Supplementary Material

A one-pot synthesis of oligo(arylene–ethynylene)-molecular wires and their use in the further verification of molecular circuit laws

Masnun Naher^{A,#}, Elena Gorenskaia^{A,#}, Stephen A. Moggach^A, Thomas Becker^B, Richard J. Nichols^C, Colin J. Lambert^D and Paul J. Low^{A,*}

^ASchool of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

^BSchool of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia

^CDepartment of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK

^DDepartment of Physics, Lancaster University, Lancaster LA1 4YB, UK

*Correspondence to: Email: paul.low@uwa.edu.au

Molecular Structures	3
Figure S1: The molecular structure of 1	3
Figure S2: The molecular structure of 7c	4
Table S1. Crystal structure and refinement details Figure S3: ¹ H NMR spectrum of A recorded in CDCl ₃ .	5 6
Figure S4: ¹³ C{ ¹ H} NMR spectrum of A recorded in CDCl ₃	6
Figure S5: ¹ H NMR spectrum of 5a recorded in CDCl ₃	7
Figure S6: ¹³ C{ ¹ H} NMR spectrum of 5a recorded in CDCl ₃	7
Figure S7: ¹ H NMR spectrum of 5b recorded in CDCl ₃ .	
Figure S8: ¹³ C{ ¹ H} spectrum of 5b recorded in CDCl ₃	
Figure S9: ¹ H NMR spectrum of 5c recorded in CDCl ₃	9
Figure S10: ¹³ C NMR spectrum of 5c recorded in CDCl ₃	9
Figure S11: ¹ H NMR spectrum of 6a recorded in CDCl ₃	10
Figure S12: ${}^{13}C{}^{1}H$ NMR spectrum of 6a recorded in CDCl ₃	10
Figure S13: ¹ H NMR spectrum of 6b recorded in CDCl ₃	
Figure S14: ¹³ C{ ¹ H} spectrum of 6b recorded in CDCl ₃	
Figure S15: ¹ H NMR recorded spectrum of 6c in CDCl ₃	
Figure S16: ¹³ C{ ¹ H} spectrum of 6c recorded in CDCl ₃	
Figure S17: ¹ H NMR spectrum of 7a recorded in CDCl ₃	
Figure S18: ${}^{13}C{}^{1}H$ spectrum of 7a recorded in CDCl ₃ .	
Figure S19: ¹ H NMR spectrum of 7b recorded in CDCl ₃	
Figure S20: ¹³ C{ ¹ H} spectrum of 7b recorded in CDCl ₃	
Figure S21: ¹ H NMR spectrum of 7c recorded in CDCl ₃	
Figure S22: ¹³ C{ ¹ H} spectrum of 7c recorded in CDCl ₃	
Figure S23: Representative conductance vs electrode displacement curves, con	ductance
histograms, and 2D histograms from compounds 5a, 6a and 7a	
References	15

Molecular Structures

The structure of 2,5-bis((trimethylsilyl)ethynyl)thiophene, **1** (Figure S1) was determined by single crystal X-ray diffraction from crystals grown in hexane. The structures of compounds **2** and **3** have already been determined and reported elsewhere by others,¹ giving us the opportunity to calculate the aromaticity from the structural parameters of the central units in each member of this series. The alkyne moieties exhibit linear geometries and average C=C bond length of 1.206(2) Å which is consistent with the analogous bond lengths in **2** and **3**.

Figure S1: ORTEP drawing (50% probability level) of the molecular structure of **1** with its atom-numbering scheme. All hydrogen atoms except from the thiophene hydrogens are omitted for clarity. Selected bond lengths (Å) and angles (°): C1–C5 1.432(2), C4–C10 1.421(2); C5–C6 1.204(2), C10–C11 1.206(2); C6–Si1 1.844(1), C11–Si2 1.843(1); C2–C8–C9 179.6(5), C1–C5–C6 178.1(1), C4–C10–C11 178.6(2); C5–C6–Si1 176.6(1), C10–C11–Si2 176.7(1).

Similarly the crystallographically determined structures of the compounds **7a** and **7b** have also been reported,² with the structure of **7c** (**Figure S2**) being determined in this work from the single crystals grown by slow diffusion of CH₂Cl₂/MeOH. In the solid state **7c** adopts an essentially linear structure with the central phenyl ring sitting on an inversion center. The central anthracene ring canted by 29.10(4)[°] and 29.47(4)[°] with respect to the two terminal phenyl rings. The central anthracene ring in the crystal packing does not follow any usual $\pi - \pi$ stacking. The S…S distances of **7a**,² **7b**² and **7c** are 20.092(4), 20.051(3), 20.026(2) Å, respectively.

Figure S2: ORTEP drawing (50% probability level) of the molecular structure of **7c** with its atom-numbering scheme. All hydrogen atoms are omitted for clarity. Selected bond lengths (Å), angles (°) and plane (*p*) intersections (°): C2–C8 1.429(6), C8–C9 1.206(6), C9–C10 1.433(6), C15–S11.761(4), S1-C14 1.829(5), S1····S1A 20.026(2), C2–C8–C9 179.6(5), C8–C9–C10 176.5(5), C15–S1–C14 90.8(2), $p(C_6H_3)\cdots pA(C_6H_3)$ 000(2), $p(C_6H_3)\cdots p(C_{14}H_8)$ 29.8(1). Symmetry operation for generating equivalent atoms: (A) 1–x, 1–y, –z.

	1	7c
CCDC Number	2107811	2107812
Empirical formula	$C_{14}H_{20}SSi_2$	$C_{38}H_{30}S_2$
Formula weight	276.54	550.74
Temperature/K	100.6(10)	99.9(6)
Crystal system	monoclinic	orthorhombic
Space group	$P2_{1}/n$	Pbca
a/Å	9.74570(10)	8.3436(4)
b/Å	10.56570(10)	36.111(2)
$c/\text{\AA}$	16.15090(10)	9.2528(3)
$\alpha/^{\circ}$	90	90
$\beta/^{\circ}$	93.5480(10)	90
$\gamma/^{\circ}$	90	90
$V/\text{\AA}^3$	1659.87(3)	2787.8(2)
Ζ	4	4
$\rho_{\rm calc} {\rm g/cm}^3$	1.107	1.312
μ/mm^{-1}	2.936	1.919
<i>F</i> (000)	592	1160
Crystal	0.257×0.192×0.	0.123×0.099×0.
size/mm ³	107	067
Radiation	Cu Ka $(\lambda = 1.54184)$	Cu Ka $(\lambda = 1.54184)$
2Θ range for	10.01 to	
data collection/°	151.194	4.894 to 151.986
	-12 < h < 12,	-9 < h < 10,
Index ranges	$-13 \le k \le 13$.	-45 < k < 42.
inden funges	-20 < 1 < 18	-10 < l < 11
Reflections collected	49381	19295
	3414	2857
Independent	$[R_{int} = 0.0463]$	$[R_{int} = 0.1105]$
reflections	$R_{\rm sigma} = 0.01671$	$R_{\rm sigma} = 0.05921$
Data/restraints		
/parameters	3414/0/160	2857/0/183
Goodness-of-fit		
on F^2	1.082	1.17
Final <i>R</i> indexes	$R_1 = 0.0305.$	$R_1 = 0.0968.$
$[I > 2\sigma(I)]$	$wR_2 = 0.0805$	$wR_2 = 0.2200$
Final <i>R</i> indexes	$R_1 = 0.0323.$	$R_1 = 0.1089.$
[all data]	$wR_2 = 0.0821$	$wR_2 = 0.2264$
Largest diff.		
peak/hole / e Å ⁻³	0.25/-0.33	0.75/-0.44

Table S1. Crystal structure and refinement details

500 MHz, CDCI3

Figure S3: ¹H NMR spectrum of A recorded in CDCl₃. * impurity

Figure S4: ¹³C{¹H} NMR spectrum of A recorded in CDCl₃.

Figure S5: ¹H NMR spectrum of 5a recorded in CDCl₃.

Figure S6: ¹³C{¹H} NMR spectrum of **5a** recorded in CDCl₃.

Figure S7: ¹H NMR spectrum of 5b recorded in CDCl₃.

Figure S8: ¹³C{¹H} spectrum of 5b recorded in CDCl₃.

500 MHz, CDCI3

Figure S9: ¹H NMR spectrum of 5c recorded in CDCl₃.

Figure S10: ¹³C NMR spectrum of 5c recorded in CDCl₃.

Figure S11: ¹H NMR spectrum of 6a recorded in CDCl₃.

Figure S12: ¹³C{¹H} NMR spectrum of **6a** recorded in CDCl₃.

Figure S13: ¹H NMR spectrum of 6b recorded in CDCl₃.

Figure S14: ¹³C{¹H} spectrum of 6b recorded in CDCl₃.

Figure S15: ¹H NMR recorded spectrum of 6c in CDCl₃.

Figure S16: ¹³C{¹H} spectrum of **6c** recorded in CDCl₃.

500 MHz, CDCI3

Figure S17: ¹H NMR spectrum of 7a recorded in CDCl₃.

Figure S18: ¹³C{¹H} spectrum of 7a recorded in CDCl₃.

Figure S20: ¹³C{¹H} spectrum of **7b** recorded in CDCl₃.

Figure S21: ¹H NMR spectrum of 7c recorded in CDCl₃.

Figure S22: ¹³C{¹H} spectrum of **7c** recorded in CDCl₃.

Figure S23. Representative conductance $(log(G/G_0))$ vs electrode displacement curves, conductance histograms, and 2D conductance – relative displacement histograms from compounds **5a**, **6a** and **7a** in xylene solution containing tetrabutylammonium hydroxide (0.1 M solution in THF, 10 equivalents).

References:

- Khan, M. S.; Al-Mandhary, M. R. A.; Al-Suti, M. K.; Al-Battashi, F. R.; Al-Saadi, S.; Ahrens, B.; Bjernemose, J. K.; Mahon, M. F.; Raithby, P. R.; Younus, M.; Chawdhury, N.; Köhler, A.; Marseglia, E. A.; Tedesco, E.; Feeder, N.; Teat, S. J., Synthesis, characterisation and optical spectroscopy of platinum(ii) di-ynes and poly-ynes incorporating condensed aromatic spacers in the backbone. *Dalton Trans.* 2004, (15), 2377-2385.
- Wang, X.; Bennett, T. L.; Ismael, A.; Wilkinson, L. A.; Hamill, J.; White, A. J.; Grace, I. M.; Kolosov, O. V.; Albrecht, T.; Robinson, B. J., Scale-up of room-temperature constructive quantum interference from single molecules to self-assembled molecular-electronic films. *J. Am. Chem. Soc.* 2020, *142* (19), 8555-8560.