Supplementary material

Translocation and population establishment of *Schoenus scabripes* (Cyperaceae)

Cameron Milne^{A,C}, Stephen J. Trueman^{A,B}, Shahla Hosseini Bai^{A, B} and Alison Shapcott^A

^AGenecology Research Centre, School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore DC, Qld 4558, Australia.

^BCentre for Planetary Health and Food Security, School of Environment and Science,

Griffith University, Nathan, Qld 4111, Australia.

^cCorresponding author. Email: cameron@stringybark.com.au

Fig. S1. (a) Translocation machinery used during *Schoenus scabripes* translocation works. (b) Receiving site, showing recently placed turves of coastal heathland containing *Schoenus scabripes* at Caloundra Aerodrome, Australia. Photographs by C. Milne.

Fig. S2. Field establishment plots and treatments applied to nursery-grown *Schoenus scabripes* plants established at an offset revegetation site. The legend indicates the different treatments applied to the site, arranged in two groups, the northern plot and the western plot.

Fig. S3. Illustration of planting method for *Schoenus scabripes* and *Acacia suaveolens* companion plant, including identification tag and mulch treatments at the offset revegetation site.

Table S1.Stem and leaf nutrient concentrations (mg kg⁻¹) in nursery-propagated or wholetranslocated Schoenus scabripes plants in winter (August 2018, 22 months after establishment) and
summer (January 2019, 27 months after establishment)

Nursery plants had either: no treatment; mulch; or mulch and a companion plant. Means (±s.e.) of nurserypropagated plants for each season with a different lower-case letter are significantly different (ANOVA and Tukey's HSD test for winter, P < 0.05, n = 3-4. *t*-test for summer, P < 0.05, n = 3-4). Means (±s.e.) within each nutrient for translocated plants with a different upper-case letter between winter and summer are significantly different (*t*-test, P < 0.05, n = 21-22) Symbols † and ‡ represent a significantly different result between winter and summer within each treatment for nursery-propagated plants (*t*-test, P < 0.05, n = 3-4).

Nutrient	Season	Nu	Nursery-propagated plants		
		No treatment	Mulch	Mulch and	
				companion plant	
Ν	Winter	2755 ± 413^{a}	2874 ± 175^{a}	2579 ± 399^a	$4029\pm364^{\rm A}$
	Summer	_	3278 ± 305^a	3698 ± 260^{a}	$4186\pm509^{\rm A}$
Р	Winter	$81.26\pm4.41^{\mathrm{a}}$	100.32 ± 6.16^a	$84.15\pm14.95^{\mathrm{a}}$	$93.87 \pm 4.36^{\mathrm{B}}$
	Summer	_	115.33 ± 5.86^a	111.12 ± 10.39^{a}	$115.58 \pm 5.71^{\rm A}$
Κ	Winter	2878 ± 460^{b}	5083 ± 515^a	2605 ± 573^{b}	$3946\pm303^{\rm A}$
	Summer	_	5786 ± 907^{a}	4865 ± 634^{a}	$3753\pm226^{\rm A}$
Al	Winter	27.82 ± 5.68^a	21.01 ± 3.29^{a}	25.46 ± 5.81^{a}	$21.99 \pm 1.22^{\mathrm{A}}$
	Summer	_	12.73 ± 0.89^{a}	$17.07\pm2.47^{\mathrm{a}}$	$26.11 \pm 2.14^{\rm A}$
В	Winter	6.64 ± 0.70^{a}	$5.50\pm0.28^{a\dagger}$	$9.28\pm2.57^{\rm a}$	$4.75\pm0.14^{\rm B}$
	Summer	_	$4.03\pm0.20^{a\dagger}$	4.69 ± 0.49^{a}	$5.45\pm0.28^{\rm A}$
Ca	Winter	2947 ± 676^a	2453 ± 321^{a}	$2938 \pm 551^{a\ddagger}$	$1870\pm123^{\rm A}$
	Summer	_	1633 ± 130^{a}	$1590 \pm 215^{a\ddagger}$	$1195\pm59^{\mathrm{B}}$
Cu	Winter	$0.92\pm0.11^{\rm a}$	$1.21\pm0.17^{\rm a}$	2.58 ± 1.30^{a}	$0.84\pm0.04^{\rm B}$
	Summer	_	$1.35\pm0.09^{\rm a}$	$1.22\pm0.34^{\rm a}$	$7.02\pm2.88^{\rm A}$
Fe	Winter	67.74 ± 12.95^{a}	$81.47\pm3.50^{a\dagger}$	79.96 ± 13.28^{a}	$91.67\pm6.24^{\rm B}$
	Summer	_	$52.88\pm0.48^{a\dagger}$	52.58 ± 3.57^{a}	$223.25 \pm 32.21^{\rm A}$
Mg	Winter	3138 ± 658^a	$2878 \pm 112^{\rm a}$	2916 ± 198^a	$1995\pm67^{\mathrm{A}}$
	Summer	_	2531 ± 138^a	2394 ± 116^a	$1966 \pm 25^{\mathrm{A}}$
Mn	Winter	219.5 ± 39.3^{a}	$237.4\pm35.0^{\rm a}$	189.1 ± 47.7^{a}	42.2 ± 5.3^{A}
	Summer	_	176.7 ± 22.6^{a}	$103.7\pm38.4^{\mathrm{a}}$	$35.9\pm4.0^{\rm A}$
Na	Winter	1054 ± 395^{a}	$1516\pm369^{a\dagger}$	$785 \pm 247^{a\ddagger}$	$3189 \pm 133^{\mathrm{B}}$
	Summer	_	$3048 \pm 242^{a\dagger}$	$4408 \pm 661^{a\ddagger}$	$5507\pm246^{\rm A}$
S	Winter	768.83 ± 238.81^{a}	865.39 ± 146.25^{a}	969.56 ± 374.24^{a}	$759.54 \pm 70.79^{\rm A}$
	Summer	_	919.08 ± 296.18^{a}	609.72 ± 112.68^{a}	$623.3\pm56.8^{\rm A}$
Zn	Winter	$28.3\pm10.1^{\rm a}$	$25.3\pm7.6^{\rm a}$	$30.6\pm10.4^{\rm a}$	$10.5\pm0.8^{\rm A}$
	Summer	_	16.3 ± 1.4^{a}	$14.2\pm3.2^{\rm a}$	$12.37 \pm 1.10^{\text{A}}$