10.1071/CH19502_AC ©CSIRO 2020 Australian Journal of Chemistry 2020, 73(8), 803-812

Supplementary Material

Analysis of Nanoconfined Protein Dielectric Signals Using Charged Amino Acid Network Models

Lorenza Pacini,^{A,B,D} Laetitia Bourgeat,^{A,C,D} Anatoli Serghei,^{C,E} and Claire Lesieur^{A,B,E}

^AAMPERE, CNRS, University of Lyon, 69622, Lyon, France.

^BInstitut Rhônalpin des Systèmes Complexes, IXXI-ENS-Lyon, 69007, Lyon, France.

^cIMP, CNRS, University of Lyon, 69622, Lyon, France.

^DThese authors contributed equally to this work.

^ECorresponding authors. Email: anatoli.serghei@univ-lyon1.fr; claire.lesieur@ens-lyon.fr

Figure S1. Network construction schematics. The amino acid network (AAN) of the whole toxin pentamer is built from the toxin X-ray structure (PDB 1EEI). The intermolecular amino acid network (4D-network), the intermolecular charged amino acid network (4D-charged network) and the intermolecular induced charged amino acid network (4D-induced charged network) are all built from the AAN selecting different nodes and links (Methods).