Invasive alien palm *Pinanga coronata* threatens native tree ferns in an oceanic island rainforest

Michael J. B. Dyer^{A,B,I}, *Gunnar Keppel*^{A,C,D}, *Marika Tuiwawa*^E, *Sainivalati Vido*^F and Hans Juergen Boehmer^{G,H}

^ANatural and Built Environments Research Centre, School of Natural and Built Environments and Future Industries Institute, University of South Australia, Mawson Lakes Campus, GPO Box 2471, Adelaide, SA 5001, Australia.

^BUnited Nations Development Program, MCO for Cook Islands, Niue, Tokelau and Samoa, Apia, Samoa.

^cFuture Industries Institute, University of South Australia, Mawson Lakes Campus, GPO Box 2471, Adelaide, SA 5001, Australia.

^DBiodiversity, Macroecology and Biogeography, Faculty of Forest Sciences, University of Goettingen, Büsgenweg 1, 37077 Göttingen, Germany.

^ESouth Pacific Regional Herbarium, Faculty of Science, Technology and Environment, University of the South Pacific, Suva, Fiji.

^FForestry Department, Ministry of Fisheries and Forests, Suva, Fiji.

^GSchool of Geography, Earth Science and Environment, Faculty of Science, Technology and Environment, University of the South Pacific, Suva, Fiji.

^HInstitute for Applied Ecological Studies (IFANOS), Baerenschanzstrasse 73, Nuremberg, Germany.

^ICorresponding author. Email: dyermj13@gmail.com

Supplementary Materials

Sampling design

Figure S1. The systematic grid sampling design applied in Colo-i-Suva Forest Park and Savura Forest Reserve on Viti Levu, Fiji, to assess the abundance of *Pinanga coronata* and native tree ferns. Crosses indicate the locations of known introduction sites of *P. coronata*.

S2 - Description of the response and explanatory variables

Response variable	Method description
Number of palm clumps	The number of palm clumps.
Number of stems	The number of stems in each clump. If a palm was mature but had not formed a clump, it was considered to have only one stem.
Mean number of stems	The sum of stems per plot was divided by the number of clumps.
Number of palm seedlings	The number of seedlings (< 0.5 metres in height).
Palm cover (%)	The crown area of each palm was estimated using a measuring tape. The total crown area of palms in a plot was divided by the area of the plot to obtain an estimate of palm cover.
Mean palm height (metres)	The height of each palm was measured and the sum of each palm's height was divided by the number of palm stems.
Max palm height (metres)	The height of the tallest palm in the plot.
Juvenile tree fern	Abundance of tree ferns between 0.1 - 1 metre in height.
Mature tree fern	Abundance of tree ferns > 1 metre in height.
Tree fern saplings	Abundance of tree ferns < 0.1 metre in height.
Tree fern cover (%)	Calculated by measuring the frond area of each tree fern. The total frond area in a plot was divided by plot's area to obtain an estimate of tree fern cover.
Tree fern volume	Volume was estimated by multiplying the basal area of the caudex by its height
Maximum tree fern height (metres)	Tallest tree fern in the plot.
Minimum tree fern height (metres)	Shortest tree fern in the plot (excluding saplings).
Mean tree fern height (metres)	The mean height of tree ferns in the plot (excluding saplings).

Table 1. The response variables measured in each 25 m^2 plot and a brief description of the method used to obtain their values.

Explanatory variable	Method description
Habitat type	Classified if the plot was in a mahogany plantation or lowland rainforest, coded as 1 and 2.
Topography	Classified as a ridge, valley or slope and coded as 1, 2 and 3, respectively.
Elevation (metres)	Height from mean sea level, measured on a Garmin Etrex 30®.
Slope (°)	Inclination measured from the centre of the plot using a LaserTechnology Inc True Pulse 360°B® rangefinder.
Canopy cover (%)	Estimated crown area directly above the centre of the plot, calibrated with a Panasonic Lumix DMC-FT5® digital camera.
Canopy height (metres)	Measured using a LaserTechnology Inc True Pulse 360°B® rangefinder with the standard height operating procedure.
Percentage of exotic volume	The percentage of exotic tree volume was calculated by dividing exotic tree volume by the total tree volume (native and exotic) in the plot.
Distance to nearest watercourse (metres)	Measured remotely using a Viti Levu watercourse layer.
Distance to nearest forest edge (metres)	Measured remotely using a Viti Levu roads layer and the boundary of Colo-i-Suva Forest Park and Savura Forest Reserve.
Distance to the nearest introduction site (metres)	Measured remotely from the nearest introduction site.

Table 2. The explanatory variables measured in each 25 m² plot and the method description to obtain their values.

S3 - Descriptive statistics

Table 3. Descriptive statistics (mean, standard deviation and range) of the response and explanatory variables in 90 lowland rainforest and mahogany plantation plots and the results of a Mann-Whitney U test between these two habitats for each variable.

Variable	Lowland rainforest $(n = 57)$	Mahogany plantation (n =33)	
	Mean \pm Sd, range	Mean \pm Sd, range	Mann-Whitney U value,
			<i>p</i> -value:
Palm	2.51 ± 7.32 ,	5.06 ± 7.04 ,	W = 1302,
clumps	0.00 - 43.00	0.00 - 32.00	<i>p</i> <0.001
Palm stems	5.59 ± 14.97 ,	$13.55 \pm 24.52,$	W = 1298,
	0.00 - 69.00	0.00 - 96.00	<i>p</i> <0.001
Mean stems	1.45 ± 7.24 ,	1.33 ± 2.12 ,	W = 1292,
per clump	0.00 - 9.75	0.00 - 9.40	<i>p</i> <0.001
Palm	23.89 ± 72.96 ,	$62.42 \pm 120.53,$	W = 1292,
seedings	0.00 - 389.00	0.00 - 613.00	<i>p</i> = 0.001
Palm cover	14.14 ± 33.01 ,	40.00 ± 44.02 ,	W = 1321,
	0.00 - 100.00	0.00 - 100.00	<i>p</i> <0.001
Tree fern	3.68 ± 3.62 ,	2.36 ± 4.09 ,	W = 671
saplings	0.00 - 13.00	0.00 - 16.00	<i>p</i> = 0.019
Juvenile	1.33 ± 1.73 ,	1.18 ± 2.39 ,	W = 779,
tree terns	0.00 - 9.00	0.00 - 11.00	<i>p</i> = 0.14
Mature tree	2.43 ± 2.21 ,	1.88 ± 2.15 ,	W = 761,
ferns	0.00 - 9.00	0.00 - 7.00	<i>p</i> = 0.13
Tree fern	36.32 ± 28.82 ,	26.67 ± 29.65 ,	W = 757,
cover (%)	0.00 - 90.00	0.00 - 100.00	<i>p</i> = 0.12
Min tree	$0.47 \pm 0.92,$	$0.22 \pm 0.59,$	W = 564,
fern height	0.00 - 8.00	0.00 - 3.00	<i>p</i> = 0.0012
Max tree	2.96 ± 2.06 ,	2.11 ± 1.93 ,	W = 693,
fern height	0.00 - 8.00	0.00 - 8.00	<i>p</i> = 0.038
Mean tree fern height	1.96 ± 1.54 ,	1.49 ± 1.31 ,	W = 798.7,

P-values were obtained at a 95% confidence interval (p < 0.05).

	0.00 - 6.00	0.00 - 5.50	<i>p</i> = 0.23
Tree fern	0.06 ± 0.24 ,	0.01 ± 0.02 ,	W = 735,
volume	0.00 - 1.79	0.00 - 0.13	<i>p</i> = 0.085
Elevation	$173.50 \pm 40.14,$	178.10 ± 28.35 ,	W = 1054,
	79.00 - 267.00	118.00 - 230.00	<i>p</i> = 0.35
Slope	18.22 ± 13.36 ,	13.12 ±14.56,	W = 713,
	0.40 - 45.50	0.00 - 55.00	<i>p</i> = 0.057
Canopy	56.49 ± 19.41 ,	$57.27 \pm 22.54,$	W = 987,
cover	20.00 - 90.00	20.00 - 90.00	p = 0.70
Canopy	$22.93 \pm 5.60,$	29.72 ± 4.39 ,	W = 713,
height	12.00 - 37.00	20.00 - 40.00	<i>p</i> <0.001
Percent	12.42 ± 31.59 ,	$67.94 \pm 42.65,$	W = 1523.5,
volume	0.00 - 100.00	0.00 - 100.00	<i>p</i> <0.001
Distance to	55.79 ± 57.02,	55.25 ± 57.72,	W = 931,
watercourse	1.00 - 241.00	1.00 - 253.00	<i>p</i> = 0.94
Distance to	$136.60 \pm 103.45,$	$101.20 \pm 97.07,$	W = 767,
nearest forest edge	5.00 - 432.00	2.00 - 419.00	<i>p</i> = 0.151
Distance to	$1632.20 \pm 498.58,$	1091.40 ± 713.21 ,	W = 500,
nearest introduction	576.80 - 2536.80	150.70 - 2818.10	<i>p</i> <0.001

S4 - Spearman correlation coefficients among explanatory variables

Table 4. Spearman correlation coefficients (ρ) for the explanatory variables measured in 90, 25 m² plots surveyed in Colo-i-Suva Forest Park and Savura Forest Reserve, on Viti Levu, Fiji.

	Elevation	Slope	Canopy height	Canopy cover	Distance to nearest watercourse	Distance to nearest forest edge	Distance to nearest introduction site
Elevation	1	$\rho = -7.2 \text{ x } 10^{-3},$	ρ = 0.12,	$\rho = -1.0 \times 10^{-3}$,	$\rho = 0.27,$	$\rho = -2.6 \times 10^{-2}$,	$\rho = -0.35,$
		<i>p</i> = 0.95	<i>p</i> = 0.28	<i>p</i> = 0.86	<i>p</i> <0.001	<i>p</i> = 0.82	<i>p</i> <0.001
Slope		1	$\rho = -0.11,$	$\rho = 0.14,$	$\rho = 4.5 \text{ x } 10^{-2},$	$\rho = 0.13,$	$\rho = 0.07,$
			<i>p</i> = 0.30	<i>p</i> = 0.15	<i>p</i> = 0.68	<i>p</i> = 0.24	<i>p</i> = 0.51
Canopy height			1	$\rho = -4.9 \text{ x } 10^{-2},$	$\rho = 6.1 \text{ x } 10^{-2},$	$\rho = 4.4 \text{ x } 10^{-2}$	$\rho = -0.46,$
				<i>p</i> = 0.64	<i>p</i> = 0.57	<i>p</i> = 0.68	<i>p</i> = <0.001
Canopy cover				1	$\rho = 0.052,$	$\rho = 6.4 \text{ x } 10^{-2},$	$\rho = 0.25,$
					<i>p</i> = 0.63	<i>p</i> = 0.55	<i>p</i> = 0.02
Distance to nearest					1	$\rho = -0.11,$	$\rho = 5.9 \text{ x } 10^{-2},$
watercourse						<i>p</i> = 0.32	<i>p</i> = 0.58
Distance to nearest						1	$\rho = 1.8 \times 10^{-2}$,
torest edge							<i>p</i> = 0.87

P-values were obtained at a 95% confidence interval (p < 0.05).

Distance to nearest introduction site

1

S5 - Species list of the trees present in the survey

Genus/Species	Family	Native/Exotic	Count
Agathis macrophylla (Lind.) Mast.	Araucariaceae	Native	1
Albizia sp.	Mimosaceae	Exotic	2
Anacolosa lutea Gillesp.	Olacaceae	Native	1
Atuna racemosa Raf, Sylva Tellur	Chrysobalanaceae	Native	4
Barringtonia spp.	Lecythidaceae	Native	4
Calophyllum vitiense Turrill	Clusiaceae	Native	1
Cerbera sp.	Apocynaceae	Native	2
Crossostylis spp.	Rhizophoraceae	Native	18
Dacrydium nidulum de Laub.	Podocarpaceae	Native	1
Decaspermum vitiense (A. Gray) Niedenzu	Myrtaceae	Native	1
<i>Dillenia biflora</i> (A. Gray) Mertelli ex Dur & Jacks.	Dilleniaceae	Native	7
Dolicholobium sp.	Rubiaceae	Native	1
Dysoxylum richii (A. Gray) C. DC.	Meliaceae	Native	5
<i>Endospermum macrophyllum</i> (Muell. Arg.) Pax & Hoffm.	Euphorbiaceae	Native	1
Eucalyptus sp.	Myrtaceae	Exotic	2
Garcinia myrtifolia A.C. Sm.	Clusiaceae	Native	6
Garcinia pseudoguttifera Seem.	Clusiaceae	Native	2
Geniostoma sp.	Loganiaceae	Native	1
Gironniera celtidifolia Gaud.	Cannabaceae	Native	1
Gnetum gnemon L.	Gnetaceae	Native	7
Gonystylus punctatus A.C. Sm.	Thymelaeceae	Native	4
Gymnostoma vitiense L.A.S. Johnson.	Casuarinaceae	Native	7
Haplolobus floribundus (C.T. White)	Burseraceae	Native	3
<i>Kingiodendron</i> sp.	Caesalpiniaceae	Native	1

Table 5. The tree species present with a DBH ≥ 0.1 metre in 90, 25 m² plots surveyed in Colo-i-Suva Forest Park and Savura Forest Reserve, on Viti Levu, Fiji.

Genus/Species	Family	Native/Exotic	Count
Macaranga sp.	Euphorbiaceae	Native	1
Maesopsis eminii Engl.	Rhamnaceae	Exotic	2
<i>Melicope</i> sp.	Rutaceae	Native	1
Myristica spp.	Myristicaceae	Native	19
Neuburgia sp.	Loganiaceae	Native	1
Pagiantha thurstonii (Horne ex Baker) A.C. Sm.	Apocynaceae	Native	1
Pandanus spp.	Pandanaceae	Native	4
Parinari insularum A. Gray	Chrysobalanaceae	Native	1
Pinus radiata D. Don	Pinaceae	Exotic	2
Pinus sp.	Pinaceae	Exotic	2
Spathodea campanulata Beauv.	Bignoniaceae	Exotic	1
Swietenia macrophylla King.	Meliaceae	Exotic	43
<i>Syzygium</i> spp.	Myrtaceae	Native	5
Terminalia sp.	Combretaceae	Native	2
Unknown sp.	Unknown	Exotic	2
Unknown sp. 2	Unknown	Native	1
Veitchia joannis Vietch and H.A. Wendl	Arecaceae	Native	1
Xylopia pacifica A.C. Sm.	Annonaceae	Native	7
Total			179

•

S6 - Summary of the Generalised linear mixed effect model

Table 6. Parameters for significant explanatory, fixed-effect variables retained in the best generalised linear mixed effect model (GLMM) explaining the abundance of *P. coronata* seedlings in Colo-i-Suva Forest Park and Savura Forest Reserve on Viti Levu, Fiji.

Habitat type was set as the random effect, but did not explain any variance. Distance = Distance to nearest introduction site. Degrees of freedom = 85.

	<i>F</i> -value	<i>p</i> -value	Coeff.
Intercept	10.02	0.00	5.26
Distance	-7.38	< 0.001	-1.9×10^{-3}
Canopy cover	-2.29	0.024	-1.8×10^{-2}

Table 7. Parameters for significant explanatory, fixed-effect variables retained in the best model for significant response variables in the best generalised linear mixed effect models (GLMMs) explaining the abundance for three different size classes of tree ferns (saplings, seedling, mature).

Habitat type was set as the random effect, but did not explain any variance. Degrees of freedom = 85; NS = not significant.

	Saplings		Juveniles			Mature			
	<i>F</i> -value	<i>p</i> -value	Coeff.	<i>F</i> -value	<i>p</i> -value	Coeff.	F-value	<i>p</i> -value	Coeff.
Palm cover	-3.45	< 0.001	-7.9 x 10 ⁻³	-3.43	< 0.001	-5.7 x 10 ⁻³	-3.08	0.002	-5.5 x 10 ⁻³
Slope	5.82	0.0036	1.9 x 10 ⁻²	2.67	0.0075	1.2 x 10 ⁻⁴	NS	NS	NS
Intercept	5.83	< 0.001	0.89	4.48	< 0.001	0.49	13.20	0.0	1.07