Supplementary material for: A trip to the Density Functional Theory zoo: warnings and recommendations for the user

Lars Goerigk* and Nisha Mehta

School of Chemistry, The University of Melbourne, Parkville, Australia. ; Tel: +61-(0)3-83446784

E-mail: lars.goerigk@unimelb.edu.au

Contents

SI.1 Analysis of the first-division DFAs for each year of the DFT poll	S3
SI.2 Citation analysis of the first-division DFAs that appear in the DFT polls	S12
SI.3 Statistical results for all test sets of GMTKN55 and the new DFAs	S13
References	S17

SI.1 Analysis of the first-division DFAs for each year of the DFT poll

We performed additional calculations with SVWN (LDA), S1,S2 B3LYP*, S3 and CAM-B3LYP S4 for the GMTKN55 database, as they had appeared in the first division in some years. All molecular geometries of the GMTKN55 database and reference values were taken from Ref. S5. All calculations were performed using ORCA 4.0.1. S6,S7 The large Ahlrichs-type quadruple- ζ atomic-orbital (AO) basis set def2-QZVP S8 was used. For the G21EA, AHB21, and IL16 test sets we applied diffuse s and p functions from aug-cc-pVQZ S9 to all non-hydrogen atoms, and diffuse s functions to H atoms in accordance with the previous GMTKN studies. $^{S5,S10-S14}$ Diffuse s and p functions were added to oxygen in the WATER27 test set. def2-ECP S8 effectivecore potentials were used to define the core-electrons of heavy elements in some molecules in the HEAVY28, HEAVYSB11, HAL59, and RG18 sets. All SCF calculations were carried out as a multi-grid procedure with ORCA's quadrature grid '3' until convergence, followed by a non-iterative step with the larger grid '4'. With the exception of CAM-B3LYP, all functionals were treated with the resolution-of-the-identity (RI) approximation and chain-of-sphere approximation (COSX) S15 to speed up the evaluation of Coulomb and exchange integrals, respectively. All calculations were set to the SCF convergence criterion of $10^{-7}E_h$.

Our analysis of the DFT-poll results is based on the assessment of 216 dispersion-corrected and -uncorrected DFAs with GMTKN55. Dispersion-corrected DFAs only refer to the recommended DFT-D3(BJ) correction with Becke-Johnson damping. In some cases, where this damping functional turned out to be incompatible due to short range double counting effects, we considered the zero-damping version: S5,S12 M052X-D3(0), M062X-D3(0), M08HX-D3(0), M06-D3(0), M05-D3(0), PW1PW-D3(0), MPW1LYP-D3(0), M06L-D3(0), M11L-D3(0), N12-D3(0), PKZB-D3(0), MN15L-D3(0), and PW91P86-D3(0). We also considered ω B97X-D3(0), DSD-PBEP86-NL, DSD-BLYP-NL, PWPB95-NL, SOS1-PBE-QIDH-NL, PBE-QIDH-NL, PW6B95-NL, B3LYP-NL, and revPBE-NL.

In addition to just listing each year's first-division DFAs, the authors of the DFT poll also reported weight factors for each functional based on the number of votes for that DFA to be used for a composite DFT method based on popularity. We will come back to that idea shortly as an additional investigation that complements our analysis in the main manuscript. For that purpose, we used the weight factors as reported in Ref. S16. Some functionals were excluded from our analysis, therefore, weight factors of the remaining DFAs needed to be adjusted so that the overall weight of first-division DFAs remained the same (\sim 1). We added the weights of functionals that were excluded from our study, and then evenly distributed that number among the remaining first-division DFAs of the corresponding year.

Tabs. S1-S8 show the first-division DFAs in each year, how they rank and the weight factors. Tab. S9 refers to the composite method of each year based on the aforementioned weight factors. Table S9 shows the final WTMAD-2 numbers, and how they rank compared with the individual DFAs tested with the GMTKN55 database. Again, we can confirm that the first-division DFAs exhibit very average performance.

Table S1: Overview of the "DFT-Poll 2010" first-division DFAs and their ranking among 216 dispersion-corrected and -uncorrected DFAs tested on the GMTKN55 benchmark database. The weight factors correspond to each DFA as reported in Ref. S16. The fourth column represents the adjusted weight factors after excluding the mPW1K, SAOP and SSB-D DFAs from the analysis. Whenever "DFT-D" is mentioned, we use the DFT-D3(BJ) version. S17,S18

Functional	ranking	weight factor adjusted weight factor		Ref.
PBE0	154	0.0951	0.1015	S19, S20
B3LYP	197	0.094	0.1004	S21,S22
PBE	185	0.0877	0.0941	S23
BP86	205	0.0647	0.0711	S24–S26
M06-2X	36	0.0569	0.0633	S27
B2PLYP	121	0.0522	0.0586	S28
B3PW91	198	0.0503	0.0567	S21
B97-D	213	0.0483	0.0547	S29
M06-L	119	0.0472	0.0472 0.0536	
CAM-B3LYP	159	0.0472	0.0472 0.0536	
TPSSh	190	0.0452	0.0516	S31
OLYP	215	0.0366	0.0430	S32–S34
mPW1K	_	0.0366	—	$\mathbf{S35}$
SAOP	_	0.0363	—	S36
SSB-D	_	0.0355	_	S37
BLYP	211	0.0347	0.0411	S24, S32, S33
LDA	214	0.0331	0.0395	S1, S2, S38, S39
revTPSS-D	116	0.0331	0.0395	S5, S40
M05-2X	41	0.0327	0.0391	S41
B3LYP*	209	0.0324	0.0388	S 3

Table S2: Overview of the "DFT-Poll 2011" first-division DFAs and their ranking among 216 dispersion-corrected and -uncorrected DFAs tested on the GMTKN55 benchmark database. The weight factors correspond to each DFA as reported in Ref. S16. The fourth column represents the adjusted weight factors after excluding the mPW1K, SAOP and SSB-D DFAs from the analysis. Whenever "DFT-D" is mentioned, we use the DFT-D3(BJ) version. S17,S18

-				
Functional	ranking	weight factor	adjusted weight factor	Ref.
PBE0	154	0.1143	0.1176	S19,S20
B3LYP	197	0.0993	0.1026	S21, S22
PBE	185	0.0936	0.0969	S23
BP86	205	0.0861	0.0894	S24–S26
B97-D	213	0.0645	0.0678	S29
B2PLYP	121	0.0587	0.0620	S28
B3PW91	198	0.0517	0.0550	S21
CAM-B3LYP	159	0.0503	0.0503 0.0536	
M06-2X	36	0.0494 0.0527		S27
revTPSS-D	116	0.0468 0.0501		S5, S40
BLYP	211	0.0464 0.0497		S24, S32, S33
TPSSh	190	0.0397 0.0430		S31
M06-L	119	0.0366	0.0366 0.0399	
SSB-D	_	0.0331	_	$\mathbf{S37}$
B3LYP*	209	0.0305	0.0338	$\mathbf{S3}$
OLYP	215	0.0296	0.0329	S32–S34
SAOP	—	0.0000	0.0000 -	
LDA	214	0.0234	0.0267	S1, S2, S38, S39
M05-2X	41	0.0234	0.0267	S41
mPW1K	-	0.0225	-	$\mathbf{S35}$

Table S3: Overview of the "DFT-Poll 2012" first-division DFAs and their ranking among 216 dispersion-corrected and -uncorrected DFAs tested on the GMTKN55 benchmark database. The weight factors correspond to each DFA as reported in Ref. S16. The fourth column represents the adjusted weight factors after excluding the SSB-D DFA from the analysis. Whenever "DFT-D" is mentioned, we use the DFT-D3(BJ) version. S17,S18

Functional	ranking	weight factor	adjusted weight factor	Ref.
PBE	185	0.115	0.1169	S23
PBE0	154	0.1044	0.1063	S19, S20
B3LYP	197	0.0882	0.0901	S21,S22
PW91	181	0.073	0.0749	$\mathbf{S42}$
BP86	205	0.0651	0.0670	S24 - S26
B97-D	213	0.0537	0.0556	S29
B3LYP-D	72	0.0507	0.0526	S18, S21, S22
M06-2X	36	0.0502	0.0521	S27
BLYP	211	0.0498	0.0517	S24, S32, S33
revPBE	210	0.0472	0.0491	S43
CAM-B3LYP	159	0.045	0.0469	$\mathbf{S4}$
B2PLYP	121	0.0415	0.0434	S28
B3PW91	198	0.0411	0.0430	S21
SSB-D	_	0.0336	_	$\mathbf{S37}$
TPSSh	190	0.0315	0.0334	S31
M06-L	119	0.0301	0.0320	$\mathbf{S30}$
B3LYP*	209	0.0275	0.0294	$\mathbf{S3}$
PWPB95-D3	14	0	0	S11
revTPSS-D	116	0.0271	0.0290	\$5,\$40
revTPSS	187	0.0253	0.0272	$\mathbf{S40}$

Table S4: Overview of the "DFT-Poll 2013" first-division DFAs and their ranking among 216 dispersion-corrected and -uncorrected DFAs tested on the GMTKN55 benchmark database. The weight factors correspond to each DFA as reported in Ref. S16. The fourth column represents the adjusted weight factors after excluding the SSB-D DFA from the analysis. Whenever "DFT-D" is mentioned, we use the DFT-D3(BJ) version. ^{S17,S18}

Functional	ranking	weight factor	adjusted weight factor	Ref.	
PBE	185	0.1229	0.1238	S23	
PBE0	154	0.1045	0.1054	S19, S20	
B3LYP	197	0.0709	0.0718	S21,S22	
LDA	214	0.0675	0.0684	S1, S2, S38, S39	
PW91	181	0.0628	0.0637	S42	
BP86	205	0.0534	0.0543	S24–S26	
HSE^{a}	144	0.0524	0.0533	S44, S45	
revPBE	210	0.049	0.0499	S43	
$\omega B97X-D$	24	0.0484	0.0493	$\mathbf{S46}$	
B3LYP-D	72	0.044 0.0449		S18, S21, S22	
CAM-B3LYP	159	0.043 0.0439		$\mathbf{S4}$	
M06-2X	36	0.04	0.0409	S27	
B97-D	213	0.0376	0.0385	S29	
B2PLYP	121	0.0349	0.0358	S28	
B3PW91	198	0.0346	0.0355	S21	
M06	64	0.0329	0.0338	S27	
TPSSh	190	0.0326	0.0335	S31	
BLYP	211	0.0309	0.0318	S24, S32, S33	
OLYP	215	0.0208	0.0217	S32-S34	
SSB-D	_	0.0168	_	$\mathbf{S37}$	
^a HSE06 versio	on.				

Table S5: Overview of the "DFT-Poll 2014" first-division DFAs and their ranking among 216 dispersion-corrected and -uncorrected DFAs tested on the GMTKN55 benchmark database. The weight factors correspond to each DFA as reported in Ref. S16. The fourth column represents the adjusted weight factors after excluding RPA and the LC- ω PBE DFA from the analysis. Whenever "DFT-D" is mentioned, we use the DFT-D3(BJ) version. S17,S18

Functional	ranking	weight factor	adjusted weight factor	Ref.
PBE	185	0.1299 0.1315		S23
PBE0	154	0.1108	0.1124	S19,S20
B3LYP	197	0.0724	0.0740	S21,S22
PW91	181	0.0599	0.0615	S42
B3LYP-D	72	0.0595	0.0611	S18, S21, S22
LDA	214	0.0591	0.0607	S1, S2, S38, S39
M06-2X	36	0.0542	0.0558	S27
CAM-B3LYP	159	0.0534	0.0534 0.0550	
BP86	205	0.0494 0.0510		S24–S26
HSE^{a}	144	0.0494 0.0510		S44, S45
B97-D	213	0.0421	0.0421 0.0437	
B2PLYP	121	0.0352	0.0368	S28
RPA	_	0	_	S47
B3PW91	198	0.034	0.0356	S21
revPBE	210	0.0332	0.0348	S43
RPBE	206	0.0283	0.0299	S48
$LC-\omega PBE$	_	0.0279	_	S49
B3LYP*	209	0.0235	0.0251	$\mathbf{S3}$
BHandHLYP	187	0.015	0.0166	$\mathbf{S50}$
^a HSE06 versio	on.			

Table S6: Overview of the "DFT-Poll 2015" first-division DFAs and their ranking among 216 dispersion-corrected and -uncorrected DFAs tested on the GMTKN55 benchmark database. The weight factors correspond to each DFA as reported in Ref. S16. The fourth column represents the adjusted weight factors after excluding RPA. Whenever "DFT-D" is mentioned, we use the DFT-D3(BJ) version. S17,S18

Functional	ranking	weight factor	adjusted weight factor	Ref.
PBE	185	0.1104	0.1119	S23
PBE0	154	0.1068	0.1083	S19, S20
B3LYP	197	0.0673	0.0688	S21, S22
$\omega B97X-D$	24	0.0655	0.0670	$\mathbf{S46}$
B3LYP-D	72	0.0601	0.0616	S18, S21, S22
LDA	214	0.0548	0.0563	S1, S2, S38, S39
PW91	181	0.0530	0.0545	S42
B97-D	213	0.0512	0.0527	S29
M06-2X	36	0.0512	0.0527	S27
B2PLYP	121	0.0503	0.0518	S28
CAM-B3LYP	159	0.0449	0.0464	$\mathbf{S4}$
HSE^{a}	144	0.0449	0.0464	S44, S45
BP86	205	0.0422	0.0437	S24 - S26
M06	64	0.0359	0.0374	S27
B3PW91	198	0.0350	0.0365	S21
revTPSS	187	0.0314	0.0329	S40
RPA	_	0.0287	_	S47
TPSSh	190	0.0278	0.0293	S31
M06-L	119	0.0215	0.0230	S30
BLYP	211	0.0171	0.0186	S24, S32, S33
^a HSE06 versio	on.			

Table S7: Overview of the "DFT-Poll 2016" first-division DFAs and their ranking among 216 dispersion-corrected and -uncorrected DFAs tested on the GMTKN55 benchmark database. The weight factors correspond to each DFA as reported in Ref. S16. The fourth column represents the adjusted weight factors after excluding the LC- ω PBE DFA from the analysis. Whenever "DFT-D" is mentioned, we use the DFT-D3(BJ) version. ^{S17,S18}

Functional	ranking	weight factor	adjusted weight factor	Ref.	
PBE	185	0.1176 0.1195		S23	
PBE0	154	0.1003	0.1022	S19,S20	
B3LYP	197	0.0743	0.0762	S21,S22	
$\omega B97X-D$	24	0.0736	0.0755	$\mathbf{S46}$	
B3LYP-D	72	0.0584	0.0603	S18, S21, S22	
CAM-B3LYP	159	0.0563	0.0582	$\mathbf{S4}$	
BP86	205	0.0527	0.0546	S24-S26	
LDA	214	0.0498	0.0517	S1, S2, S38, S39	
M06-2X	36	0.0476	0.0476 0.0495		
B97-D	213	0.0462	0.0462 0.0481		
PW91	181	0.0418 0.0437		S42	
HSE^{a}	144	0.0390	0.0409	S44, S45	
B2PLYP	121	0.0382	0.0401	S28	
revPBE	210	0.0368	0.0387	S43	
$LC-\omega PBE$	_	0.0346	_	$\mathbf{S49}$	
M06	64	0.0332	0.0351	S27	
PWPB95-D3	14	0.0303	0.0322	S11	
RPBE	206	0.0303	0.0322	S48	
B3PW91	198	0.0224	0.0243	S21	
^a HSE06 versio	on.				

Table S8: Overview of the "DFT-Poll 2017" first-division DFAs and their ranking among 216 dispersion-corrected and -uncorrected DFAs tested on the GMTKN55 benchmark database. The weight factors correspond to each DFA as reported in Ref. S16. The fourth column represents the adjusted weight factors after excluding RPA and the LC- ω PBE DFA from the analysis. Whenever "DFT-D" is mentioned, we use the DFT-D3(BJ) version. S17,S18

Functional	ranking	weight factor	adjusted weight factor	Ref.		
PBE0	154	0.1014	0.1049	S19,S20		
PBE	185	0.0971	0.1006	S23		
$\omega B97X-D$	24	0.0917	0.0952	$\mathbf{S46}$		
B3LYP-D	72	0.0787	0.0822	S18, S21, S22		
CAM-B3LYP	159	0.0723	0.0758	$\mathbf{S4}$		
B97-D	213	0.0712	0.0747	S29		
B3LYP	197	0.0701	0.0736	S21, S22		
TPSSh	190	0.0496	0.0531	S31		
BP86	205	0.0453	0.0488	S24 - S26		
B2PLYP	121	0.0442	0.0477	S28		
PW91	181	0.0378	0.0413	S42		
HSE^{a}	144	0.0367	0.0402	S44, S45		
$LC-\omega PBE$	_	0.0356	—	S49		
M06-2X	06-2X 36		0.0359	S27		
revPBE	210	0.0324	0.0359	S43		
BLYP	211	0.0270	0.0305	S24, S32, S33		
RPA	_	0.0270	—	S47		
OLYP	215	0.0205	0.0240	S32–S34		
LDA	214	0.0162	0.0197	S1, S2, S38, S39		
BHandHLYP	187	0.0129	0.0164	$\mathbf{S50}$		
^a HSE06 version.						

Table S9: Analysis of the performance of the first-division DFAs on the GMTKN55 database. The second column represents a linear combination of their individually weighted WTMAD-2 values (kcal/mol), with all weight factors being reported in Tabs. S1-S8. The last column shows how such a combined method ranks compared with the individual DFAs tested with the GMTKN55 database.

	WTMAD-2	rank
2010	14.39	192
2011	14.51	192
2012	14.01	187
2013	13.95	186
2014	13.14	178
2015	12.56	171
2016	12.41	171
2017	13.15	178

SI.2 Citation analysis of the first-division DFAs that appear in the DFT polls

Table S10: Overview of the citations of the unique first-division exchange-correlation DFAs featured in the DFT polls. The results were obtained by searching for the original publication (in superscript) on Web of Science Core Collection S51 accessed on 1 January 2019.

DFA	number of citations
B2PLYP	1417^{528}
B3LYP	$69562; {}^{\mathbf{S21}} 11511 {}^{\mathbf{S22}}$
B3LYP*	884 ^{S3}
B3PW91	69562^{221}
B97-D	12200^{S29}
BHandHLYP	$10041 \frac{S50}{}$
BLYP	$36101; {}^{S24}66019; {}^{S32}4816 {}^{S33}$
BP86	$36101; {}^{\mathbf{S24}} 13671; {}^{\mathbf{S25}} 2735 {}^{\mathbf{S26}}$
CAM-B3LYP	5458^{84}
HSE	$5489; {}^{\mathbf{S44}}2318 {}^{\mathbf{S45}}$
$LC-\omega PBE$	991^{849}
LDA	$1052; {}^{S38}3402; {}^{S1}15716; {}^{S2}17018 {}^{S39}$
M05-2X	2275^{841}
M06	11440^{S27}
M06-2X	11440^{S27}
M06-L	2403^{S30}
mPW1K	1214^{S35}
OLYP	$66019; {}^{\mathbf{S32}} 4816; {}^{\mathbf{S33}} 1007 {}^{\mathbf{S34}}$
PBE	74606^{23}
PBE0	$7215; {}^{\mathbf{S19}}1726 {}^{\mathbf{S20}}$
PW91	69562^{221}
PWPB95	481 ^{S11}
revPBE	1300^{843}
revTPSS	$272\frac{840}{2}$
RPA	161 ^{S47}
RPBE	3515^{S48}
SAOP	627 ^{S36}
SSB-D	89 ^{S37}
TPSSh	1118 ^{S31}
$\omega B97X-D$	121^{846}

SI.3 Statistical results for all test sets of GMTKN55 and the new DFAs

Table S11: Statistical analysis of the CAM-B3LYP DFA for all 55 test sets of the GMTKN55 database. The statistical key data are: mean deviation (MD), mean absolute deviation (MAD), root-mean-square deviation (RMSD), normalised MAD (NMAD), deviation span (Δ_{error}), maximum (max) and minimum deviation (min). The NMAD is defined as the ratio between the MAD for a set and its average absolute reaction energy. For all test sets, the def2-QZVP atomic-orbital basis set was used, with additional diffuse functions for the G21EA, WATER27, AHB21, and IL16 sets. All values are in kcal/mol, except for the dimensionless NMAD.

set	MD	MAD	RMSD	NMAD	Δ_{error}	max	min
SIE4x4	13.53	13.53	16.11	0.40	32.17	34.07	1.90
ACONF	0.70	0.70	0.78	0.38	1.03	1.29	0.26
ADIM6	-3.54	3.54	3.89	1.05	4.70	-1.30	-6.00
AHB21	-0.35	0.72	0.89	0.03	2.82	1.10	-1.72
AL2X6	-6.01	6.01	6.45	0.17	6.68	-2.85	-9.53
ALK8	-4.68	4 84	7.87	0.08	17.36	0.63	-16.73
ALKBDE10	-1.34	4 57	6.13	0.05	17.55	5.12	-12.63
AMINO20v4	0.02	0.51	0.15	0.00	3.91	2.00	-1.21
BH76	_2.02	3 18	3.76	0.17	9.21	1.76	-7.95
BHDIV10	0.46	1 03	2 10	0.04	6.21	3.83	-2.38
BHDEBI	4.56	4.61	5.22	0.04	10.74	10.00	-2.50
BHROT27	4.00	4.01	0.66	0.22	189	1.65	-0.04
BSR36	8.00	8.00	0.00	0.07	1.02	1.00	20.00
DUT14DIOI	-0.09	0.09	9.31	0.50	10.17	-2.62	-20.99
CENTRO	10.14	10.19	11.00	0.07	11.06	16.00	-0.23
CADDID19	10.51	10.31	0.55	0.10	11.90	10.28	4.52
CDIE20	0.02	0.45	0.55	0.07	1.94	1.09	-0.80
CUIDC	0.44	0.00	0.89	0.10	2.69	2.12	-0.77
	-1.04	1.02	1.60	0.00	4.50	1.74	-2.50
DARC	1.39	7.39	7.83	0.23	8.77	9.64	0.87
DUI3	1.34	10.58	13.59	0.19	54.83	26.42	-28.41
DIPOSIO	2.12	4.30	5.39	0.01	17.88	12.23	-5.65
FH51	0.53	2.16	2.93	0.07	16.88	7.79	-9.09
G2IEA	1.38	2.28	3.01	0.07	9.96	7.25	-2.71
G2IIP G2D G	1.97	3.80	4.91	0.01	16.05	11.18	-4.87
G2RC	-1.45	3.04	3.34	0.06	11.40	4.96	-6.45
HAL59	-1.18	1.22	1.62	0.27	6.82	1.08	-5.74
HEAVY28	-0.93	0.93	1.01	0.75	1.51	-0.23	-1.74
HEAVYSB11	-7.31	7.31	7.55	0.13	6.34	-4.42	-10.76
ICONF	0.15	0.52	0.68	0.16	3.04	1.67	-1.37
IDISP	1.64	11.09	12.24	0.78	33.42	18.76	-14.66
IL16	2.55	2.55	2.65	0.02	2.71	4.14	1.42
INV24	-0.78	1.79	2.32	0.06	10.34	5.08	-5.26
ISO34	-0.35	1.32	2.10	0.09	14.54	7.52	-7.03
ISOL24	-2.47	5.50	8.33	0.25	42.30	11.63	-30.66
MB16-43	-47.86	48.06	55.91	0.12	149.41	4.17	-145.24
MCONF	-1.67	1.75	2.00	0.35	3.72	0.53	-3.19
NBPRC	2.28	3.33	4.45	0.12	13.31	9.77	-3.54
PA26	0.37	1.29	1.81	0.01	7.65	5.15	-2.50
PArel	0.12	0.72	1.17	0.16	5.88	3.87	-2.01
PCONF21	-0.19	2.84	3.24	1.75	9.21	5.14	-4.07
PNICO23	-1.18	1.18	1.35	0.28	2.70	-0.24	-2.94
PX13	-4.50	4.50	4.80	0.13	5.45	-1.56	-7.01
RC21	0.95	2.01	2.23	0.06	6.41	3.59	-2.82
RG18	-0.42	0.43	0.62	0.74	1.64	0.10	-1.54
RSE43	-1.38	1.38	1.56	0.18	3.00	-0.54	-3.54
S22	-2.39	2.51	3.51	0.34	10.23	0.84	-9.39
S66	-2.00	2.09	2.64	0.38	7.21	0.87	-6.34
SCONF	-0.10	0.30	0.40	0.07	1.73	1.15	-0.58
TAUT15	0.10	0.89	1.12	0.29	3.70	2.04	-1.65
UPU23	1.82	2.01	2.92	0.35	7.82	7.11	-0.71
W4-11	-1.09	3.54	6.06	0.01	43.19	7.23	-35.95
WATER27	2.88	3.31	3.99	0.04	17.28	11.49	-5.79
WCPT18	-0.65	1.90	2.27	0.05	8.41	5.03	-3.38
YBDE18	-5.38	5.38	6.28	0.11	10.49	-0.82	-11.30
BH76RC	-0.76	1.92	2.45	0.09	9.20	2.68	-6.52

Table S12: Statistical analysis of the B3LYP* DFA for all 55 test sets of the GMTKN55 database. The statistical key data are: mean deviation (MD), mean absolute deviation (MAD), root-mean-square deviation (RMSD), normalised MAD (NMAD), deviation span (Δ_{error}), maximum (max) and minimum deviation (min). The NMAD is defined as the ratio between the MAD for a set and its average absolute reaction energy. For all test sets, the def2-QZVP atomic-orbital basis set was used, with additional diffuse functions for the G21EA, WATER27, AHB21, and IL16 sets. All values are in kcal/mol, except for the dimensionless NMAD.

set	MD	MAD	RMSD	NMAD	Δ_{error}	max	min
SIE4x4	19.16	19.16	22.08	0.57	39.94	43.59	3.65
ACONF	1.10	1.10	1.23	0.60	1.78	2.17	0.39
ADIM6	-5.96	5.96	6.51	1.77	7.62	-2.38	-9.99
AHB21	1.77	1.77	1.90	0.08	2.84	3.34	0.50
AL2X6	-11.40	11.40	11.89	0.32	10.25	-6.68	-16.93
ALK8	-7.92	7.92	10.89	0.13	20.24	-0.23	-20.47
ALKBDE10	-1.79	4.62	5.44	0.05	18.59	8.29	-10.30
AMINO20x4	-0.20	0.78	0.99	0.32	4.99	2.68	-2.30
BH76	-4.84	4.90	5.72	0.26	13.30	1.24	-12.06
BHDIV10	-0.66	3.08	3.85	0.07	12.24	5.48	-6.76
BHPERI	4.77	5.67	6.62	0.27	18.30	11.54	-6.76
BHROT27	0.18	0.33	0.48	0.05	1.42	1.11	-0.31
BSR36	-12.41	12.41	14.06	0.77	28.64	-3.19	-31.82
BUT14DIOL	-0.46	0.63	0.68	0.23	2.12	0.93	-1.19
C60ISO	-2.49	2.90	4.11	0.03	9.25	0.93	-8.32
CARBHB12	-1.01	1.03	1.25	0.17	2.69	0.14	-2.56
CDIE20	1.34	1.34	1.53	0.33	2.87	2.83	-0.04
CHB6	1.18	1.54	2.08	0.06	5.25	4.42	-0.83
DARC	20.72	20.72	21.03	0.64	11.86	24.32	12.46
DC13	6.80	19.03	24.31	0.35	83.21	39.71	-43.50
DIPCS10	-1.11	4.78	5.92	0.01	20.69	10.80	-9.89
FH51	4.24	5.41	7.04	0.17	41.10	20.51	-20.58
G21EA	1.45	2.27	3.08	0.07	11.54	9.26	-2.28
G21IP	0.13	3.64	4.65	0.01	18.79	11.86	-6.93
G2RC	3.15	4.03	5.01	0.08	15.08	9.89	-5.18
HAL59	-2.27	2.32	2.76	0.51	10.37	1.31	-9.06
HEAVY28	-1.63	1.63	1.71	1.31	2.05	-0.66	-2.71
HEAVYSB11	-9.68	9.68	10.22	0.17	10.02	-5.70	-15.73
ICONF	-0.03	0.65	0.98	0.20	4.87	2.47	-2.39
IDISP	5.42	19.17	22.33	1.35	60.76	41.61	-19.15
IL16	5.24	5.24	5.31	0.05	3.28	7.36	4.08
INV24	-2.11	2.17	2.52	0.07	5.60	0.66	-4.94
ISO34	-0.63	2.91	4.16	0.20	24.08	13.03	-11.05
ISOL24	-6.41	11.75	18.35	0.54	98.68	35.44	-63.24
MB16-43	-73.12	73.12	76.81	0.18	105.60	-28.38	-133.98
MCONF	-2.90	2.94	3.34	0.59	5.32	0.34	-4.97
NBPRC	5.87	7.16	9.63	0.26	28.14	24.05	-4.08
PA26	2.95	3.03	3.93	0.02	10.55	9.76	-0.79
PArel	-0.20	1.42	2.06	0.31	10.72	5.66	-5.06
PCONF21	-0.51	4.32	4.95	2.67	14.85	8.11	-6.74
PNICO23	-2.41	2.41	2.53	0.56	2.87	-1.44	-4.31
PX13	-2.60	2.60	2.73	0.08	2.72	-1.21	-3.93
RC21	-2.45	3.44	4.94	0.10	20.65	4.93	-15.71
RG18	-1.01	1.01	1.26	1.74	2.53	-0.17	-2.70
RSE43	-2.04	2.04	2.29	0.27	4.42	-0.71	-5.13
S22	-4.72	4.72	5.89	0.65	14.34	-0.73	-15.08
S66	-4.04	4.04	4.59	0.74	9.93	-0.68	-10.61
SCONF	-0.60	1.10	1.27	0.24	4.56	2.53	-2.03
TAUT15	-0.28	1.11	1.30	0.36	3.65	1.69	-1.96
UPU23	2.32	2.89	4.20	0.51	13.03	11.26	-1.78
W4-11	-4.88	5.81	7.99	0.02	36.12	7.84	-28.27
WATER27	-11.53	11.56	17.59	0.14	46.61	0.29	-46.32
WCPT18	-0.34	1.02	1.20	0.03	4.07	1.85	-2.22
YBDE18	-10.92	10.98	12.60	0.22	22.60	0.55	-22.05
BH76RC	-0.16	2.74	3.31	0.13	12.36	5.87	-6.49

Table S13: Statistical analysis of the LDA DFA for all 55 test sets of the GMTKN55 database. The statistical key data are: mean deviation (MD), mean absolute deviation (MAD), root-mean-square deviation (RMSD), normalised MAD (NMAD), deviation span (Δ_{error}), maximum (max) and minimum deviation (min). The NMAD is defined as the ratio between the MAD for a set and its average absolute reaction energy. For all test sets, the def2-QZVP atomic-orbital basis set was used, with additional diffuse functions for the G21EA, WATER27, AHB21, and IL16 sets. All values are in kcal/mol, except for the dimensionless NMAD.

set	MD	MAD	RMSD	NMAD	Δ_{error}	max	min
SIE4x4	27.64	27.64	30.76	0.82	49.71	51.32	1.61
ACONF	-0.36	0.36	0.41	0.20	0.67	-0.08	-0.76
ADIM6	1.05	1.05	1.10	0.31	0.88	1.48	0.60
AHB21	-5.54	5.54	5.73	0.25	5.36	-2.96	-8.32
AL2X6	6.08	6.08	6.30	0.17	4 66	8.22	3.57
ALK8	6 38	7.92	8.98	0.17	18 54	15.54	-3.00
ALKBDE10	0.00 99.77	22 77	25.50	0.12	38 55	40.40	10.85
A MINO20v4	0.56	1.04	25.50 1.37	0.23	5.60	3 01	1 60
DU76	15 20	15 20	17.57	0.45	52 72	2.91	-1.03
DII/0 DIDIV10	-13.29	19.39	17.04	0.83	00.72 00.75	0.29	-30.43
DIDEDI	-13.11	10.01	12.71	0.30	26.75	2.37	-20.36
DIFERI	-12.04	12.04	13.29	0.01	10.04	-1.47	-16.11
BHRU127	0.97	1.05	1.40	0.17	4.01	3.20	-0.82
BSR30	0.41	1.60	2.04	0.10	10.52	3.97	-6.55
BUT14DIOL	2.10	2.11	2.19	0.75	3.04	2.85	-0.20
C60ISO	-10.00	10.00	12.34	0.10	21.21	-0.80	-22.01
CARBHB12	4.35	4.35	4.99	0.72	7.35	8.56	1.21
CDIE20	1.74	1.75	1.97	0.43	3.21	3.06	-0.15
CHB6	-2.91	2.91	2.97	0.11	1.87	-2.11	-3.98
DARC	-11.48	11.48	12.18	0.35	12.94	-6.78	-19.72
DC13	-6.44	18.65	23.63	0.34	82.81	31.23	-51.58
DIPCS10	-0.51	6.63	7.94	0.01	25.84	9.81	-16.03
FH51	-3.67	6.61	8.94	0.21	42.16	17.30	-24.86
G21EA	7.46	7.46	8.52	0.22	16.56	16.73	0.17
G21IP	3.09	5.18	6.29	0.02	26.74	12.18	-14.56
G2RC	-6.16	12.88	16.41	0.25	62.79	22.75	-40.05
HAL59	3.26	3.28	4.40	0.71	12.33	11.94	-0.39
HEAVY28	1.11	1.11	1.28	0.90	2.21	2.59	0.37
HEAVYSB11	12.93	12.93	14.93	0.22	21.63	23.59	1.97
ICONF	0.53	0.70	0.89	0.21	2.46	1.67	-0.79
IDISP	-0.18	2.98	3.82	0.21	12.32	7.07	-5.25
IL16	-5.60	5.60	5.62	0.05	2.05	-4.50	-6.55
INV24	-2.65	2.91	4.01	0.09	12.46	1.24	-11.22
ISO34	-0.28	2.18	2.99	0.15	14.15	7.86	-6.29
ISOL24	2.38	5.31	7.29	0.24	30.31	15.75	-14.56
MB16-43	72.39	72.81	80.90	0.18	163.80	156.68	-7.13
MCONF	0.70	1.05	1.33	0.21	3.65	2.57	-1.08
NBPRC	-6.73	9.60	11.26	0.35	32.23	9.46	-22.77
PA26	-4.93	4.93	5.58	0.03	10.87	-0.42	-11.29
PArel	1.02	3.25	4.25	0.70	19.22	9.10	-10.12
PCONF21	-0.63	1.67	2.31	1.03	7.37	2.63	-4 74
PNICO23	3 49	3 49	4.38	0.82	12.16	12.60	0.52
PX13	-24.69	24 69	25.23	0.74	19.75	-17.82	-37.57
BC21	15 49	16 63	18.93	0.47	37.87	32 35	-5.53
RC18	0.47	0.47	0.60	0.41	1 36	1.54	0.00
RSE43	5.02	5.02	5.50	0.66	10.42	1.04	11 74
R3E45 600	-3.02	0.02	2.03	0.00	8.62	-1.51	-11.74
SZZ SEE	2.19 1.04	$\frac{2.21}{1.07}$	2.21	0.30	8.02	0.44 8 59	-0.10
SCONE	1.94	1.97 2.11	2.00	0.50	10.60	4.19	-0.55
TAUTIE	1.74	ე.11 ე.ეე	5.40 E 99	1.00	10.09	4.10	-0.01
IAUT15 UDU22	1.69	3.22	0.28	1.00	10.69	12.15	-4.54
UPU23	0.24	0.54	0.70	0.09	2.5U	1.02	-0.88
W4-11	59.01	59.01	66.73	0.19	131.82	135.47	3.65
WATER27	38.49	40.08	55.36	0.49	151.08	129.66	-21.42
WCPT18	-17.56	17.56	18.82	0.50	20.81	-9.33	-30.13
YBDE18	13.32	13.36	16.27	0.27	30.60	30.23	-0.36
BH76RC	-0.63	8.24	10.79	0.39	51.92	35.52	-16.40

References

- (S1) Slater, J. C. Phys. Rev. 1951, 81, 385–390.
- (S2) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200-1211.
- (S3) Reiher, M.; Salomon, O.; Hess, B. A. Theor. Chem. Acc. 2001, 107, 48-55.
- (S4) Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51-57.
- (S5) Goerigk, L.; Hansen, A.; Bauer, C.; Ehrlich, S.; Najibi, A.; Grimme, S. Phys. Chem. Chem. Phys. 2017, 19, 32184–32215.
- (S6) Neese, F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73-78.
- (S7) ORCA an ab initio, density functional and semiempirical program package, V. 4.0.1, F. Neese, MPI f
 ür Chemische Energiekonversion, M
 ülheim a. d. Ruhr (Germany), 2017.
- (S8) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- (S9) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796-6806.
- (S10) Goerigk, L.; Grimme, S. J. Chem. Theory Comput. 2010, 6, 107–126.
- (S11) Goerigk, L.; Grimme, S. J. Chem. Theory Comput. 2011, 7, 291-309.
- (S12) Goerigk, L.; Grimme, S. Phys. Chem. Chem. Phys. 2011, 13, 6670-6688.
- (S13) Mehta, N.; Casanova-Páez, M.; Goerigk, L. Phys. Chem. Chem. Phys. 2018, 20, 23175–23194.
- (S14) Najibi, A.; Goerigk, L. J. Chem. Theory Comput. 2018, 14, 5725-5738.
- (S15) Izsak, R.; Neese, F. J. Chem. Phys. 2011, 135, 144105.
- (S16) http://www.marcelswart.eu/dft-poll/paco_coefficients.html.
- (S17) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.
- (S18) Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32, 1456-1465.
- (S19) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158-6170.
- (S20) Ernzerhof, M.; Scuseria, G. E. J. Chem. Phys. 1999, 110, 5029-5036.
- (S21) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
- (S22) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623–11627.
- (S23) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865-3868.
- (S24) Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100.
- (S25) Perdew, J. P. Phys. Rev. B 1986, 33, 8822-8824.
- (S26) Perdew, J. P. Phys. Rev. B 1986, 34, 7406.
- (S27) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215-241.
- (S28) Grimme, S. J. Chem. Phys. 2006, 124, 034108.
- (S29) Grimme, S. J. Comput. Chem. 2006, 27, 1787–1799.
- (S30) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101.
- (S31) Staroverov, V. N.; Scuseria, G. E.; Tao, J.; Perdew, J. P. J. Chem. Phys. 2003, 119, 12129–12137.

- (S32) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
- (S33) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem Phys. Lett. 1989, 157, 200-206.
- (S34) Handy, N. C.; Cohen, A. J. Mol. Phys. 2001, 99, 403-412.
- (S35) Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. J. Phys. Chem. A 2000, 104, 4811-4815.
- (S36) Schipper, P.; Gritsenko, O.; Van Gisbergen, S.; Baerends, E. J. Chem. Phys. 2000, 112, 1344–1352.
- (S37) Swart, M.; Solà, M.; Bickelhaupt, F. M. J. Chem. Phys. 2009, 131, 094103.
- (S38) Dirac, P. A. M. Proc. R. Soc. Lond. A 1929, 123, 714-733.
- (S39) Perdew, J. P. Phys. Rev. B 1992, 45, 13244-13249.
- (S40) Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Constantin, L. A.; Sun, J. Phys. Rev. Lett. 2009, 103, 026403.
- (S41) Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Theory Comput. 2006, 2, 364–382.
- (S42) Perdew, J. P. in Proceedings of the 21st Annual International Symposium on the Electronic Structure of Solids (P. Ziesche and H. Eschrig, Eds.); Akademie Verlag: Berlin, 1991; p 11.
- (S43) Zhang, Y.; Yang, W. Phys. Rev. Lett. 1998, 80, 890-890.
- (S44) Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2003, 118, 8207-8215.
- (S45) Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys 2006, 124, 219906.
- (S46) Lin, Y.-S.; Li, G.-D.; Mao, S.-P.; Chai, J.-D. J. Chem. Theory Comput. Chem. 2013, 9, 263–272.
- (S47) Furche, F. J. Chem. Phys. 2008, 129, 114105.
- (S48) Hammer, B.; Hansen, L. B.; Norskov, J. K. Phys. Rev. B 1999, 59, 7413-7421.
- (S49) Vydrov, O. A.; Scuseria, G. E. J. Chem. Phys. 2006, 125, 234109.
- (S50) Becke, A. D. J. Chem. Phys. 1993, 98, 1372-1377.
- (S51) Web of Science Core Collection, see http://www.webofscience.com.