10.1071/CH20197\_AC

©CSIRO 2020

Australian Journal of Chemistry 2020, 73(12), 1250-1259

## **Supplementary Material**

## Preparation and Structures of Rare Earth 3-Benzoylpropanoates and 3-Phenylpropanoates

Nicholas C. Thomas,<sup>A</sup> Owen A. Beaumont,<sup>B</sup> Glen B. Deacon,<sup>B,E</sup> Cornelius Gaertner,<sup>B</sup> Craig M. Forsyth,<sup>B</sup> Anthony E. Somers,<sup>C</sup> and Peter C. Junk<sup>D,E</sup>

- <sup>A</sup> College of Sciences, Chemistry Department, Auburn University at Montgomery, Montgomery, AL 36117, USA
- <sup>B</sup> School of Chemistry, Monash University, Clayton, Vic. 3800, Australia
- <sup>C</sup> Institute for Frontier Materials, Deakin University, Burwood, Vic. 3125, Australia
- <sup>D</sup> College of Science, Technology and Engineering, James Cook University, Townsville, Qld 4811, Australia
- <sup>E</sup> Corresponding authors. Email: glen.deacon@monash.edu; peter.junk@jcu.edu.au



Fig. S1. TGA plot of bulk La(bp)<sub>3</sub> sampled for microanalysis.



Fig. S2. Powder XRD of bulk La(bp)<sub>3</sub> before and after heating.



**Fig. S3.** Powder XRD of bulk La(bp)<sub>3</sub> before heating, simulated  $[La(bp)_3(H_2O)_2] \cdot 1\frac{1}{3}H_2O$  and simulated  $[Ce(bp)_3(H_2O)]$ . Simulated patterns generated from single crystal data.



**Fig. S4.** Powder XRD of bulk  $La(bp)_3$  after heating, simulated  $[La(bp)_3(H_2O)_2] \cdot 1\frac{1}{3}H_2O$  and simulated  $[Ce(bp)_3(H_2O)]$ . Simulated patterns generated from single crystal data.



Fig. S5. ATR-IR of bulk La(bp)<sub>3</sub> before heating, after heating and [Ce(bp)<sub>3</sub>(H<sub>2</sub>O)].



Fig. S6. ATR-IR of  $[RE(bp)_3(H_2O)_n]$  complexes (RE = La, n = 2; RE = Y, Ce, Pr, Nd, Yb, n = 1).



Fig. S7. ATR-IR of  $[RE(pp)_3]$  (RE = Y, Yb) and  $[Ln(pp)_3] \cdot nH_2O$  (Ln = La, n = 0.5; Ln = Ce, n = 1; Ln = Nd, n = 3)

## [La(mbp)<sub>3</sub>(H<sub>2</sub>O)<sub>2</sub>]·3H<sub>2</sub>O Crystal and Structure Refinement Data:

C<sub>33</sub>H<sub>43</sub>LaO<sub>14</sub>, M 802.58, triclinic, space group  $P\overline{1}$  (No. 2), *a* 8.6610(17), *b* 9.941(2), *c* 21.902(4) Å, *α* 80.81(3)°, β 87.61°, γ 66.27(3)°, V 1703.6(7) Å<sup>3</sup>, Z 2, λ 0.71073 Å, T 100(2) K, μ 1.322 mm<sup>-1</sup>, 2θ<sub>max</sub> 51.364°, 24936 reflections collected, 6450 unique ( $R_{int}$  0.1146), N<sub>o</sub> 6062, 444 parameters,  $R_1$  (I>2σ(I)) 0.0865, w $R_2$  (all data) 0.2118, GoF 1.098,  $\Delta e_{min/max}$  -4.33/5.72 e<sup>•</sup> Å<sup>-3</sup>.

| Table S1. Selected bond distances ( | (Å | ) for | $[La(mbp)_3(H_2O)_2] \cdot 3H_2O$ |
|-------------------------------------|----|-------|-----------------------------------|
|-------------------------------------|----|-------|-----------------------------------|

| Atoms                | La(mbp) <sub>3</sub> |  |
|----------------------|----------------------|--|
| M-O(1)               | 2.470(7)             |  |
| $M-O(2)^i$           | 2.586(7)             |  |
| M-O(4)               | 2.462(7)             |  |
| M-O(4) <sup>i</sup>  | 2.765(7)             |  |
| $M-O(5)^i$           | 2.628(7)             |  |
| M-O(7)               | 2.535(7)             |  |
| M-O(7) <sup>ii</sup> | 2.678(7)             |  |
| M-O(8) <sup>ii</sup> | 2.624(7)             |  |
| M-O(10)              | 2.600(7)             |  |
| M-O(11)              | 2.655(6)             |  |

<sup>i</sup> Symmetry operator: 1-x,1-y,1-z

<sup>ii</sup> Symmetry operator: -x,1-y,1-z