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Abstract. When flammable plant species become dominant they can influence the flammability of the entire
vegetation community. Therefore, it is important to understand the environmental factors affecting the abundance
of such species. These factors can include disturbances such as fire, which can promote the dominance of flammable
grasses causing a positive feedback of flammability (grass–fire cycle). We examined the potential factors influencing
the abundance of a flammable grass found in the understoreys of forests in south-east Australia, the forest wiregrass
(Tetrarrhena juncea R.Br.). When wiregrass is abundant, its structural characteristics can increase the risk of wildfire
ignition and causes fire to burn more intensely. We measured the cover of wiregrass in 126 sites in mountain ash forests
in Victoria, Australia. Generalised additive models were developed to predict cover using climatic and site factors. The
best models were selected using an information theoretic approach. The statistically significant factors associated with
wiregrass cover were annual precipitation, canopy cover, disturbance type, net solar radiation, precipitation seasonality
and time since disturbance. Canopy cover and net solar radiation were the top contributors in explaining wiregrass cover
variability. Wiregrass cover was predicted to be high in recently disturbed areas where canopy cover was sparse, light
levels high and precipitation low. Our findings suggest that in areas with wiregrass, disturbances such as fire that reduce
canopy cover can promote wiregrass dominance, which may, in turn, increase forest flammability.
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Introduction

The influence of species on the emergent properties of an
ecosystem is often proportional to their abundance (Parker
et al. 1999). In fire-prone landscapes, such as in Australia,
species within vegetation communities are fuels for wildfires
(Murphy et al. 2013; Duff et al. 2017), and the traits of each
species combine to influence flammability at landscape scales
(Schwilk 2003; Schwilk and Caprio 2011; Zylstra et al. 2016;
Tumino et al. 2019). When a flammable species becomes
abundant it can increase the flammability of an entire
vegetation community (Gill and Zylstra 2005; Schwilk and
Caprio 2011; Zylstra 2011) by contributing a disproportionate
amount to the total fuel loadorbyalteringstructural characteristics
of the vegetation community, for example, increasing fuel
continuity (Brooks et al. 2004; Berry et al. 2011). However, an

increase in the abundance of a flammable species may not
correlate with an increase in the flammability of a vegetation
community if the fuel becomesmoredensely packedwith a higher
packing ratio or bulk density (van Wilgen and Richardson 1985;
Scarff and Westoby 2006; Schwilk 2015; Fraser et al. 2016).

An example of an individual species that has become
dominant and altered the flammability of a vegetation
community is Lantana camara L. in the dry rainforest of
north-eastern Australia. This species increases the continuity
of fuel in the understorey, consequently increasing the potential
intensity and extent of fires that occur (Berry et al. 2011).
Similarly, the dominance of the invasive African gamba grass
(Andropogon gayanus Kunth) in northern Australia savanna
causes higher intensity fires by increasing the fuel load 7-fold
in comparison to natural fuels (Rossiter et al. 2003; Setterfield
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et al. 2010). In some instances, a positive feedback can be created
where fire promotes the abundance of a flammable grass
species, which, in turn, facilitates further fires (D’Antonio
and Vitousek 1992; Rossiter et al. 2003). This process, known
as a grass–fire cycle, has been observed in different
ecosystems around the world (D’Antonio and Vitousek
1992). A contrasting example is the succulent Carpobrotus
edulis (L.) N.E. Br. in California (Zedler and Scheid 1988;
D’Antonio et al. 1993), which has a high water content and
low flammability, hence, reduces the flammability of the
vegetation community when abundant (Brooks et al. 2004).

To better understand the drivers of flammability, it is
important to understand the factors influencing the abundance
of species that can have an effect on the flammability of plant
communities. Many environmental factors are potentially
important determinants of plant abundance, including
precipitation, temperature, solar radiation, canopy cover and
disturbance (Fig. 1). For example, studies have shown that in
drier areas, drought-intolerant species are rare whereas drought-
tolerant ones are generally abundant (Gaff and Latz 1978;
Badano et al. 2005). Similarly, in warmer areas, cold-adapted
plants are rare whereas thermophilic species are generally
abundant (Vesperinas et al. 2001; Kullman 2008). Shade-
tolerant species are also reported to dominate under deep
shade where shade-intolerant ones are generally absent
(Chávez and Macdonald 2010).

In multi-strata forest systems, canopy cover plays a role in
regulating plant abundance by modifying the factors that
directly drive plant abundance (Fig. 1). For example, light
and water (from precipitation) are intercepted by the canopy
(Valladares et al. 2016), resulting in a decrease in the
availability of these resources. Canopy shading also
decreases diurnal temperature and increases nocturnal

temperature (Jacobs et al. 1994; Niinemets and Valladares
2004), resulting in narrower daily temperature fluctuations
than those in the open. Studies also have shown that air
humidity is increased, and evaporation is decreased under
the canopy (Chen et al. 1995; Holmgren et al. 1997).
Canopy cover can change in response to other factors
including forest disturbance (e.g. fire, logging), drought or
disease. Disturbances by themselves can also directly affect
plant composition and abundance through their effects on
mortality of plant populations or as a cue for regeneration
and germination (e.g. fire-induced seed germination) (Gill
1981). The role of past disturbance influencing species
abundance directly and indirectly is also emphasised by the
grass–fire cycle concept (D’Antonio and Vitousek 1992).

One understorey species in south-eastern Australia that
reportedly increases in abundance after a fire disturbance is
the forest wiregrass (Tetrarrhena juncea R.Br., hereafter
referred to as wiregrass) (Stuwe and Mueck 1990; Penman
et al. 2009). Wiregrass has been reported to have a strong
influence on the overall flammability of the coastal and
foothill forests in south-eastern Australia (Buckley 1993;
Fogarty 1993) by increasing the continuity of the fuel bed
when it is abundant. It can sustain fire within a vegetation
community even at high levels of humidity and at much
higher surface litter moisture contents than fire would
otherwise be sustained (Buckley 1993). Presumably this is
because wiregrass has an aerated and elevated structure
with a high fraction of suspended dead material (Fogarty
1993), which has a lower moisture content than the fuel on
the forest floor as suspended materials have a high degree of
exposure to atmospheric drying. Wiregrass is a scrambling
grass that can climb over rigid supports even up to 6 m high,
and as such, it is likely to become a ladder fuel, increasing the
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Fig. 1. Canopy cover alters the micro-climate in the forest understorey affecting plant abundance. (In this study, canopy cover is the canopy provided by
the vegetation from ~1.6 m and above.) Broken lines represent the conditions as affected by canopy cover. Disturbance (e.g. fire, logging) may directly
affect both canopy cover and understorey plant abundance.
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vertical and horizontal continuity of the fuel bed. Wiregrass is
observed to abound under canopy gaps, with higher light levels
thought to be the responsible factor stimulating thick growth in
gaps (Lamp et al. 2001). However, Ashwell (1985), in his
study on wiregrass ecology in mountain ash-dominated
(Eucalyptus regnans F.Muell.) forest, could not confidently
conclude which abiotic variable – light or soil moisture –

played a greater role in defining wiregrass abundance.
Wiregrass is a common species but occurs at vastly
different levels of abundance in mountain ash-dominated
forest, hence, this forest type provides an ideal environment
to study wiregrass abundance.

In the present study, the aim was to identify the key
environmental factors influencing wiregrass abundance. We
conducted field surveys of wiregrass abundance in mountain
ash-dominated forest. We use our results to discuss the
conditions under which wiregrass becomes abundant and the
potential ofwiregrass to initiate a positiveflammability feedback
loop akin to the grass–fire cycle.

Methods

Study species
Wiregrass is a rhizomatous perennial grass that flowers during
the warmer part of the year – between November and April
(Walsh and Entwisle 1994). It assumes different structural
forms when abundant, such as thick swards and stook-like
structures climbing up to 6 m high over rigid supports like tree
trunks, tree ferns, tree stumps and shrubs. It is often found in
low abundances but can exhibit prolific growth and become the
dominant understorey species in certain areas. Wiregrass is
found in the states of Victoria, Tasmania, New South Wales,
Queensland and South Australia. It occurs in a wide range of
environmental conditions, from dry to moist habitats, and
occurs from sea level to the subalpine regions (Willis 1970;
Ashwell 1985; Ough and Ross 1992).

Study area and site selection
The study was conducted in mountain ash (Eucalyptus regnans
F.Muell.) forests in the Central Highlands region of Victoria,
Australia. Mountain ash forests occur in areas with deep,
fertile soils and high rainfall (>1000 mm year–1) (Ashton
and Attiwill 1994). The overstorey is dominated by
mountain ash trees but other eucalypt species including
E. cypellocarpa L.A.S. Johnson and E. obliqua L’Hér. are
sometimes present (Ashton and Attiwill 1994). Common
species in the understorey aside from wiregrass include
Pomaderris aspera Sieber ex DC, Olearia argophylla
F.Muell. ex Benth, Dicksonia antarctica Labill., Cyathea
australis (R.Br.) Domin, Correa lawrenciana Hook.,
Clematis aristate R.Br. ex Ker Gawl., Coprosma quadrifida
(Labill.) B.L.Rob., Polystichum proliferum (R.Br.) C.Presl and
Pteridium esculentum (G.Forst.) Cockayne (Ashton and
Attiwill 1994; Department of Sustainability and
Environment 2004).

Fires are an important part of the lifecycle of mountain ash
forests (Ashton 1981; Ashton and Attiwill 1994), and the
subsequent regeneration pathway after high and low
severity fires can be different (Ashton and Martin 1996).

Where fire severity is high, both the overstorey and
understorey are affected, and dense regeneration of
eucalypts from seed occurs, resulting in an even-aged stand
(Ashton 1976). Where fire severity is low, the understorey and
a few trees in the overstorey are affected (Ashton and Martin
1996; Benyon and Lane 2013), and a multi-age forest could
result (McCarthy and Lindenmayer 1998; Lindenmayer et al.
2000). Major wildfires have affected the study region,
including those that occurred in 1939, 1983 and 2009
(Collins 2009). Selective harvesting (Griffiths 2001) and
clear-fell logging (Florence 1996) have also been practised.

The study areawas stratifiedbasedon time (inyears) since last
disturbance, type of disturbance (fire and logging) and aridity.
Time since last disturbance was determined from mapped fire
history (Department of Environment, Land, Water and Planning
2009, 2016a, 2016b) and logging history (Department of
Environment, Land, Water and Planning 2016c). The type of
fire disturbance included a combination of low and high fire
severities. Aridity index (Nyman et al. 2014) was used as proxy
for topographic position and we aimed to locate sites across a
range of aridity values (Cawson et al. 2018). Additionally, all
sites were within 50–150 m of a road for accessibility, with less
than 30� slope for safety, and at least 500 m apart when they had
the same disturbance history. A total of 200 candidate plot
locations within each stratification unit were selected through
a spatial randomisation process.

We surveyed 126 sites out of the 200 candidate sites
between April and June 2016. Table 1 outlines the different
disturbance classes of the surveyed sites and the sample sizes
for each disturbance class. The majority of our study sites were
in the adolescent growth stage (9–35 years since fire or
logging) (Cheal 2010). The sites were a subset of those
surveyed by Cawson et al. (2018).

Field data collection
Wiregrass cover and canopy cover were assessed at each site
along two 50-m transects orientated parallel and perpendicular
to the slope. We used a line-point intercept method to measure
cover along each transect (Elzinga et al. 1998) as the method
provides higher precision than visual estimates (Godínez-
Alvarez et al. 2009). Hits were recorded at 2-m intervals
using a metal pin (1 m tall and 1.6 mm in diameter)
oriented vertically; a hit was when the pin touches
wiregrass at least once along its length. Wiregrass cover

Table 1. Disturbance classes, time since disturbance andgrowth stages
(according to Cheal 2010) of the study sites, and their sample sizes

Disturbance classes Time since
disturbance
(years)

Growth
stage

Sample size
(total n = 126)

2009 fire 7 Juvenility 33
1983 fire 33 Adolescence 20
1939 fire 77 Maturity 33
2000–2010 clearfell logging 6–16 Adolescence 20
1990–1999 clearfell logging 17–26 Adolescence 11
1980–1989 clearfell logging 27–36 Adolescence 6
Long unburnt 100+ Maturity 3
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was computed as the total number of hits from the two
transects divided by the total number of intervals from the
two transects. Canopy cover was recorded at the same 2-m
intervals along the transect using a vertical sighting tube (GRS
Densitometer, Geographic Resource Solutions, Arcata, CA,
USA; Wilson 2011) and using a binary system of ‘canopy’ or
‘sky’ for each point. Measurements were taken from a height
of ~1.6 m, thus canopy cover as used in this study
encompassed any vegetation above that height. Canopy
cover was computed as the total number of ‘canopy’ hits
from the two transects divided by the total number of
intervals from the two transects.

Aspect and elevation were recorded at each site. Aspect was
converted to degrees from north to account for the effect of
topography on microclimatic conditions. North-facing slopes in
the southern hemisphere have greater light intensity, higher
temperatures and lower moisture availability than south-
facing slopes (Swanson et al. 1988).

Environmental spatial data
We obtained precipitation and temperature variables from
WorldClim 1 global coverage climate map (resolution =
0.5 min of 1�, ~1 km), which uses long-term average climate
data from 1960 to 1990 (Hijmans et al. 2005). The spatial
resolution of this dataset may be considered coarse for a site-
level study; however, the distances between our sites are
generally more than 1 km, thus it should be suitable for

representing broad macroclimatic patterns. Smaller scale
effects were accounted for by the elevation and aspect
variables as potential indirect measures of changes in
temperature and moisture at finer scales.

We used the net total solar radiation derived from Nyman
et al. (2014), which accounted for the effect of topography on
radiation reaching the ground. Table 2 lists all the candidate
predictor variables in this study.

Data processing and analyses
A variable reduction process was undertaken to reduce the
confounding effect of collinear predictor variables. Pearson
correlation coefficients between predictor variables were
calculated (Appendix 1). When two variables had a
correlation greater than 0.7 (Green 1979; Dormann et al.
2013), we retained proximal variable over distal, or direct
variable over indirect, or resource variable over non-
resource. Austin (2002) defines proximal and distal as ‘the
position of the predictor in the chain of processes that link the
predictor to its impact on the plant’ – proximal being the more
likely to be causal in determining plant responses. Direct
variables are those with direct physiological effect on plants
such as temperature, as opposed to indirect variables such as
elevation (Austin 2002). Variables in bold in Table 2 were the
final set of predictor variables after removing correlated
variables.

Table 2. Potential predictors for the generalised additive modelling (GAM) process
Variables included in building the model after exclusion of highly correlated variables are in bold

Variables Units Source

Annual mean diurnal range �C WorldClim
Annual mean temperature �C WorldClim
Annual precipitation mm year–1 WorldClim
Annual temperature range �C WorldClim
Aspect Degrees Field measured
Canopy cover % Field measured
Disturbance type None Department of

Environment, Land,
Water and Planning
(2009, 2016a, 2016b)

Elevation m Field measured
Isothermality % WorldClim
Maximum temperature of warmest month �C WorldClim
Mean temperature of coldest quarter �C WorldClim
Mean temperature of driest quarter �C WorldClim
Mean temperature of warmest quarter �C WorldClim
Mean temperature of wettest quarter �C WorldClim
Minimum temperature of coldest month �C WorldClim
Net solar radiation MJ m–2 day–1 Nyman et al. (2014)
Precipitation of coldest quarter mm WorldClim
Precipitation of driest month mm WorldClim
Precipitation of driest quarter mm WorldClim
Precipitation of wettest month mm WorldClim
Precipitation of warmest quarter mm WorldClim
Precipitation of wettest quarter mm WorldClim
Precipitation seasonality % WorldClim
Temperature seasonality �C WorldClim
Time since disturbance Years (log-transformed) Cawson et al. (2018)
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We fitted a quasi-binomial generalised additive models
(GAM) of wiregrass cover against the final set of predictor
variables to determine which variables explained the observed
variability of wiregrass cover. GAMs were used as they fit data-
defined splines and make no assumptions about the form of the
relationships before fitting. GAMs were fitted using an
information theoretic approach whereby the degrees of
freedom available for each model term were set using a
shrinkage approach. This reduces complexity of fitted
relationships where there is limited statistical support.
Where statistical support for inclusion was not significant,
terms were excluded from the final model (in effect, a variable
selection process). A maximum of four knots were allowed for
each variable in fitting the GAMs. Models were fitted in R
using the mgcv package (ver. 1.8-24, https://CRAN.R-project.
org/package=mgcv; Wood 2011). The Shapiro–Wilk’s test
was performed on the residuals of the model to check for
normality of the distribution of residuals. We checked model
performance by comparing fitted values against the observed
values. We determined the relative importance of predictors by
calculating the change in R2 when each variable is added to the
model that contains all the other variables.

All analyses were performed using R (ver. 3.5.0, R
Foundation for Statistical Computing, Vienna, Austria, see at
https://www.R-project.org/).

Results

Wiregrass was present in most of the study sites (115 sites out
of 126), ranging in cover from 2 to 100% (mean = 43.9; s.d. =
30). Almost half (47%) of the study sites had a wiregrass cover
of at least 50%, where wiregrass either formed a sward on the
forest floor (Fig. 2) or climbed over rigid supports (e.g. shrubs,
tree trunks, tree ferns) up to 6 m (Fig. 2). Canopy cover (i.e. the
canopy provided by the vegetation from ~1.6 m and above) in
the study area ranged from 46 to 96% (mean = 76.9; s.d. =
12.2), where two-thirds of the study sites had a canopy cover of
more than 75%. Some sites with a canopy cover in the higher
range (�90%) still supported relatively high wiregrass cover
(at most 76% cover).

The model fitting process was able to create a GAM model
that explained 37.7% of the variability in wiregrass cover. The
parameters of the model are presented in Table 3. The model
identified six significant variables that explained the variability
in cover: annual precipitation, canopy cover, disturbance type,
net solar radiation, precipitation seasonality and time since
disturbance. Canopy cover and net solar radiation were the top
contributors of the model, with independent contributions of
more than 20% of the R2 (22 and 29% respectively), whereas
all the other variables contributed less than 10% each.
Wiregrass cover is predicted to be high in sites with
relatively low canopy cover (Fig. 3b), high net solar

Fig. 2. Wiregrass in theunderstoreyofwet forests. Topphotos: thickwiregrass swards covering the forestfloor.Bottomphotos: ‘stooking’wiregrass, climbing
through rigid support like tree trunks.
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radiation (Fig. 3d), lower annual precipitation with less
variation (Fig. 3a, c), and are recently burnt (Fig. 3c, f).
The model tended to overpredict low wiregrass cover and
underpredict high cover (Fig. 4).

Discussion

Environmental factors associated with wiregrass abundance

Low canopy cover and high net solar radiation are associated
with high wiregrass abundance, suggesting that wiregrass can
be considered as a gap or pioneer species. Canopy cover has a
direct influence on resources (i.e. solar radiation and
precipitation) reaching the understorey (Valladares et al.
2016), and it is likely that for this reason it was one of the
two most important factors influencing wiregrass cover.
Although this may be the case, net solar radiation reaching
wiregrass in the understorey can differ between sites having
the same canopy cover but different aspect (equator-facing v.
pole-facing slope) (Swanson et al. 1988), hence the
independent effect of net solar radiation from canopy cover
on wiregrass cover. The variability of wiregrass cover in the
understorey is likely to be a net response to a combination of
factors shaped by the canopy cover. Stands with sparse
canopies let more light and precipitation into the
understorey than stands with dense canopies (Anderson
et al. 1969; Chen et al. 1999), but the moisture will be
reduced because of increased evaporation (Nyman et al.
2018). These conditions under sparser canopies correspond
to higher wiregrass cover. This pattern is consistent with the
results of Ashwell (1985), who found wiregrass was highly
abundant in illuminated, drier areas. Further research is needed
to decouple the effects of light and water (both influenced by
canopy cover) on wiregrass growth and biomass to help us
understand the individual role and interactive effects of these
resources on wiregrass dominance.

Disturbance in general was associated with high wiregrass
cover, suggesting that wiregrass can take advantage of
disturbances to become dominant. Wapstra et al. (2003)
observed that wiregrass occurrence in Tasmania was more

pronounced in greatly disturbed sites (disturbances include
fire, logging and anthropogenic ones). Disturbance has been
associated with native species becoming unusually dominant in
their own range (Pivello et al. 2018), and also with exotic
invasive species that dominate new areas (Sher and Hyatt 1999).

The influence of time since disturbance on wiregrass cover
in the understorey is likely mediated by direct effects on
competition and indirect effect by changes in canopy cover.
During early post-disturbance, competition among species for
space and resources is lesser as many species are eliminated
(Sousa 1984), which means that species with the ability to
reproduce asexually like wiregrass can quickly increase in
abundance (Ashton and Martin 1996). Furthermore, resources
(e.g. light) can increase where disturbances reduce the canopy
cover. Consequently, wiregrass cover can become relatively
higher in the recently disturbed sites. Wiregrass cover did not
continue to decline significantly as time since disturbance
increased, most likely because of declining number of stems
per hectare in mountain ash forest as it ages (Ashton 1976).
This decline in the number of stems per hectare allows gradual
increase in light to the understorey. Wiregrass cover is likely to
increase again in very old stands (~200 years) where light may
have significantly increased (Ashton 1976).

Fire and logging disturbances differed in their effects on
wiregrass cover, most probably because of the differential
degree of disturbance fire and logging had on the sites.
Logging disturbs both vegetation and soil (Murphy and Ough
1997; Lindenmayer and Ough 2006), whereas fire mainly
disturbs the vegetation. Soil disturbance during a logging
operation may expose soil-stored seeds and rhizomes, which
are then destroyed during the burning employed as part of the
clear-fell logging procedure (Lindenmayer and Ough 2006).
Consequently, wiregrass regeneration after clear-fell logging
is potentially lower than after fire. Fire does not necessarily
disturb the soil, and the smoke stimulates wiregrass seeds to
germinate (Penman et al. 2008). This could explain relatively
higher wiregrass cover in burnt than logged sites.

Our results suggest that climatic factors affect wiregrass
abundance. Wiregrass cover was significantly correlated with
both annual precipitation and precipitation seasonality, even
though the data resolution was coarse. However, the
precipitation variables were highly correlated with
temperature variables, so it is unclear whether precipitation
or temperature is more important to wiregrass cover.
Whichever is the case, it is clear that climate variables can
be important determinants of wiregrass abundance.

An important biotic factor that may contribute to the
remaining unexplained variance (>50%) in wiregrass cover
is herbivory, which we did not include in our study. Herbivores
like the wombat (Vombatus ursinus Shaw, 1800) (Ashwell
1985; Ashton and Chappill 1989), sambar deer (Cervus
unicolor Kerr, 1972) (Forsyth and Davis 2011), eastern
grey kangaroo (Macropus giganteus Shaw, 1790) and black
wallaby (Wallabia bicolor Desmarest, 1804) (de Munk 1999)
reportedly graze on wiregrass. It has been suggested that
wombat abundance could have a considerable effect on
wiregrass cover (Ashwell 1985; Ashton and Chappill 1989).
Further research could consider the influence of herbivory on
wiregrass abundance and structure.

Table3. Modelparameterswherenumbers foreachpredictorvariable
are the estimates and t-value (forparametric terms) or estimateddegrees

of freedom (e.d.f.) and F (for smooth terms)
Significant predictor variables based on the fitted generalised additive model

(GAM) are indicated: ***, P < 0.001; **, P < 0.01; *, P < 0.05

Variable Parametric estimates
or e.d.f.

t-value
or F

Annual precipitation 0.783 1.106*
Canopy cover 1.232 5.630***
Disturbance type

Fire (reference) –0.1132 –0.915
Logging –0.5537 –2.176*

Net solar radiation 1.136 6.211***
Precipitation seasonality 1.25 1.221*
Time since disturbance 1.435 3.513**
Adjusted R2 0.392
Deviance explained (%) 37.7
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Role of wiregrass in a positive fire–flammability feedback

Our results suggest that wiregrass has the potential to create a
positive fire–flammability feedback in mountain ash forests,
akin to the grass–fire cycle in other systems. The grass–fire
cycle is based on several premises (D’Antonio and Vitousek
1992; Rossiter et al. 2003). First, that grass dominance alters
fuel characteristics leading to increased fire frequency, extent
or intensity. Field studies by Buckley (1993) suggest that this
is the case with wiregrass. When wiregrass is abundant, fires
are more likely to ignite and spread at high surface fuel
moisture contents, i.e. greater than 20% (Buckley 1993)
when fires would otherwise self-extinguish (Cheney 1981).
Another premise underpinning the grass–fire cycle is that
altered fire regimes resulting from the abundance of
particular grasses can create changes in tree cover. Altered
fire regimes (i.e. increased fire frequency) in mountain ash
forests can eliminate mountain ash from a site (Fairman et al.
2016). The extent that wiregrass abundance drives fire
frequency in these forests is unclear. The final premise of
the grass–fire cycle is that grass cover increases in the post-fire
community. Our results show that wiregrass cover is higher in
recently burnt sites than long-unburnt ones, with fire
disturbance likely acting as a stimulus for wiregrass growth.
This evidence suggests that the grass–fire cycle may be
applicable to wiregrass in mountain ash forests, but further
research is needed to determine the importance of wiregrass
abundance to fire frequency or extent in these forests.

Potential effect of climate change on wiregrass abundance

Fire frequency is hypothesised to increase under future climate
change scenarios (Pitman et al. 2007;Bradstock et al. 2014; Seidl
et al. 2017), and precipitation is predicted to decrease in south-
eastern Australia (Whetton 2011). Both these conditions could
increase the abundance of wiregrass, although that would also

depend on the lower limit of moisture tolerance of wiregrass.
Increased aridity may also reduce wiregrass abundance if
moisture becomes a factor limiting wiregrass growth. Further
study is needed to determine howwiregrass responds to drought,
and how reduced canopy cover caused by disturbance interacts
with effects of low moisture on wiregrass.

Conclusion

Dominant species can strongly influence the flammability of
vegetation communities, hence understanding the factors
affecting the abundance of such species are important.
Wiregrass, a species that increases the flammability of
forest understoreys when it occurs abundantly, was found to
increase in abundance in recently disturbed sites with reduced
canopy cover, more light and lower precipitation. This
suggests that disturbances such as fire that reduce canopy
cover in sites where wiregrass is present can promote
wiregrass dominance, which in turn increases flammability.
This may create a positive flammability feedback.
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