v)] -K[t -(Lz/v)]}. (11) 

In this form the equation becomes one of the model equations summarized later. 
In the previous section it was shown that at each point along the fibre, the tendency 

is to deform to either a left-handed or a right-handed helix depending on the sign of K. 
Since the paracortex is always on the concave side of the curvature the expected 
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relative movement of the cortex near the bulb is illustrated in Figs 3a and 3b. At 
the stage shown in Fig. 3a the rotational movement of the inner root sheath is such 
that untwisting of the cortical cells, once they pass into the effective region between Ll 
and L 2 , will cause the relative position of the presumptive cortex to move in the 
direction indicated by the dashed arrow. The cortex, therefore, moves in such a 
way that K is reduced and finally reversed. This is shown quantitatively in a later 
section when the model equations are summarized and solved. The eventual position 
of the cortex may be only slightly off-centre. Non-central positioning of the cortex 
near the bulb is observed (Auber 1950) in follicles containing deflected bulbs. 

Magnitude and Direction of the Net Rotational Movement [Assumptions (6) and (7)] 

The fluid dynamical problem concerning the viscous compressible flow of 
developing cells out of the bulb through the supra bulb region and up the follicle 
is a formidable one. No attempt will be made here to consider the complexities of 
this problem. Instead only the magnitude and direction of the postulated net rotational 
movement will be quantified on the basis of assumptions (6) and (7). 

Assumption (6) simply asserts that there is a finite time required for the net 
rotational movement to adjust to any changes in the factors which cause it. The 
adjustment is assumed to be a very simple one which may be written mathematically as: 

dK(t)Jdt = -f3[K(t) -Ke(P)], (12) 

where f3 is a constant. 
In view of the discussion concerning assumption (1), assumption (7) may be 

considered equivalent to assuming that the mitotic activity in the bulb and the 
asymmetrical shape of the bulb remain unaltered by the changing position of the 
fibre cortex near the bulb. Assumption (7) states that the modulus of Ke is a 
constant, leaving only the sign of Ke to be determined. The sign of Ke was deduced 
on the basis that the fibre, contained in the follicle, will deform to a helical shape 
with the paracortex on the concave side of the curvature as discussed in the previous 
section. In forming the helix the fibre tends to twist in the reverse direction to the K 
which induced the shear and longitudinal strains. The effect on the cortex near the 
bulb is shown in Fig. 3. If the rotational movement of the inner root sheath is clock­
wise, as in Fig. 3a, the cortex will eventually be forced to move into the lower left 
quadrant (Fig. 3b). This will have the effect of reducing K, which is represented by 
changing the direction of Ke since the bilateral pressure distribution and bulb 
asymmetry remain. K begins changing direction and is ultimately reversed (Fig. 3c). 
As K reduces and changes sign the cortex eventually (i.e. once the effect of the change 
passes into the sensitive region between Ll and L2 ) moves back to the centre (Fig. 3c) 
and continues to move into the lower right quadrant (Fig. 3d). Ke is reversed, once 
again, since the rotational movement of the inner root sheath will be affected. The 
cortex will eventually move back to its original position (Fig. 3a) and the inner root 
sheath will be moving in a clockwise direction. Clearly Fig. 3 summarizes a feedback 
mechanism which is at the core of the proposed mechanism for crimp. If P is defined 
to be positive in the lower left quadrant (and negative in the lower right quadrant), 
Ke is defined as follows: 

K = {-Ko, P > 0 
e +Ko, P < O· 

(13) 
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Model of Crimp Mechanism 

The proposed crimp mechanism may now be summarized in the form of a 
mathematical model: 

dP(t)/dt = riV {K[t .;...(Lt/v)] -K[t -(L2/v)]), 

dK(t)/dt = -P[K(t) -Ke(P)], 

15m = JlR.fK/I, 

R = 3nl/16 I KIY[gpY -goY], 

Rh = Rcos2 A, 

A/cos A = nRDm/2. 

(11) 

(12) 

(4) 

(14) 

(8) 

(9) 

Equation (14) was obtained from equation (5) and substituting 

Bi = D(I Klg;)Y/I, i = p,o 

which, if y "# 1, introduces a non-linear relationship between longitudinal strain 
and degree of effective twisting, emphasizing that equation (1) is an approximation. 
Non-linear stress-strain relationships are frequently observed and wool is one 
substance for which a non-linear relationship has been observed (Onions 1962). 
The non-linearity is introduced here to make the angle of pitch, A, depend to a 
small extent on K. For y > 1, A will pass through n/2 as K decreases and changes 
sign allowing a smoother transition for a change in direction of the helix than would 
be the case for y = 1. 

iii 
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Fig. 6. Equations (11) and (12) 
were solved using the parameter 
values in Table 1. K was initially 
set to zero and P to a very small 
positive value. Both P and K 
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of time. Ke(P) is also shown. 
The small perturbation given to 
P has caused both P and K to 
oscillate. 

The set of equations listed above will, in general, define a different helix at each 
point of time. Therefore, the following equations, which may be obtained from the 
analytical description of the helix, are needed to complete the model: 

dr(t)/dt = v[ -cos(A)cos(<I»i +cos(A)sin(<I»j + sin(A)k]sgn(K), (15) 
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d<l>/dt = (cos(A) V/Rh)sgn (K), (16) 

where the vector r(t) is the crimp form produced in three-dimensional space, and 
i, j and k are unit orthogonal vectors along the x, y and z axes in a rectangular 
coordinate system. If r(t) traces out a circular helix such that the axis of the helix 
corresponds to the z-axis then the point r(t) in the xy-plane will trace out a circle 
with time. <I> is the angle between the point r(t) in the xy-plane and - j and will be 
referred to as the phase of the helix. In general the procedure is to first solve for K 
using equations (11) and (12) and then to evaluate equations (4), (14), (9), (8), (15) 
and (16) in sequence and obtain the crimp form given by r(t). Several examples 
are discussed in the next section. 

Table 1. Model parameter values used to obtain the results discussed in the text, unless stated otherwise 

Parameter 

IX 

P 
L, 
L2 
Ll 
V 

PR 
gp 

Ko 
f 
go 
y 
I 

Value 

2x 10-4 

O' 5 day-l 
2mm 
0'5mm 
1·5mm 
0·3 mm/day 
O'S 
0·4 
O' 412 rad (240

)} 

0·35 
0·1 
1 ·1 
O'lmm 

Comments 

Arbitrary; set to constrain P, -10 pm < P < + 10 pm 
N.d. A 

Typical value (Nay and Johnston 1967) 
L2 < Ll < Ll 

Typical value (Downes and Sharry 1971) 
o < PR < lA 
N.d.A 

These three parameters set to obtain -n/2 < <I> < n/2, 
Cp = 1·4 and R- 1 ~ 1· 5 mm- 1 (see text), with the 
constraint go < gp 

Set to be slightly greater than 1, for reasons discussed in text. 
Typical value (Brown and Onions 1961) 

A No data are available on the basis of which an estimate of the parameter can be made. 

Equations (11) and (12) contain the feedback mechanism which is essential for 
crimp. While P = 0, K = 0 is a solution to these two equations, it is unstable and 
a slight perturbation will cause both P and K to oscillate as shown in Fig. 6. The 
results in Fig. 6 were obtained by solving equations (11) and (12) numerically using 
the parameter values given in Table 1. 

It is possible to obtain an approximate analytical solution to equations (11) and 
(12) by using the describing-function method, as described, for example, by Jacobs 
(1974). It is intended to present the details of this method as part of another paper. 
In particular it is possible to derive algebraic expressions for both the period, T, 
and amplitude of oscillation in P. Once T is known equation (12) may be solved 
with the result 

K {- Ko + Kl exp( - flt), 0 < t < T/2 
(t) = Ko-K1 exp[-fl(t-T/2)], T/2 < t < T' 

where 
Kl = 2Ko/[1 + exp( - flT/2)]. 

Some of the parameter values in Table I are based on direct experimental observations 
and these have been indicated. There are other indirect observations which also 
help to constrain some of the values of these parameters: Cp , the ratio of straight 
length to relaxed or crimped length (referred to as crimp prominence by the present 
author-see also Rossouw 1931 ; Balasubramaniam and Whiteley 1964), fibre curvature, 
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Fig. 7. All diagrams correspond to three-dimensional views of a ribbon cut from a fibre 50 /lm 
in diameter. The fibre is assumed to consist of two hemicylinders, one corresponding to the 
paracortex and the other to the orthocortex. The ribbon has been taken through the centre 
of the fibre, at right angles to the join of the two hemicylinders. (a) Alternating helix crimp 
form produced using the parameter values in Table 1. If a bias K, in the rotational movement 
is introduced the plane of the crimp form in (a) rotates as seen in (b), (c) and (d) for K, = 2°, 
5° and 10°, respectively. If the bias dominates the rotational movement, e.g., K, = 40° and 
Ko = 10°, then the result is a helical crimp form seen in (e) which may be compared with a 
true circular helix (K, = 40° and Ko = 0°) shown in (I). 
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R- 1 (Brown and Onions 1961), and measurements of <1> (Rossouw 1931), defined in 
equation (16). Assuming that gp = 0·4, then values for go, IlR and Ko in Table 1 were 
chosen so that Cp = 1·4, R -1 = 1·5 mm -1 and - nl2 < <1> < n12, which are typical 
of observations. 

Results and Discussion 

When the model equations (listed in the previous section) are solved using the 
values of parameters listed in Table 1 the result is an alternating helical crimp form 
(i.e. class 1, described in the Introduction). This is shown in Fig. 7a when viewed 
along the axis (approximately) of the cylinder. The form when viewed from the top 
and side is shown in Fig. S. These results should be compared with Figs la, Ib and Ie. 
The phase of the alternating helix, <1>, ranges between ± n12, consistent with the 
measurements of Rossouw (1931). When viewed from above (Fig. Sb) the form 
appears to approximate a series of semicircles (the horizontal scale is 2·5 times the 
vertical scale in Fig. S) and compares well with that observed (Fig. Ib). The side view 
(Fig. Sa) shows a series of sharp peaks separated by smooth troughs which once 
again is in very good qualitative agreement with observation (Fig. Ie). The falling 
away of the fibre in this plane of view in theory (Fig. Sa) is due to the asymmetry 
of the oscillation of K with respect to a reversal in time, i.e. K(t' + t) =f. K(t' - t), 
where K(t') is a maximum or minimum of K(t) occurring at time t' (see Fig. S). 
If K(t) were a trigonometric function, of time for instance, no such falling away 
would be observed. 

It is more usual (Chapman 1965) to find that the plane of the alternating helical 
form rotates every two to eight crimps (Fig. la). This can be achieved within the 
present model by introducing a bias, Ks' into the definition of Ke(P) as follows: 

K (P) = {-(Ko +Ks), P > 0 
e Ko +K., P < ° (17) 

The crimp form obtained for several increasing values of Ks are shown in Figs 7b, 7e 
and 7d. The 'rolling' effect of Ks is clearly visible. The interpretation of Ks is that it 
corresponds to the degree to which the follicle spirals in the suprabulb region. In 
such a case it seems reasonable to expect that the inner root sheath will be forced, 
due to friction, to rotate to some extent about the axis of the follicle. The direction 
of rotation would be determined by the spiral shape of the follicle near the suprabulb. 
If there is also a bilateral segmentation in the pressure distribution, within the bulb, 
it follows that the proposed rotational movement of the inner root sheath will be 
biased by the spiral shape in a manner which is described by equation (17). The 
results in Figs 7b, 7e and 7d, therefore, suggest that the rotating plane of the alternating 
helical waves is the direct result of a spiral-shaped follicle. 

If the bias introduced by the shape of the follicle dominates the variation in the 
rotational movement caused by the feedback mechanism then a helical or class-2 
crimp form will result. Two examples of helical or class-2-type crimp forms were 
obtained (Figs 7 e and 7/) by setting Ko = nl IS, Ks = n14· 5 and Ko = 0, Ks = n14· 5. 
A zero value for Ko results in a true helix (Fig. 7/) but a non-zero value causes the 
axis of that helix to move along a curved, perhaps helical, path (Fig. 7e). 

These results suggest that deflected bulbs produce class-l forms and spiralled 
bulbs produce class-2 forms, which is consistent with the statement by Wildman (1932) 
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that 'the shape of the basal portion of the follicle largely determines the shape of 
the fibre produced'. Class-3 crimp forms or uniplanar waves can also be produced 
within the model proposed here under similar conditions assumed for class-l forms. 
The difference required appears to lie in the detailed structure of the relationship 
between longitudinal and shear strain for the para- and orthocortical cells. It is 
intended to present the details of this special case in a separate paper, since it would 
lengthen this discussion considerably. 

It may be concluded, therefore, that the model summarized in the previous section 
has the capacity to produce all three major classes of crimp form. Apart from 
predicting the shape or form, any proposed mechanism for crimp must also be capable 
of interpreting the relationships known to exist between staple-crimp frequency 
and fibre diameter. These relationships are, however, complex and depend on the 
level of nutrition and age as well as on genetic factors (Roberts and Dunlop 1957). 
A comparison of crimp frequency predicted by the mechanism proposed here, with 
observations, would require a fairly long discussion. It is intended to present the 
model predictions and comparison later. It will be shown that predictions are con­
sistent with the known dependence of crimp frequency on follicle length (Nay and 
Johnston 1967) which is related to fibre diameter. 
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Appendix 

Curvature of an Unrestricted Fibre 

Consider a fibre which at a certain point along its length is bent with curvature 
R -1. The cross-section of the fibre at that point is an ellipse (shown in Fig. 9a). 
The fibre consists of bilateral segments with the paracortex on the inside of the curva­
ture as indicated in Fig. 9b which shows a longitudinal section of the fibre in the 
plane of the curvature. It is possible to express R in terms of the mechanical properties 
of the fibre; the properties needed are Young's moduli (Ep, Eo), the longitudinal 
strain (ep , eo) and the geometrical distribution of the para- and orthocortex in the 
cross-section. The expression is obtained by imposing two constraints which must 
be true if the bent fibre is free of external forces: 

(1) There must be zero net force acting on the cross-section, i.e. 

fb fW f-hfw 
-h -w So dx dy + -b -w Sp dx dy = 0, (Ai) 

where 
w = [a2 -(ayjb)2]~ 

and 
Si = Ei[(e i -e) +(y+c)]jR, i = p,o 

c is the point (in the y-direction) at which there is zero longitudinal stress due to 
bending, and is therefore defined by the condition: 

fb fW f-hfw 
-h -w Eo(y+c)jR dx dy + -b -w Ep(y+c)jRdxdy = 0, 

i.e. 
Eo[uo - (h-c)]Ao = Ep[up + (h-c)]A p, (A2) 

where Uo and up are the distances of the centres of gravity in the ortho- and 
paracortex from the join between these two segments (Fig. 9b). Substituting 
equation (A2) in equation (A I) yields: 
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Eo (eo - e)Ao = Ep (ep - e)Ap, (A3) 

which determines e, the longitudinal strain existing in the unbent fibre. 
(2) There must be zero net moment about c, acting on the cross-section, i.e. 

fb fW f-hfw 
-h -w So(y +c) dx dy + -b -w Sp(Y +c) dx dy = 0, 

rh f~w Eo (eo ,;....e)(y +c) dx dy + f~bh f~w Ep(ep -e)(y +c) dx dy 

= -(Eolo +Eplp)/R, (A4) 

where 10 and Ip are the second moments of area of the ortho- and paracortex 
about c. Using equations (A2), (A3) and (A4) the expression for R is: 

R = (Eo 10 +Eplp)/(ep -eo)EpAp[up + (h -c)]. 

For a circular fibre with Eo = Ep and h = 0 the radius of curvature becomes: 

where D = a = b. 

-a 

(a) 

(b) 
I 
I 
I 
I 
I 
I 
R 

Curvature of a Restricted Fibre 

R = 3nD/16(ep -eo), 

+b 

Fig. 9. Cross-section of an 
elliptical fibre (a) and 
longitudinal section of a bent 
fibre through the plane of the 
bend (b), indicating the 
dimensions and structure of the 
fibre. 

The analysis of the previous section may be extended to take account of the effect 
of the inner and outer root sheaths in restricting the curvature of the fibre while it is 
still within the follicle. Consider the case of a root sheath restricting curvature at a 
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distance z from the base of the follicle bulb. The effect of both the inner and outer 
root sheaths will be included explicitly later. The fibre dimensions are the same as 
those in Fig. 9a. The root sheath surrounds the fibre and its outer boundary is an 
ellipse defined by x2jc2+y2jd2 = 1. Ers is Young's modulus for the root sheath. 

When condition (1) in the previous section is imposed equation (AI) becomes 

8+2 fdI--sw Ers[ -o+(y+c)]/Rdxdy = 0, 

where 8 is the left-hand side of equation (AI) and 

s = Jc2 -(cy/d)2. 

Equation (A2) becomes 

Eo[uo - (h-c)]Ao +Ep[ -up - (h-c)]Ap + Ers Ars C = o. 
and equation (A3) now has the form 

Eo (00 - o)Ao + Ep (op - o)Ap - oErs Ars = o. 
Imposing condition (2) now yields the following expression for curvature at the 

point z: 

R(z) = (Eo 10 +Eplp + Er.Irs)/{Epop[up + (h -c)]Ap -Eooo[uo - (h-c)]Ao}. 

In the case where Eo = Ep = E and h = 0 this equation reduces to 

R(z) = (Eo 10 +Eplp + Er.Irs)jEup Ap (op -00 ). (AS) 

The effect of two concentric root sheaths, namely, the inner and outer root sheaths, 
may be included by expressing Ers Irs as a sum of the two root sheaths as follows, 

Ers Irs Eirs I irs + Eors Iors , (A6) 

where Eirs and I irs are the Young's modulus and second moment of area about c, 
for the inner root sheath. Eors and Iors are the corresponding quantities for the outer 
root sheath. 
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