SUPPLEMENTARY MATERIAL

Experimental Validation of Quantum Circuit Rules in Molecular Junctions

Elena Gorenskaia,^A Masnun Naher,^A Lakshya Daukiya,^{A,B} Stephen A. Moggach,^A David Costa Milan,^C Andrea Vezolli,^C Colin J. Lambert,^D Richard J. Nichols,^C Thomas Becker,^E and Paul J. Low^{A,F}

^ASchool of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

^BPresent address: Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur 342037, India.

^cDepartment of Chemistry, University of Liverpool, Crown St, Liverpool, L69 7ZD, UK.

^DDepartment of Physics, Lancaster University, Lancaster LA1 4YB, UK.

^ESchool of Molecular and Life Sciences Curtin University, GPO Box U1987, Perth, WA 6845, Australia. ^FCorrespondingauthor. Email: paul.low@uwa.edu.au

Table S1. Crystal and refinement details	2
Figure S1. ¹ H NMR spectrum of 1 recorded in CDCl ₃	5
Figure S2. ¹³ C{ ¹ H} NMR spectrum of 1 recorded in CDCl ₃	5
Figure S3. ¹ H NMR spectrum of 2 recorded in CDCl ₃	6
Figure S4. ¹³ C{ ¹ H} NMR spectrum of 2 recorded in CDCl ₃	6
Figure S5. ¹ H NMR spectrum of 3 recorded in CDCl ₃	7
Figure S6. ¹³ C{ ¹ H} NMR spectrum of 3 recorded in CDCl ₃	7
Figure S7. ¹ H NMR spectrum of 5 recorded in CDCl ₃	8
Figure S8. ¹³ C{ ¹ H} NMR spectrum of 5 recorded in CDCl ₃	8
Figure S9. ¹ H NMR spectrum of 6 recorded in CDCl ₃	9
Figure S10. ¹³ C{ ¹ H} NMR spectrum of 6 recorded in CDCl ₃	9
Figure S11. ¹ H NMR spectrum of 7 recorded in CDCl ₃	10
Figure S12. ¹³ C{ ¹ H} NMR spectrum of 7 recorded in CDCl ₃	10
Figure S13. ¹ H NMR spectrum of 8 recorded in CDCl ₃	11
Figure S14. ¹³ C{ ¹ H} NMR spectrum of 8 recorded in CDCl ₃	11

Structure	1	2	3	5	7	8
Chemical formula	$C_{22}H_{22}S_2$	2(C ₈ H ₇ S)	2(C7H6N)	C19H18S2	C ₁₅ H ₁₃ NS	$C_{17}H_{14}OS_2$
Mr	350.51	270.39	208.26	310.45	239.32	298.40
Crystal system, space group	Monoclinic, $P2_1/n$	Triclinic, <i>P</i> ⁻ 1	Monoclinic, $P2_1/n$	Orthorhombic, <i>Pbca</i>	Monoclinic, $P2_1/n$	Orthorhombic, $P2_12_12_1$
Temperature (K)	100	100	100	100	100	100
a, b, c (Å)	6.8023 (1), 8.6989 (1), 15.8992 (3)	8.7859 (5), 8.9288 (5), 10.2064 (4)	13.3461 (4), 5.7693 (2), 14.1264 (4)	11.8352 (3), 11.3040 (2), 24.1403 (5)	5.6632 (1), 19.1076 (4), 11.1134 (2)	5.6138 (1), 7.6625 (1), 34.9847 (4)
α, β, γ (°)	90, 101.747 (2), 90	75.109 (4), 84.568 (4), 64.069 (6)	90, 93.841 (3), 90	90, 90, 90	90, 95.806 (2), 90	90, 90, 90
V (Å ³)	921.09 (3)	695.73 (7)	1085.26 (6)	3229.61 (12)	1196.41 (4)	1504.89 (4)
Ζ	2	2	4	8	4	4
μ (mm ⁻¹)	2.59	3.27	0.59	2.89	2.17	3.13
Crystal size (mm)	0.24 × 0.21 × 0.17	0.38 × 0.17 × 0.08	0.13 × 0.09 × 0.06	0.22 × 0.14 × 0.11	0.14 × 0.05 × 0.05	0.28 × 0.19 × 0.1
Absorption correction	Multi-scan <i>CrysAlis PRO</i>	Gaussian CrysAlis PRO	Multi-scan <i>CrysAlis PRO</i>	Multi-scan CrysAlis PRO	Gaussian CrysAlis PRO	Multi-scan <i>CrysAlis PRO</i>

Table S1. Crystal and refinement details

	1.171.40.53	1.171.40.53 (Rigaku	1.171.40.53	1.171.40.53	1.171.40.53 (Rigaku	1.171.41.103a
	(Rigaku Oxford	Oxford Diffraction,	(Rigaku Oxford	(Rigaku Oxford	Oxford Diffraction,	(Rigaku Oxford
	Diffraction, 2019)	2019) Numerical	Diffraction, 2019)	Diffraction, 2019)	2019) Numerical	Diffraction, 2021)
	Empirical	absorption	Empirical	Empirical	absorption	Empirical
	absorption	correction based on	absorption	absorption	correction based on	absorption
	correction using	gaussian	correction using	correction using	gaussian	correction using
	spherical	integration over a	spherical	spherical	integration over a	spherical
	harmonics,	multifaceted crystal	harmonics,	harmonics,	multifaceted crystal	harmonics,
	implemented in	model using	implemented in	implemented in	model using	implemented in
	SCALE3 ABSPACK	spherical	SCALE3 ABSPACK	SCALE3 ABSPACK	spherical	SCALE3 ABSPACK
	scaling algorithm.	harmonics,	scaling algorithm.	scaling algorithm.	harmonics,	scaling algorithm.
		implemented in			implemented in	
		SCALE3 ABSPACK			SCALE3 ABSPACK	
		scaling algorithm.			scaling algorithm.	
T_{\min} , T_{\max}	0.698, 1.000	0.392, 1.000	0.821, 1.000	0.747, 1.000	0.736, 1.000	0.757, 1.000
No. of	31951, 1864, 1792	24911, 2755, 2494	18035, 2186,	45677, 3339, 3024	22134, 2427, 2126	14332, 3019, 2968
independent	1772		1711			
and						
observed $[I >]$						
2s(D)						
reflections						
R _{int}	0.108	0.116	0.104	0.160	0.086	0.051
$(\sin \alpha/l)$	0.628	0.627	0.630	0.620	0.628	0.627
(Å ⁻¹)	0.028	0.027	0.030	0.029	0.020	0.027
$R[F^2 >$	0.037, 0.099,	0.054, 0.172, 1.13	0.059, 0.172,	0.048, 0.140, 1.11	0.039, 0.108, 1.06	0.057, 0.153, 1.18
$2s(F^2)],$	1.13		1.13			

$wR(F^2), S$						
No. of reflections	1864	2755	2186	3339	2427	3019
No. of parameters	111	165	145	193	155	184
Dρ _{max} , Dρ _{min} (e Å ⁻³)	0.28, -0.40	0.45, -0.71	0.25, -0.28	0.42, -0.45	0.28, -0.22	1.63, -0.39
Absolute structure	-	-	-	-	-	Refined as an inversion twin.
Absolute structure parameter	-	-	-	-	_	0.39 (4)

Figure S1. ¹H NMR spectrum of 1 recorded in CDCl₃.

Figure S2. ¹³C{¹H} NMR spectrum of **1** recorded in CDCl₃.

500 MHz, CDCI3

Figure S3. ¹H NMR spectrum of 2 recorded in CDCl₃.

500 MHz, CDCI3

Figure S4. ¹³*C*{¹*H*} *NMR spectrum of* **2** *recorded in CDCl*₃.

Figure S5. ¹H NMR spectrum of **3** recorded in CDCl₃.

Figure S6. ¹³C{¹H} NMR spectrum of *3* recorded in CDCl₃.

Figure S7. ¹H NMR spectrum of **5** recorded in CDCl₃. ⁵⁰⁰ MHz, CDCl3

Figure S8. ¹³C{¹H} NMR spectrum of *5* recorded in CDCl₃.

Figure S9. ¹H NMR spectrum of 6 recorded in CDCl₃.

500 MHz, CDCI3

Figure S10. ¹³*C*{¹*H*} *NMR spectrum of 6 recorded in CDCl*₃.

500 MHz, CDCI3

Figure S11. ¹H NMR spectrum of 7 recorded in CDCl₃.

Figure S12. ¹³C{¹H} NMR spectrum of **7** recorded in CDCl₃.

Figure S13. ¹H NMR spectrum of 8 recorded in CDCl₃.

500 MHz, CDCI3

Figure S14. ¹³C{¹H} NMR spectrum of *8* recorded in CDCl₃.