
SPECIAL ISSUE | REVIEW 
https://doi.org/10.1071/CH22141 

Australian chemistry and drug discovery towards the 
development of antimalarials†

Brad E. SleebsA,B,*

ABSTRACT 

Malaria, a disease caused by the Plasmodium parasite, accounts for more than 450 000 deaths 
annually. The devastating impact of this disease is compounded by the emergence or risk of 
widespread resistance to current antimalarial drugs, underscoring the need to develop new 
therapies. Australian scientists are at the forefront of fundamental, clinical and surveillance 
research, and have made significant contributions to advancing the field of malaria research. 
A significant component of this research has been directed toward the development of new 
antimalarial therapies. This perspective summarises the recent endeavours by Australian 
researchers in chemistry and drug discovery sciences in the identification and development of 
new antimalarial therapies in the global challenge to treat and eliminate malaria.  

Keywords: antimalarial, Australian chemistry, Australian drug discovery, drug development, 
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Introduction 

Half of the world’s population is at risk of malaria infection. In humans, malaria is a 
disease caused by five species of Plasmodium parasite. P. falciparum is the deadliest and 
most prevalent in sub-Saharan Africa, while P. vivax and P. knowlesi are endemic to 
Southeast Asia and the Americas. P. malariae and P. ovale are geographically widespread 
but have significantly lower prevalence and result in mild clinical manifestations. 
Approximately 241 million people are infected by Plasmodium with over 627,000 deaths 
worldwide in 2020.[1] Malaria continues to represent a major global health challenge. 

The Plasmodium parasite is transmitted to the human host by way of a bite from an 
infected Anopheles mosquito. Sporozoites are injected into the circulatory system until 
they traverse and invade a liver hepatocyte. In the liver stage or pre-erythrocytic stage, 
the parasite develops into a schizont releasing many merozoites into systemic circulation 
where they invade red blood cells initiating the asexual stage. In the asexual blood stage, 
multiple rounds of self-replication occur leading to erythrocyte and the symptomatic 
signs of disease, such as lethargy and ague. On occasions, a sexual form of the parasite 
known as a gametocyte develops in a host erythrocyte over 14 days. Mature gametocytes 
are then ingested by a mosquito upon a blood meal and immediately mature into male 
and female gametes inside the mosquito midgut. The fertilised gametes then develop into 
ookinetes that invade the midgut wall and form an oocyst on the exterior of the midgut. 
The mature oocyst then produces ookinetes that traverse to the salivary glands of the 
mosquito for transmission to another human host. The multiplex lifecycle of the malaria 
parasite makes studying and developing new antimalarial therapies a challenging under-
taking. It also opens opportunities to target different or multiple stages of the lifecycle to 
develop preventative, curative and transmission blocking therapies. 

Current efforts to combat malaria have concentrated on mosquito control measures, 
the deployment of vaccines and combination drug therapies. Preventative measures are 
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aimed at controlling transmission of the disease by the 
mosquito. The implementation of insecticide-treated bed 
nets has limited the prevalence of infection; however, this 
has not completely curbed the spread of Malaria. Recently 
the first malaria vaccine RTS, S (Mosquirix) was approved. 
While this is a major achievement, this vaccine only offers 
modest protection.[2] Chemo-prophylactic treatments such as 
doxycycline and atovaquone/proguanil (Malarone) are impor-
tant in controlling the disease in malaria-endemic regions and 
preventing the disease in travelers visiting these countries. 

Current therapies for treating malaria consist of combina-
tions of quinolines or endoperoxides. The World Health 
Organisation no-longer recommends the use of the non- 
artemisinin combination therapies, consisting of sulfadoxine- 
pyrimethamine, chloroquine, mefloquine and amodiaquine 
due to widespread resistance to these therapies. Artemisinin 
combination therapies (ACTs) are now the frontline therapy 
to treat malaria. Concerningly, there are recent reports of 
emerging resistance to ACTs in South-East Asia[3] and more 
recently in sub-Saharan Africa.[4] Reports of malaria parasites 
developing resistance to combination drug treatments stresses 
the need to identify novel therapies to combat malaria infec-
tion. Therefore, there is an urgent need to develop drug 
candidates that have novel chemotypes and mechanisms of 
action and that target multiple stages of the parasite lifecycle 
aligned with treatment, prophylaxis or elimination target 
candidate profiles.[5] 

Only recently has significant benevolent funding been 
available to develop new treatments for malaria. These 
initiatives have allowed industry and academia to contribute 
significant in-kind infrastructure and research support that 
has enabled the identification, mainly through phenotypic 
high throughput screening, and the development of novel 
antimalarial chemotypes to populate pre-clinical and clinical 
pipelines. The most notable of the new chemical chemotypes 
now in clinical trials are OZ439 1, an endoperoxide,[6] DSM- 
265 2 a dihydroorotate dehydrogenase (DHODH) inhibitor, 
KAF156 3 likely a SEC61 inhibitor, MMV048 4 a phosphati-
dylinositol 4-kinase (PI4K) inhibitor and KAE609 5 a PfATP4 
inhibitor (Fig. 1).[7] Concerningly, resistance has been 
observed with several candidates in human clinical trials, 
and with the natural attrition rate of candidates when pro-
gressing through the clinic, there is a continued need to 
populate the drug discovery pipeline with novel chemotypes 
for the treatment and elimination of malaria. 

Australian biomedical research has been central to the 
fundamental understanding of biological mechanisms and 
pathways important for parasite development across the life-
cycle. A recent review by Doolan gave a historical perspective 
and highlighted the groundbreaking scientific breakthroughs 
by Australian scientists in malaria research.[8] The advances 
in parasitology, pathology and epidemiology of the malaria 
parasite have influenced the decisions by international 
governing organisations on the implementation and changes 
in policies, and agendas in malaria control, treatment and 

eradication. Furthermore, the research by Australian scien-
tists has led to advances in new technologies that have 
enabled the study and biological evaluation of antimalarials 
across the entire parasite lifecycle and has catalysed small 
molecule and biologic drug discovery initiatives in Australia 
and across the globe. This appraisal seeks to highlight chem-
istry and drug discovery endeavours by Australian scientists 
over the last 15 years that have contributed to the identifi-
cation and development of new antimalarials. 

Biological evaluation 

Screening for antimalarials 

A call to arms at the start of the twentieth centenary brought 
together industry and academia to enable phenotypic 
screening of large compound libraries against the malaria 
parasite. This undertaking has led to the mass screening of 
natural product, vendor and industry small molecule 
libraries sampling a large diversity of chemical space. 

The Avery group at Griffith University are world leaders 
in antimalarial high throughput screening techniques and 
has established multiple platforms to enable the screening of 
large compound libraries against two different stages of the 
malaria parasite lifecycle. One assay allows the evaluation 
of compounds against the asexual stage parasite and drug 
resistant forms of the asexual stage parasite.[9] This assay 
platform has been used to screen multiple compound 
libraries and has uncovered several new chemotypes for 
further optimisation.[10–13] Another assay technology using 
an imaging-based platform was developed to evaluate com-
pounds against both early and late sexual gametocytes.[14,15] 

This technology also culminated in a new method to produce 
sufficient numbers of gametocytes to screen large libraries of 
compounds[16] and is now universally applied in laboratories 
worldwide. Both assays have been used to support the 
screening of boutique compound libraries, such as Medicines 
for Malaria Venture (MMV) ‘Box’ sets, which include the 
‘Malaria Box’ and ‘Pathogen Box’[17–20] and to support 
medicinal chemistry efforts in numerous antimalarial devel-
opment campaigns (many cited throughout this review). 
More recently, the Screening Facility at the Walter and 
Eliza Hall Institute (WEHI) led by Dr Lowes has adapted an 
existing P. falciparum lactate dehydrogenase assay format 
to screen compound libraries and to support medicinal 
chemistry efforts in industry and academic partnerships 
(also cited throughout this review). 

Understanding the mechanism by which antimalarials 
kill Plasmodium parasites is important for their development 
as it allows an improved understanding of potential resistance 
mechanisms, of the pharmacodynamic and pharmacokinetic 
relationship, and in turn safety, and, in some cases, enables 
structure-based optimisation. Target identification is usually 
undertaken by forward genetic studies, but several 
mechanistic-based screening assays have also been 
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developed to identify pathway specific compounds. Typically, 
these are secondary or low throughput assays used to evaluate 
and characterise small boutique compound sets with known 
antimalarial or antiparasitic activities but have an unknown 
mechanism of action. 

The Gilson/Crabb group at the Burnet Institute developed 
a luciferase-reporter assay to assess the ability of compounds 
to block the export of parasite proteins to the host red blood 
cell.[21] Assays were also established to identify compounds 
that inhibit asexual parasite invasion and egress from the 
host red blood cell,[22] and to uncover compounds that 
inhibit the new permeability pathway[23] – indispensable 
for nutrient exchange in the host red blood cell. Several 
compounds from MMV ‘Box’ sets were independently 
identified that block these pathways and will be important 
tools for unravelling new molecular targets central to 
parasite survival and that can become starting points for 
antimalarial optimisation. 

The Kirk/Lehane groups at the Australian National 
University developed an assay to screen for compounds 
that lead to an increase in Na+ levels and pH in the parasite 
cytosol as a characteristic marker for PfATP4 inhibition.[24] 

PfATP4 is a plasma membrane P-type ATPase essential for 
controlling parasite cytosolic levels of Na+ and in turn pH. 
The assay was important for characterising the PfATP4 
activity in the development of clinical candidates KAE609 
5 and SJ733 6 (Fig. 1).[24–26] The assay was also used to 
screen the MMV Malaria Box and uncovered 28 compounds 
with diverse scaffolds that inhibited PfATP4,[27,28] including 
derivatives of the clinical candidates KAE609 5 and SJ733 6. 
This assay was also used to uncover several new chemotypes 
in the MMV Pathogen Box that inhibit PfATP4.[29] The 
Kirk/Lehane groups also developed an assay and screened 
the MMV Malaria Box to find compounds that affect trans-
porters responsible for a decrease in cytosolic pH.[30] The 
screen found 15 compounds that affected parasite cytosolic 
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Fig. 1. Structures of recently developed antimalarials in clinic trials.    
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pH, and subsequently determined by forward genetic studies 
that two compounds exert their effects through inhibition of 
P. falciparum formate nitrite transporter (PfFNT). This 
research led to the characterisation of the PfFNT transporter 
as a druggable antimalarial target.[31] 

The Andrews/Poulson groups at Griffith University 
developed an assay where parasites were cultured under 
hypoxic or reduced bicarbonate conditions as an indicator 
of P. falciparum carbonic anhydrase activity. This assay was 
applied in a screen of the MMV Malaria Box and identified a 
set of quinoline-like compounds.[19] It was hypothesised that 
although the activity of these quinoline compounds was 
affected by both hypoxic and reduced bicarbonate conditions, 
the mechanism of action was likely independent of carbonic 
anhydrase. The McFadden group have a longstanding interest 
in dissecting pathways of apicoplast targeted antimalarials. 
They (and others[32]) have been able to show that isopentenyl 
pyrophosphate (IPP) biosynthesis is the sole function of the 
apicoplast. As part of this research, an IPP supplementation 
assay was employed to characterise the on-target apicoplast 
activity of many slow-acting antimalarials.[33] 

Target-based approaches have also been applied to inter-
rogate the on-target activities of antimalarials and library 
compounds against proteins important for parasite survival. 
The McGowan group and colleagues at Monash University 
deployed biochemical assays to measure compound inhibi-
tion of P. falciparum metallo-aminopeptidases M1, M17 and 
M18. Two compounds in the Malaria Box were found to 
moderately inhibit both PfA-M1 and PfA-M17,[34] although 
it was suspected that these peptidases are not the primary 
targets responsible for parasite activity of these compounds. 
The Wilks/Lucet group recombinantly expressed thirteen 
P. falciparum kinases, PfCDPK1, PfPK6, PfCK2, PfGSK3, 
PfCLK1, Pfmap2, PfPK7, PfNek2, PfNek4, FIKK4.2, FIKK10.2, 
PfCK1 and PfPK5, considered important for parasite devel-
opment.[35] A thermal shift assay and ADP-Glo luciferase 
assay was used to assess compounds from the Malaria Box 
against each of these kinases. The screen found three com-
pounds that showed modest inhibition of PfGSK3, PfPK6 
and PfPK5,[19] that did not correlate with parasite activity 
implying these kinases were not the primary targets of these 
compounds. The Cowman/Sleebs groups at WEHI estab-
lished a high throughput screening assay to identify binders 
of the ligand reticulocyte binding protein homolog 5 (Rh5) 
that is indispensable for parasite invasion of the host red 
blood cell.[36] The assay was used to screen a known drug 
library and the Malaria Box and found that the leukotriene 
inhibitor pranlukast inhibited the interaction with Rh5 with 
its host cell ligand basigin. Further characterisation of pran-
lukast and pranlukast analogues revealed Rh5 inhibitory 
activity did not robustly correlate with blocking parasite 
invasion or killing the parasite. 

The Quinn group at the Eskitis Institute implemented a 
target-based approach using native mass spectrometry to 
screen a library of natural product-based fragments to find 

binders of high priority antimalarial drug targets. Remarkedly, 
69 parasite proteins were recombinantly expressed in soluble 
forms amenable to native mass spectrometry detection.[37] 

Overall, 96 fragments were found to differentially bind to 32 
of the parasite proteins, of which 79 fragments displayed 
modest asexual parasite activity. Native mass spectrometry 
was also applied to P. falciparum dUTPase to screen the 
same fragment library.[38] The screen found several secur-
inine natural product derivatives that inhibited the catalytic 
activity of PfdUTPase and showed modest activity against 
stage V gametocytes. 

Collectively, the screen of boutique compound sets using 
target-based and pathway-based assays have uncovered 
several starting points for further investigation. Even though 
the target is implied in a target-based strategy, further 
characterisation and target deconvolution of compounds is 
generally required to ensure the parasite activity observed is 
on target. Overall, the target-based screening assays devel-
oped provide a launch pad to screen larger compound 
libraries to uncover new chemotypes to feed the antimalar-
ial drug discovery pipeline. 

Antimalarial target identification 

Forward genetic and chemo-proteomic methods are typically 
employed in the target deconvolution of antimalarials (exam-
ples provided in the chemistry section below). Metabolomic 
methods have also been useful in revealing details of pathway 
aberrations by antimalarials. The McConville, Creek and 
Ralph groups independently and collaboratively have estab-
lished metabolomic methods[39] and determined metabolomic 
signatures of frontline antimalarials.[40–44] The contributions 
by these groups are numerous, many of which are integrated 
into studies mentioned in this review. One notable collabora-
tive example was the metabolomic analysis of 96 compounds 
from the Malaria Box.[45] This study unveiled that a signifi-
cant proportion of the 96 compounds had metabolome finger-
prints consistent with that of artemisinin, quinolines, PfATP4, 
DHODH or isoprenoid biosynthesis inhibition, providing 
key information on the likely mechanism of action of these 
antimalarial starting points. 

ADME and pharmacokinetic evaluation of 
antimalarials 

A key component of antimalarial development is the evalua-
tion of ADME and pharmacokinetic properties. The Charman 
group at Monash University has been instrumental in provid-
ing expertise and key data for many antimalarial programs 
across the globe, and in the development of antimalarial 
property guidelines.[46] The exceptional contribution to anti-
malarial research by the Charman group is too expansive to 
completely cover in this review (many examples are refer-
enced in the chemistry section). One notable example was a 
program focused on the development of a synthetic ozonide 
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scaffold to overcome the short half-life and supply demands of 
the artemisinin derivatives. Several iterations around the 
ozonide scaffold led to the lead compound OZ277 7 (Fig. 1) 
which was characterised by an improved pharmacokinetic 
profile compared to artesunate.[47] Further critical feedback 
on ADME and PK culminated in the development of OZ439 
1 with a significantly prolonged half-life in pre-clinical 
models[6,48] enabling human dose modelling for develop-
ment in clinical trials.[49] Other notable contributions were 
to the pre-clinical development of the DHODH inhibitors 
DSM265 2[50] and DSM421 8,[51] the PI4K inhibitors 
MMV048 4[52] and UCT943 9[53] and the PfATP4 inhibitor 
SJ733 6 (Fig. 1).[25] 

Clinical evaluation of antimalarials 

Clinical development of antimalarials in Australia has largely 
been driven by Edstein and colleagues at the Australian 
Defence Force Malaria and Infectious Disease Institute 
since the mid-1980s. Additionally, they have provided key 
in vitro antimalarial data for many early-stage programs 
many of which are mentioned in the chemistry section. 
The extensive works of Edstein and colleagues are too numer-
ous to comprehensively cover in this appraisal but have 
contributed to pharmacokinetic/pharmacodynamic analyses 
in the pre-clinical and clinical development of many antima-
larial therapies that are used in the field today. McCarthy and 
colleagues at QIMR Berghofer Medical Research Institute 
(now at the Doherty Institute and WEHI) have also been 
instrumental in developing and conducting controlled 
blood-stage and gametocyte challenge models in human 
clinical trials. Most notably these have been used to evaluate 
antimalarials recently developed, including artefenomel 

(OZ439) 1,[54,55] cipargamin (KAE609) 5,[56] DSM265 2,[57,58] 

MMV048 4,[59,60] SJ733 6,[61] Actelion-451840 10[62] and 
ZY-19489 11[63] (Fig. 1). 

Chemistry 

Natural product antimalarials 

Historically, natural products have been an important 
component of antimalarial research. Key examples are the 
discovery of quinine, the impetus for quinoline drugs, and 
artemisinin. Several natural product scaffolds originating 
from Australian research have provided novel starting 
points for antimalarial development. 

The Quinn and Davis groups at Griffith University have 
been at the forefront of curating and screening a library of 
natural isolates and products against the malaria parasite. 
This has led to the discovery of natural products with inter-
esting antimalarial properties. A bispyrroloiminoquinone 
alkaloid, tsitsikammamine C 12 (Fig. 2), isolated from 
an Australian marine sponge showed potent activity against 
the P. falciparum parasite (EC50 13 nM) and efficacy in 
a P. berghei mouse model of malaria.[64] In another study, 
a screen of the Eskitis Institute Nature Bank library against 
the P. falciparum parasite uncovered the natural products 
alstonine 13 and himbeline 14 (Fig. 2) with EC50s of 0.17 
and 0.58 μM, respectively.[65] Another example was a serru-
latane diterpenoid 15 (Fig. 2) isolated from the Australian 
desert plant Eremophila microtheca. Synthetic amide deriva-
tives of this diterpenoid scaffold were shown to have modest 
antimalarial activity (EC50s 1.25–5.65 µM).[66] Further 
screening of the natural product isolate library identified 
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the thiazine-derived alkaloids, thiaplakortones A–D, from the 
Australian marine sponge Plakortislita.[67] Thiaplakortone 
A 16 (Fig. 2) was the most potent (EC50 51 nM) against 
P. falciparum. Subsequent synthesis of thiaplakortone A and 
its derivatisation led to analogues with improved metabolic 
stability and efficacy in a P. berghei mouse model.[68,69] 

The Baell group at Monash University synthesised trun-
cated derivatives (18) of the natural alkaloid latrunculin B 
17 (Fig. 2) isolated from Red Sea marine sponge and showed 
they have modest activity against the malaria parasite 
(EC50 7 μM).[70] The latrunculin scaffold was shown to 
reduce parasite motility through disruption of actin dynam-
ics. The Payne group at the University of Sydney completed 
the total synthesis and stereochemical assignment of galli-
namide A 19 (Fig. 2),[71,72] a depsipeptide isolated from 
the cyanobacterium Schizothrix. Gallinamide A 19 and 
synthetic analogues were found to potently inhibit parasite 
cysteine proteases, falcipain 2 and 3, which are critical for 
the processing of haemoglobin in the parasite digestive 
vacuole providing sustenance for the developing asexual 
parasite.[73] Accordingly, gallinamide A 19 was shown to 
cause swelling of the food vacuole in the parasite, a char-
acteristic of falcipain inhibition, and potently killed the 
P. falciparum parasite (EC50 50 nM). Overall, these natural 
products provide unique scaffolds as tools to investigate 
new malaria biology or starting points for antimalarial 
development. 

Antimalarials discovered via phenotypic 
screening 

Commonly, starting points for antimalarials are discovered 
by phenotypic screens of small molecule libraries on 
P. falciparum. The Baell group identified MIPS-0004373 
20 (Fig. 3) with a bis-3-alkylthio-1,2,4-triazine scaffold 
originating from a screen of an internal library, that showed 
fast-acting and potent activity against P. falciparum asexual 
stage parasites (EC50 8 nM).[74] Subsequently, MIPS-0004373 
20 was shown to have potent activity against sexual stage 
gametocytes and gametes and to potently inhibited liver 
stage development.[75] MIPS-0004373 20 was characterised 
by low metabolic stability and a short half-life in mice, but 
remarkably showed high efficacy (ED50 1.5 mg kg–1) by oral 
administration in a P. berghei mouse model.[76] The meta-
bolic stability of the bis-triazine series was improved by 
replacing the liable thioether groups. The lead compound 
21 was shown to maintain parasite potency in vitro 
(EC50 31 nM) and efficacy in a P. falciparum humanised 
SCID mouse model.[77] MIPS-0004373 20 has a high barrier 
to resistance and further investigation is ongoing to pinpoint 
the mechanism of action. 

The Todd group at the University of Sydney (now located 
at University College London) initiated an Open Source 
Drug Discovery program whereby any laboratory from 
across the globe could collaboratively contribute chemistry 
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and biological resources and expertise towards the optimi-
sation of selected antimalarial scaffolds. One starting point 
with a pyrrole scaffold (22) (Fig. 3) that originated from a 
GSK Tres Cantos antimalarial screen showed potent asexual 
activity and gametocyte activity.[78] A concerted and 
creative effort by the consortium replaced certain structural 
motifs on the scaffold that were viewed as chemical 
liabilities. It was found that these changes were largely 
detrimental to parasite activity and eventually the series 
was ‘parked’. Other compound scaffolds were also investi-
gated as part of the Open Source consortium, including the 
triazolopyridine series that targets PfATP4.[79] Optimised 
compounds from this series such as 23 (Fig. 3) have potent 
asexual parasite activity (EC50 0.14 nM) and oral efficacy in 
a P. falciparum humanised SCID mouse model. Laboratories 
from across the globe are continuing to work collaboratively 
on the optimisation of several other scaffolds. 

The Sleebs/Gilson groups also initiated a program that 
started with a hit scaffold from the GSK Tres Cantos screen. 
Optimisation of the potency and ADME properties of the 
2,4-amino quinazoline scaffold to produce the frontrunner 
compound WEB-485 24 (Fig. 3) that has potent asexual 
antimalarial activity (EC50 0.027 μM) and modest efficacy 
in a P. berghei and P. falciparum mouse models.[80,81] The 
future challenge of this series is to overcome the dose- 
limiting in vivo toxicity.[82] Target deconvolution studies 
on this series are ongoing to assist in mitigating toxicity. 
The Sleebs/Gilson groups continue to work on scaffolds 
identified from parasite red blood cell invasion and export 
screens on boutique small molecule libraries (mentioned in 
the Screening section).[21,22] One example was the phenyl-
sulfonyl piperazine scaffold that was optimised to give 
frontrunner compound S-38 25 (Fig. 3) with an IC50 of 
0.11 μM. However, the restrictive SAR negated improvement 
in the in vitro metabolism.[83] Therefore, in the future, this 
series will be used as a tool to investigate the mechanism 
responsible for the invasion phenotype. The Sleebs/Cowman 
groups at WEHI screened the Janssen Jumpstarter small 
molecule library and identified several hits with novel 
chemotypes, including the triazolopyrimidine hit scaffold.[84] 

The optimisation of this scaffold led to the triazolopyrimidine 
26 (Fig. 3) with potent slow-acting antimalarial activity (EC50 
0.07 μM). Future work will focus on correcting the metabolic 
stability of this scaffold which remains a challenge. 

The Abbott group at La Trobe University was able to 
repurpose a human protein kinase A scaffold as a starting 
point to target kinases in P. falciparum.[85] Optimisation 
of the 4-cyano-3-methylisoquinoline class produced the 
frontrunner compound MB14 27 with modest parasite 
activity (EC50 1.5 μM) (Fig. 3).[86] It was subsequently 
deduced from forward genetic and chemo-proteomic studies 
that the optimised scaffold killed the malaria parasite 
by targeting PfATP4.[87] The Scammells/Norton group at 
Monash University also used a similar strategy whereby 
they started with a benzimidazole scaffold identified from 

a fragment screen against the important parasite invasion 
ligand AMA1.[88] Optimisation of the benzimidazole scaffold 
against the P. falciparum parasite gave rise to the lead com-
pound 3r 28 (Fig. 3) with potent activity (EC50 0.006 μM) and 
good physicochemical properties. It was found that this 
compound series acts through a mechanism independent 
from AMA1 and is the focus of future research.[89] 

Target based antimalarials 

Phenotypic approaches are the most common avenue to 
develop antimalarials, but target-based screening strategies 
have also produced starting points for antimalarial develop-
ment, including the clinical candidate DSM265 2.[50] The 
target-based approach is heavily reliant on using reverse 
genetics to determine the essentiality of the target for para-
site survival and in turn its validity for antimalarial drug 
discovery. The Guddat group at the University of Queensland 
has a longstanding program targeting the hypoxanthine- 
guanine-[xanthine]-phosphoribosyltransferase (HG[X]PRT), 
protein essential for the function of the parasite nucleoside 
salvage pathway. This group has used substrate mimetics at 
the core of their program which has been facilitated by 
multiple X-ray structures of HGXPRT enabling structure- 
based optimisation.[90,91,92–94] This program has generated 
several mimetic scaffolds such as 29 (Fig. 4) with potent 
biochemical inhibition of both PfHGXPRT and PvHGPRT (Kis 
0.15–72 μM).[95] The challenge with these mimetics is the 
requirement for a polar phosphate (or acidic) group limiting 
membrane permeability. To overcome this challenge, the team 
has employed several prodrugs (30) to enhance membrane 
permeability and achieve modest parasite activity (EC50s 
2.5–12.1 μM). 

A target-based approach was implemented to discover 
inhibitors of the metallo-aminopeptidases, PfA-M1 and PfA- 
M17.[96] McGowan and colleagues at Monash University 
initiated this program by obtaining biological data to show 
the importance of both proteases for parasite develop-
ment.[97–99] X-Ray structural data of both proteases in complex 
with known peptidomimetic inhibitors of aminopeptidases 
initiated a structure-guided design program.[100,101] The 
Scammells/McGowan groups started with a phosphonic argi-
nine mimetic 31 (Fig. 4) that has potent and selective inhibi-
tion of PfA-M17 (Ki 0.011 μM).[102] The phosphonic acid was 
then replaced with a hydroxamic acid group and optimisation 
of the P′1 and P1 positions led to a potent dual inhibitor 32 
(Fig. 4) of PfA-M1 and PfA-M17 (Ki 0.27 and 0.10 μM) and 
potent P. falciparum activity (EC50 0.015 μM).[103,104] 

Furthermore, the lead compound 32 has selectivity against 
human metalloproteases and robust metabolic stability, stim-
ulating the next phase of development. 

The Andrews/Ryan groups, while investigating a strategy 
to block the metabolism of proguanil 33 to cycloguanil 34, a 
DHFR inhibitor, designed the derivative tBuPG 35 (Fig. 4). 
Unlike proguanil and cycloguanil, the potent slow-acting 
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parasite activity of tBuPG 35 (72 h IC50 0.33 μM; 96 h IC50 
0.05 μM) was independent of folate and isoprenoid bio-
synthesis.[105] It was found that the parasite activity of 
tBuPG 35 in combination with cytochrome bc1 inhibitors 
atovaquone and ELQ300 was synergistic and as a result 
tBuPG 35 is under investigation as a potential replacement 
of proguanil as the partner agent with atovaquone in the 
antimalarial therapy Malarone. 

The Gilson/Tonkin groups uncovered the role of cyclic- 
AMP and cyclic-GMP in activating protein kinase A (PKA) 
and protein kinase G (PKG) in parasite invasion and egress 
of the host RBC. 3′-5′-Cyclic nucleotide phosphodiesterases 
(PDEs) are key regulators of this process by hydrolysing 
cyclic-AMP and cyclic-GMP and stalling invasion and egress. 
The Thompson group used structural modelling of human 
and P. falciparum PDE to repurpose and fine-tune the 
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parasite potency of the known human PDE inhibitor, zapri-
nast 36 (Fig. 4).[106] This strategy produced the compound, 
BIPPO 37 (Fig. 4), which was 90-fold more potent than 
zaprinast against the P. falciparum parasite (EC50 0.40 μM). 
In a mechanism-dependent manner, BIPPO was shown to 
affect the premature egress of merozoites from the asexual 
schizont and to prevent the capacity of the immature mero-
zoites to invade the host erythrocyte. BIPPO serves as an 
important tool in the investigation of processes that underpin 
parasite invasion and egress. 

The Tilley group’s interest in targeting the parasite pro-
teasome was sparked by their discovery that artemisinin 
resistance is overcome by inhibiting the proteolytic function 
of the proteasome.[107] To unearth novel inhibitors of the 
proteasome, the Takeda library of peptide boronates was 
screened against P. falciparum. The hit compounds were 
further triaged by screening against the Pf20S and human 
20S proteasome subunits. Among the hit compounds, MPI-4 
38 (Fig. 4) was shown to have potent inhibition of the β1, 
β2 and β5 subunits of the proteasome (IC50 0.6, 0.06 and 
0.01 μM, respectively) but equally potent inhibition of the 
human constitutive proteasome and immunoproteasome.[108] 

MPI-4 38 potently killed the malaria parasite (EC50 0.06 μM), 
but also reduced mammalian cell viability with similar 
potency, underlining the challenge of selectively targeting 
the parasite proteasome. CryoEM structures were then 
obtained of the P. falciparum proteasome β5 subunit in 
complex with peptide boronates that provided insight into 
optimising selectivity. Optimisation produced the frontrunner 
compound MPI-13 39 (Fig. 4) with 19-fold selectivity against 
the P. falciparum versus human proteasome β5 subunit 
(IC50 0.012 versus 0.23 μM), and 84-fold selectivity against 
the parasite versus mammalian cells (IC50 0.011 versus 
0.93 μM).[109] MPI-13 39 showed robust efficacy in a 
P. falciparum humanised SCID mouse model and activity 
against male gamete and liver schizont development demon-
strating that the proteasome is a multi-stage antimalarial 
drug target. 

More recently Tilley and colleagues initially explored the 
application of adenosine 5′-sulfamate (AMS) as a substrate 
mimetic of adenosine 5′-monophosphate and as a potential 
modality to block protein synthesis by way of targeting para-
site aminoacyl tRNA synthetases (aaRS).[110] Proteomic stud-
ies of AMS treated parasites primarily detected the AMS-Tyr 
adduct 40 (Fig. 4) signifying that AMS commandeered the 
mechanistic function and subsequently selective inhibition of 
TyrRS. To discover compounds with improved parasite speci-
ficity a screen of the Takeda library of nucleoside sulfamates 
identified ML901 41 (Fig. 4) with potent antimalarial activity 
(EC50 0.002 μM) and 5000-fold selectivity against mammalian 
cells. Forward genetic, chemo-proteomic and structural biol-
ogy methods were then employed to show that ML901 41 was 
a selective inhibitor of TyrRS. ML901 41 was shown to 
potently inhibit both gamete and liver stage development 
and has efficacy in a P. falciparum humanised SCID mouse 

model, demonstrating that TyrRS is an attractive multi-stage 
antimalarial drug target. 

The Cowman/Boddey groups researching protein traf-
ficking by the malaria parasite within the host erythrocyte 
discovered that the aspartyl protease plasmepsin V is 
necessary for processing of the Plasmodium export element 
(PEXEL) on the N-terminus of parasite proteins exported to 
host RBC.[111] This fundamental finding led Cowman/ 
Boddey/Sleebs to develop peptidomimetic inhibitors that 
mimic the PEXEL motif and inhibit plasmepsin V. The pepti-
domimetics initially designed including WEHI-916 42 (Fig. 5) 
helped define the substrate specificity of plasmepsin V, show 
the requirement of plasmepsin V in protein export and phar-
macologically validate plasmepsin V as an antimalarial drug 
target.[112,113] X-Ray structures of these peptidomimetics in 
complex with plasmepsin V engendered an in-depth under-
standing of substrate recognition and inhibition of the prote-
ase, enabling the design of the peptidomimetics WEHI-842 43 
and WEHI-601 44 (Fig. 5) with improved biochemical inhibi-
tion of plasmepsin V (IC50 0.019 and 0.005 μM, respectively) 
and parasite activity (EC50 0.43 and 0.09 μM, respec-
tively).[114–117] These peptidomimetics were then employed 
to demonstrate the importance of plasmepsin V and protein 
export in gametocyte maturation establishing plasmepsin V as 
a multi-stage antimalarial target.[118] 

In search for novel drug-like plasmepsin inhibitors, 
Cowman screened the MSD (Merck and Co.) library of 
aspartyl protease inhibitors and identified the imino pyri-
midinone hit WM5 45 (Fig. 5) with potent antimalarial 
activity (EC50 0.01 μM).[119] Forward genetic and chemo- 
proteomic studies identified plasmepsin X as the molecular 
target. Optimisation of the imino pyrimidinone scaffold by 
large teams at both MSD, Wuxi and WEHI with the support 
of Wellcome led to the compound WM382 46 (Fig. 5) that 
had potent asexual stage activity (EC50 0.5 nM). Further 
phenotypic and chemo-proteomic experiments showed that 
WM382 46 potently inhibited both plasmepsin IX and 
X (IC50 0.51 and 0.035 nM).[119,120] WM382 46 was shown 
to block transmission of the parasite to the mosquito and 
was orally efficacious in asexual and liver stage mouse 
models, demonstrating that dual inhibition of plasmepsin 
IX and X is an attractive strategy to develop antimalarials. 

Conclusion 

Malaria was declared eradicated from Australia in 1981, 
however, there are still approximately 700–800 cases of 
infection each year, mostly arising from overseas-acquired 
malaria. Despite the low incidence of malaria, Australia has 
an important responsibility to support malaria elimination 
programs in endemic countries in the neighbouring region 
such as Papua New Guinea, the Solomon Islands and 
Vanuatu, and more broadly South-East Asia. In addition to 
nearby regions, the fundamental malaria research and 
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antimalarial development undertaken in Australia and by 
Australian researchers overseas has contributed considera-
bly to the worldwide effort to treat and eliminate the disease 
in malaria-endemic regions across the globe. The research 
outlined in this review further highlights that Australia’s 
chemistry and drug discovery sector is world-class and 
that continued collaborative efforts and new partnerships 
with Australian organisations will add significant value to 
antimalarial development and support the global effort to 
treat and eliminate malaria. 
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