## SUPPLEMENTARY MATERIAL

## 3D-Printable Biodegradable Polyester Tissue Scaffolds for Cell Adhesion

Justin M. Sirrine<sup>A</sup>, Allison M. Pekkanen<sup>B</sup>, Ashley M. Nelson<sup>A</sup>, Nicholas A. Chartrain<sup>C</sup>, Christopher B. Williams<sup>D</sup>, and Timothy E. Long<sup>A,B,E</sup>

<sup>A</sup>Department of Chemistry, Macromolecules and Interfaces Institute, Virginia Tech, Blacksburg, VA 24061, USA.

<sup>B</sup>School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA 24061, USA.

<sup>C</sup>Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061, USA.

<sup>D</sup>Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.

<sup>E</sup>Corresponding author. Email: telong@vt.edu



**Supplementary Figure 1.** <sup>1</sup>H NMR structure confirmation for (a) poly(tri(ethylene glycol) adipate)) (PTEGA) dimethacrylate and (b) PTEGA diol, overlayed with (c) decarboxylated functionalization reactant 2-aminoethyl methacrylate.



**Supplementary Figure 2.** <sup>13</sup>C NMR structure confirmation for (a) poly(tri(ethylene glycol) adipate)) (PTEGA) dimethacrylate and (b) PTEGA diol, overlayed with (c) decarboxylated functionalization reactant 2-aminoethyl methacrylate.



**Supplementary Figure 3.** <sup>1</sup>H NMR spectra and peak integrations used for molecular weight determination  $(M_n)$  of (a) poly $(tri(ethylene\ glycol)\ adipate))$  (PTEGA) diol and (b) PTEGA dimethacrylate. (c) Differential Scanning Calorimetry (DSC) trace showing the PTEGA dimethacrylate glass transition temperature

 $^{1}$ H NMR endgroup analysis provided the number average molecular weight ( $M_{n}$ ) of the poly(tri(ethylene glycol) adipate)) (PTEGA) diol precursor. These calculations are as follows:

$$\frac{\int H + \int I + \int J}{\int G} = \frac{12n + 12}{4n} = \frac{4.32 + 10.41}{4.00} \Rightarrow n = 4.40$$

Repeat unit = 260.3 g/mol Endgroups = 150.2 g/mol

PTEGA diol  $M_n = 1,296$  g/mol

Based on the above PTEGA diol integrations for  $\mathbf{F}$  and degree of polymerization n, the PTEGA dimethacrylate  $\mathbf{F}$  peak was set to  $\mathbf{F} = 4.16*4.40 = 18.30$ . Then, % methacrylate termination was based on the actual  $\mathbf{A}$  integration value over the theoretical 6.00 integration value. Accounting for the methacrylate endgroups afforded the PTEGA dimethacrylate  $\mathbf{M}_n$ .

% methacrylate termination = 
$$\frac{5.90}{6.00}$$
 = 98 %

 $M_n$  of the PTEGA dimethacrylate can be estimated by adding the theoretical molecular weight of the 2-isocyanatoethyl methacrylate to the PTEGA diol molecular weight and accounting for the % methacrylate termination, as was calculated above.

PTEGA dimethacrylate 
$$M_n = 1,296 + (155.15 * 2) * 0.98$$

PTEGA dimethacrylate  $M_n = 1,600$  g/mol

| 0.050 Q= 2.42949                                   |             |            |                  |
|----------------------------------------------------|-------------|------------|------------------|
|                                                    | LSM         | ean[j]     |                  |
| Mean[i]-Mean[j]                                    | non-tissue  | polyester  | tissue           |
| Std Err Dif                                        | culture     | photocured | culture          |
| Lower CL Dif                                       | treated     | film       | treated          |
| Upper CL Dif                                       | polystyrene |            | polystyrene      |
| non-tissue culture                                 | 0           | -474664    | -4.8e+6          |
| treated polystyrene                                | 0           | 143933     | 130192           |
|                                                    | 0           | -824348    | -5.1e+6          |
|                                                    | 0           | -124980    | -4.4e+6          |
| polyester                                          | 474664      | 0          | -4.3e+6          |
| photocured film                                    | 143933      | 0          | 162378           |
|                                                    | 124980      | 0          | -4.7e+6          |
|                                                    | 824348      | 0          | -3.9e+6          |
| tissue culture                                     | 4754244     | 4279580    | 0                |
| treated polystyrene                                | 130192      | 162378     | 0                |
|                                                    | 4437943     | 3885083    | 0                |
|                                                    | 5070545     | 4674076    | 0                |
|                                                    |             |            |                  |
| /el                                                |             | c.,        | Least            |
|                                                    |             |            | Mean             |
| ue culture treated poly<br>lyester photocured film | •           |            | 0029.8<br>0450.1 |

**Supporting Figure 4.** Tukey's Honest Significant Difference (HSD) test for statistical significance. As shown, the three populations are not connected by the same letter and are therefore significantly different at p < 0.050.