Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Aggregation of Hydrogen Bonded Dimeric Tri-Organotin Amino Substituted Pyrimidine-2-Thiolates

Anastasia Ioannidou A , Agnieszka Czapik B , Petros Gkizis A , Muhamad Perviaz C , Dimitrios Tzimopoulos A D , Maria Gdaniec B D and Pericles D. Akrivos A
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Aristotle University, 541 24 Thessaloniki, Greece.

B Faculty of Chemistry, Adam Mickiewicz University, 70 580 Poznań, Poland.

C Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, 75270 Karachi, Pakistan.

D Corresponding authors. Email: dtzimopo@pharm.auth.gr; magdan@amu.edu.pl

Australian Journal of Chemistry 66(5) 600-606 https://doi.org/10.1071/CH12537
Submitted: 7 December 2012  Accepted: 30 January 2013   Published: 7 March 2013

Abstract

The synthesis of six tri-organotin compounds with 4-amino and 4,6-diaminopyrimidine-2-thiolate is described. The compounds have the general formula R3Sn(thiolate) where R = Me, Bu, or Ph. The compounds are investigated by a variety of spectroscopic techniques both in solution and in the solid state. The environment around the tin centres proves to be tetrahedral with monodentate thiolate anions as is inferred from the infrared and NMR spectra. The coordination sphere is not affected even by the presence of DMSO as solvent. In the solid state, the crystal structure determination of the trimethyl and triphenyltin derivatives of the 4,6-diaminopyrimidine-2-thiolate ligand, reveal an association into centrosymmetric dimers through N–H⋯N hydrogen-bonding interactions leaving the organotin site practically unaffected. However, in addition to the classical hydrogen bonding, weaker N–H⋯RS and N–H⋯Rπ interactions are also present and play an important role in determining further aggregation of these dimers which gives rise to a three-dimensional polymeric structure in the case of the trimethyltin and a layer of dimers in the case of the triphenyltin derivative, respectively.


References

[1]  (a) H. Puff, H. Reuter, J. Organomet. Chem. 1989, 373, 173.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXitlGntrg%3D&md5=1e8b967ac3ed028dd928315b8bb4a746CAS |
      (b) D. Dakternieks, H. Zhu, E. R. T. Tiekink, R. Colton, J. Organomet. Chem. 1994, 476, 33.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) F. Banse, F. Ribot, P. Toledano, J. Maquet, C. Sanchez, Inorg. Chem. 1995, 34, 6371.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. Beckmann, K. Jurkschat, U. Kaltenbrunner, S. Rabe, M. Schürmann, Organometallics 2000, 19, 4887.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  Z. H. Fard, M. R. Halvagar, S. Dehnen, J. Am. Chem. Soc. 2010, 132, 2848.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslKnt70%3D&md5=383658351f38a0751e714a09689a4339CAS |

[3]  (a) C.-L. Ma, S.-L. Zhang, Z.-S. Hu, R.-F. Zhang, J. Coord. Chem. 2012, 65, 2569.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) N. Singh, S. Bhattacharya, J. Coord. Chem. 2011, 64, 2170.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) D. Dakternieks, K. Jurkschat, H. Wu, E. R. T. Tiekink, Organometallics 1993, 12, 2788.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkvFGlu7c%3D&md5=e6e0385d975026269fdbfcc330481d57CAS |
      (b) D. Dakternieks, K. Jurkschat, D. Schollmeyer, H. Wu, Organometallics 1994, 13, 4121.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Mehring, M. Schürmann, H. Reuter, D. Dakternieks, K. Jurkschat, Angew. Chem. Int. Ed. 1997, 36, 1112.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. Durand, K. Sakamoto, T. Fukuyama, A. Orita, J. Otera, A. Duthie, D. Dakternieks, M. Schulte, K. Jurkschat, Organometallics 2000, 19, 3220.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) C. L. Ma, J. F. Sun, Dalton Trans. 2004, 1785.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) C. L. Ma, G. R. Tian, R. F. Zhang, Inorg. Chim. Acta 2007, 360, 1762.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) C. L. Ma, Z. F. Guo, R. F. Zhang, Polyhedron 2008, 27, 420.
         | Crossref | GoogleScholarGoogle Scholar |

[5]     (a) G. M. de Lima, in Tin Chemistry: Fundamentals, Frontiers, and Applications (Eds A. G. Davies, M. Gielen, K. H. Pannell, E. R. T. Tiekink) 2008, pp. 285–412 (John Wiley & Sons Ltd: Chichester).
         (b) M. Nath, in Tin Chemistry: Fundamentals, Frontiers, and Applications (Eds A. G. Davies, M. Gielen, K. H. Pannell, E. R. T. Tiekink) 2008, pp. 413–486 (John Wiley & Sons Ltd: Chichester).
      (c) K. E. Appel, Drug Metab. Rev. 2004, 36, 763.and references therein.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Y. Shi, B.-Y. Zhang, R.-F. Zhang, S.-L. Zhang, C.-L. Ma, J. Coord. Chem. 2012, 65, 4125.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) A. S. Badr El-Din, S. El-Din, H. Etaiw, M. E. El-Zaria, J. Coord. Chem. 2012, 65, 3776.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  L. Pellerito, L. Nagy, Coord. Chem. Rev. 2002, 224, 111.and references therein
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmtlaiug%3D%3D&md5=00a01913590b6164ab7f7817d229f561CAS |

[7]  M. L. Falcioni, M. Pellei, R. Gabbianelli, Mutat. Res. 2008, 653, 57. and references therein
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1eqtrw%3D&md5=8d6a443106eb9f7d840dc9fd8301935aCAS |

[8]  (a) N. Buzás, L. Nagy, H. Jankovics, R. Krämer, E. Kuzmann, A. Vértes, K. Burger, J. Radioanal. Nucl. Chem. 1999, 241, 313.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) C. Syng-ai, T. S. Basu Baul, A. Chatterjee, Mutat. Res. 2002, 513, 49.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. Ronconi, C. Marzano, U. Russo, S. Sitran, R. Graziani, D. Fregona, J. Inorg. Biochem. 2002, 91, 413.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. N. Xanthopoulou, S. K. Hadjikakou, N. Hadjiliadis, M. Schürmann, K. Jurkschat, A. Michaelides, S. Skoulika, T. Bakas, J. Binolis, S. Karkabounas, K. Charalabopoulos, J. Inorg. Biochem. 2003, 96, 425.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. I. Khan, M. K. Baloch, M. Ashfaq, J. Enzyme Inhib. Med. Chem. 2007, 22, 343.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  A. N. Gifford, S. Kuschel, C. Shea, J. S. Fowler, Bioconjug. Chem. 2011, 22, 406.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhslKrtbg%3D&md5=a0393419d7e3ec9e1d5b300e0007ac12CAS |

[10]  J. Bravo, M. B. Cordero, J. S. Casas, M. V. Castaño, A. Sánchez, J. Sordo, J. Organomet. Chem. 1996, 513, 63.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtlSqsbg%3D&md5=7e9beb65e22776417371a2b8560e143bCAS |

[11]  (a) E. S. Raper, Coord. Chem. Rev. 1994, 129, 91.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXht1ehsbc%3D&md5=44bb500fffa644fa1669b7fc0053f10bCAS |
      (b) P. D. Akrivos, H. J. Katsikis, A. Koumoutsi, Coord. Chem. Rev. 1997, 167, 95.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  W. A. Denny, Eur. J. Med. Chem. 2001, 36, 577.and references therein
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsVKksbg%3D&md5=100d3900a65f63e9222d1ea454de8417CAS |

[13]  (a) B. Wusk, G. A. Kullak-Ublick, C. Rammert, A. von Eckardstein, M. Fried, K. M. Rentsch, Eur. J. Gastroenterol. Hepatol. 2004, 16, 1407.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFeisLvI&md5=7270591041abdd3e690d823c77670066CAS |
      (b) S. J. Shin, M. T. Collins, Antimicrob. Agents Chemother. 2008, 52, 418.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) F. D. M. van Schaik, M. G. H. van Oijen, H. M. Smeets, G. J. M. G. van der Heijden, P. D. Siersema, B. Oldenburg, Gut 2012, 61, 235.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) N. R. Mohamed, M. M. T. El-Saidi, Y. M. Ali, M. H. Elnagdi, Bioorg. Med. Chem. 2007, 15, 6227.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot12msro%3D&md5=5a003e9a530fd75dfb37f1760841d85dCAS |
      (b) S. Youssif, S. F. Mohamed, Monatsh. Chem. 2008, 139, 161.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. A. Abu-Hashem, M. M. Youssef, H. A. R. Hussein, J. Chin. Chem. Soc. 2011, 58, 41.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) P. J. Hrdlicka, J. S. Jepsen, C. Nielsen, J. Wengel, Bioorg. Med. Chem. 2007, 15, 1249.
      (e) K. S. Lee, J. H. Lim, Y. K. Kang, K. H. Yoo, D. C. Kim, K. J. Shin, D. J. Kim, Eur. J. Med. Chem. 2006, 41, 1347.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  S. Stoyanov, T. Stoyanova, P. D. Akrivos, in Trends in Applied Spectroscopy 1998, Vol. 2, pp. 89–103 (Research Trends: Trivandrum, India).

[16]  (a) I. P. Khullar, U. Agarwala, Can. J. Chem. 1975, 53, 1165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXktlKqt7g%3D&md5=25e8c96d7ca2e8d51830b7b1bd86f88dCAS |
      (b) H. O. Desseyn, B. J. van der Veken, M. A. Herman, Appl. Spectrosc. 1978, 32, 101.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  R. Wysokiński, D. Michalska, D. C. Bieńko, S. Ilakiamani, N. Sundaraganesan, K. Ramalingam, J. Mol. Struct. 2006, 791, 70.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  R. Singh, S. K. Dikshit, Polyhedron 1993, 12, 759.and references therein
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1WltLw%3D&md5=b7ea7443aa591f12a1005eb2aa6e6a94CAS |

[19]  C. Ma, J. Sun, Y. Shi, R. Zhang, J. Organomet. Chem. 2005, 690, 1560.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvVSku7g%3D&md5=d48f0909762c856086dc1968b513c60aCAS |

[20]  (a) A. Tarassoli, T. Sedaghat, B. NeuMuller, M. Ghassemzadeh, Inorg. Chim. Acta 2001, 318, 15.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvV2mt70%3D&md5=3a02d50d6b18e8f0a966dcda2206992fCAS |
      (b) C. Ma, F. Li, D. Wang, H. Yin, J. Organomet. Chem. 2003, 667, 5.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  F. Huber, M. Vornfield, G. Ruisi, R. Barbieri, Appl. Organomet. Chem. 1993, 7, 243. and references cited therein
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmt1KnsrY%3D&md5=7a1f3f232d790d7bc832009090261643CAS |

[22]  M. M. Amin, S. Ali, S. Shahzadi, S. K. Sharma, K. Qanungo, J. Coord. Chem. 2011, 64, 337.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFWrtw%3D%3D&md5=9d100aa6a4952b74b6a39f57647120ddCAS |

[23]  (a) D. Tzimopoulos, M. Gdaniec, T. Bakas, P. D. Akrivos, J. Coord. Chem. 2009, 62, 1218.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjs1ansL4%3D&md5=ee6daed93904e8eda42eac0c33705d28CAS |
      (b) D. Tzimopoulos, G. Sanidas, A.-C. Varvogli, A. Czapik, M. Gdaniec, E. Nikolakaki, P. D. Akrivos, J. Inorg. Biochem. 2010, 104, 423.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  (a) X. Fang, X. Song, Q. Xie, J. Organomet. Chem. 2001, 619, 43.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhslOltbc%3D&md5=058fe46d7c8d03b37b38a5ae6cef0774CAS |
      (b) F. P. Pruchnik, M. Banbula, Z. Ciunik, H. Chojnacki, M. Latocha, B. Skop, T. Wilczok, Appl. Organomet. Chem. 2002, 16, 587.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. Tian, Y. Sun, H. Li, X. Zheng, Y. Cheng, X. Liu, B. Qian, J. Inorg. Biochem. 2005, 99, 1646.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) T. S. Basu Baul, A. Mizar, A. K. Chandra, X. Song, G. Eng, R. Jirásko, M. Holčapek, D. de Vos, A. Linden, J. Inorg. Biochem. 2008, 102, 1719.and references therein
         | Crossref | GoogleScholarGoogle Scholar |

[25]  (a) T. P. Lockhart, W. F. Manders, J.J. Zuckerman, J. Am. Chem. Sοc. 1985, 107, 4546.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXksFCitbY%3D&md5=70e69e311f90f35484203e4f89d0ec63CAS |
      (b) X. Shang, J. Cui, J. Wu, A. J. L. Pombeiro, Q. Li, J. Inorg. Biochem. 2008, 102, 901.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  T. P. Lockhart, W. F. Manders, Inorg. Chem. 1986, 25, 892.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhsV2jsbs%3D&md5=90762c38c8fd652657ab33f99e7d79ccCAS |

[27]  A. Tarassoli, S. Azizi-Talooky, J. Coord. Chem. 2012, 65, 3395.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFejsL7L&md5=214a71c4762a0bc770ce8aa47f699a26CAS |

[28]  M. J. Krische, J.-M. Lehn, N. Kyritsakas, J. Fischer, E. K. Wegelius, K. Rissanen, Tetrahedron 2000, 56, 6701.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmt1SgtrY%3D&md5=f79d3f5cae483f0a6a8a6726e541410bCAS |

[29]  C.-L. Ma, Y. Shi, Q.-F. Zhang, Q. Jiang, Polyhedron 2005, 24, 1109.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVartL4%3D&md5=b1203c811ac99f0de13efdca079fc530CAS |

[30]  X.-X. Gan, L.-F. Tang, J. Coord. Chem. 2011, 64, 2458.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFCqu7o%3D&md5=e8a31c58682a684a6ebaf0dacd6bfc1eCAS |

[31]  K. I. Yamanari, I. Fukuda, S. Yamamoto, Y. Kushi, A. Fuyuhiro, N. Kubota, T. Fukuo, R. Arakawa, J. Chem. Soc., Dalton Trans. 2000, 2131.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktlCnsLk%3D&md5=0b8e6389f87949b6453a4ca6d8b6baf1CAS |

[32]  J. D. E. T. Wilton-Ely, M. Wang, D. M. Benoit, D. A. Tocher, Eur. J. Inorg. Chem. 2006, 3068.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovFOitLo%3D&md5=1a4bd9eec4919054c746c212be6d9361CAS |

[33]  J. D. E. T. Wilton-Ely, A. Schier, N. W. Mitzel, S. Nogai, H. Schmidbaur, J. Organomet. Chem. 2002, 643–644, 313.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  (a) C.-L. Ma, Z.-F. Guo, Q.-L. Li, R.-F. Zhang, J. Coord. Chem. 2008, 61, 3438.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Ois7jJ&md5=88409e0081556f7eb0743813650aae2fCAS |
      (b) Z. Rehman, N. Muhammad, A. Shah, S. Ali, I. S. Butler, A. Meetsma, J. Coord. Chem. 2012, 65, 3238.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  J. J. P. Stewart, J. Mol. Model. 2007, 13, 1173.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlequr7N&md5=ed890697dba1a50302a6bd8273666705CAS |

[36]  J. J. P. Stewart, MOPAC2009 2008 (Stewart Computational Chemistry: Colorado Springs, CO). http://OpenMOPAC.net

[37]  Oxford Diffraction, Crysalis CCD and RED, ver. 1.171.33, 2009 (Oxford Diffraction Ltd: Yarnton, Oxfordshire, UK).

[38]  G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=c16dcfe329fce2375df65b1474a83185CAS |

[39]  L. J. Farrugia, J. Appl. Cryst. 1997, 30, 565.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnt1KgsLg%3D&md5=951efa03471c5274d6b189975819963eCAS |

[40]  C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Cryst. 2008, 41, 466.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjt1Gmtb0%3D&md5=8024af10af850efe21022eb9ca4f08c3CAS |