10.1071/CP17428_AC © CSIRO 2018 Supplementary Material: Crop & Pasture Science, 2018, 69, 821–836. ## Modelling climate change impacts on early and late harvest grassland systems in Portugal Chenyao Yang^{A,C}, Helder Fraga^A, Wim van Ieperen^B, João A. Santos^A ^ACentre for the Research and Technology of Agro-environmental and Biological Sciences, CITAB, Universidade de Trás-os-Montes e Alto Douro, UTAD, 5000-801, Vila Real, Portugal. ^BGroup Horticulture and Product Physiology, 6700 AA Wageningen University, The Netherlands. ^CCorresponding author. Email: cyang@utad.pt **Figure S1.** Simulated mean and standard deviation of seasonal quantities (mm) of (a-c) precipitation, (d-f) irrigation, (g-i) potential evapotranspiration (PET) and (j-l) actual evapotranspiration (ET) over successive periods in study sites. Blank and dark bars were for early spring (ES) and late summer (LS) cut grassland systems, respectively. Independent sample t-test was performed in means between baseline and each future period, with significance levels at p < 0.05 (*) and p < 0.01 (**) respectively. Table S1. Summary of soil parameters for three study sites, along with respective dataset source and documented literatures for calculation approach | Soil parameter | | Locations | | Dataset source/ | |--|--|---|---|---| | description | NP | СР | SP | Reference literature | | Soil layer division | 30 cm o | 30 cm of topsoil and 70 cm of subsoil | | | | Soil structure | normal soil c | normal soil compaction and low gravel content | | | | Soil salinity level | | Extremely low | | | | Soil organic matter (% weight) | 2.72 topsoil
1.07 subsoil | 0.70 topsoil
0.27 subsoil | 0.40 topsoil
0.24 subsoil | HWSD | | Topsoil pH (H ₂ O) | 5.3 | 5.1 | 6.5 | HWSD | | Topsoil carbonate content (%) | 0 | 0 | 0 | HWSD | | Topsoil USDA texture | Loam | Sandy loam | Loamy sand | HWSD | | Topsoil fraction (%) | 41% sand
36% silt
23% clay | 75% sand
15% silt
10% clay | 82% sand
8% silt
10% clay | HWSD | | Subsoil USDA
texture | Loam | Sandy loam | Sandy loam | HWSD | | Subsoil fraction (%) | 44% sand
32% silt
24% clay | 68% sand
17% silt
15% clay | 75% sand
8% silt
17% clay | HWSD | | Estimation of soil hydraulic parameters | θ_{FC1} = 29%
θ_{WP1} = 16%
θ_{FC2} = 28%
θ_{WP2} = 15%
TAW_{soil} = 130 mm | θ_{FC1} = 13%
θ_{WP1} = 6%
θ_{FC2} = 17%
θ_{WP2} = 9%
TAW_{soil} = 77 mm | θ_{FC1} = 11%
θ_{WP1} = 6%
θ_{FC2} = 17%
θ_{WP2} = 10%
TAW_{soil} = 64 mm | Soil texture and
structure,
organic matter
content, salinity /
(Saxton and
Rawls 2006) | | Estimation of cumulative maximum soil evaporation without energy | q0 = 9.84 | q0 = 8.75 | q0 = 9.6 | Topsoil fraction /
(Brisson et al.
2009) | | limit (mm) Estimation of slope degree (%) | 0–4.5% | 0–6.1% | 0-2.1% | GTOPO30 | | Estimation of surface runoff coefficient | Ruisolnu = 0.03 | Ruisolnu = 0.03 | Ruisolnu = 0 | Slope degree /
(Brisson <i>et al.</i>
2009) | Note: θ_{FC1} and θ_{WP1} respectively symbolized soil volumetric moisture content at field capacity and permanent wilting point of topsoil, with θ_{FC2} and θ_{WP2} indicated for subsoil. TAW_{soil} represented total available water amount calculated as moisture difference between field capacity and permanent wilting point over soil profile. Table S2. Mean atmospheric CO_2 concentration for study periods of historical global record and climate change scenario (RCP8.5) | Study periods | Mean CO ₂ concentration (ppm) | Data source | |-------------------------|--|-------------| | Baseline (1985–2006) | 362.6 | NOAA | | Short term (2021–2040) | 451.9 | | | Medium term (2041–2060) | 545.4 | RCP8.5 | | Long term (2061–2080) | 682.3 | | Table S3. Summary of defined grassland system parameters with supported references | Grassland
system
parameters | Parameter values | | | Relevant references | | |-----------------------------------|---|----|--|--|--| | Initial status | Plant initialization (LAI = 1 $m^2 m^{-2}$, dry matter = 1.5 t ha ⁻¹ , root depth = 60 cm) | | | | (Ruget et al. 2009;
Courault et al.
2010) | | Grass features | Grass-prairiep with standard value: GDD from emergence to end of juvenile stage = 116°C, GDD from emergence to end of leaf initialization = 1500°C, GDD from emergence to grain filling = 1000°C | | | | (Ruget et al. 2006) | | | | NP | 50 kg/ha mineral N per
cut and
216 kg/ha slurry (with 65
kg/ha ammonium
nitrogen) applied in
winter | Early cut dates $(DOY_1=73, DOY_2=143)$
Late cut dates $(DOY_1=143, DOY_2=250)$ | (Trindade <i>et al.</i>
1997; Lopes and
Reis 1998) | | Farming practices | Locations | СР | 25 kg/ha mineral N per cut | Early cut dates $(DOY_1=91, DOY_2=152)$
Late cut dates $(DOY_1=155, DOY_2=260)$ | (Carneiro <i>et al.</i> 2005) | | | | SP | 25 kg/ha mineral N per
cut | Early cut dates $(DOY_1=80, DOY_2=144)$
Late cut dates $(DOY_1=144, DOY_2=250)$ | (Lourenco and
Palma 2001; Aires
et al. 2008a) | | Residue matter | Estimated residue matters after cutting (LAI = $0.2 \text{ m}^2 \text{ m}^{-2}$, dry matter = 1 t ha^{-1}) | | | (Aires <i>et al.</i>
2008b; Ruget <i>et al.</i>
2009) | | Note: *Grass-prairiep* was the original plant file parameterized for simulation of perennial grassland. GDD was growing degree days with base temperature of 0° C. DOY_1 and DOY_2 were day of year for the first and the second cut, respectively. Table S4. Summary of variations in mean annual temperature (T_{mean}) and mean annual precipitation sum (P_{rec}) of future periods in relative to baseline. Student's *t*-test was performed for changes in the mean values of each future period compared to baseline (* and ** indicated significance level at p < 0.05 and p < 0.01, respectively) | Future periods in RCP8.5 | Location of NP | | Location of CP | | Location of SP | | |----------------------------|------------------------|----------------------|------------------------|----------------------|------------------------|----------| | | T _{mean} (°C) | P _{rec} (%) | T _{mean} (°C) | P _{rec} (%) | T _{mean} (°C) | Prec (%) | | 2021–2040
(short-term) | +0.7** | -12 | +0.9** | -15* | +0.9** | -16* | | 2041–2060
(medium-term) | +1.4** | -4 | +1.8** | -8 | +1.7** | -15* | | 2061–2080
(long-term) | +2.3** | -9 | +2.8** | -17* | +2.7** | -20* | Table S5. Summary of number of days in summer with frequency above 50% for the occurrence of defined extreme heat stress in each study period (figures in brackets indicate the increased days) | Periods | Extreme heat stress in summer (days) | | | | |-------------|--------------------------------------|----------|----------|--| | Perious | NP | CP | SP | | | Baseline | 0 | 0 | 20 | | | short-term | 3 (+3) | 19 (+19) | 68 (+48) | | | medium-term | 14 (+11) | 46 (+27) | 71 (+3) | | | long-term | 35 (+21) | 71 (+25) | 83 (+12) | | Table S6. Summary of number of days in summer with frequency between 10% and 30% for the occurrence of defined severe water stress in each study period (figures in brackets indicate the variations of days) | Periods | Severe water stress in summer (days) | | | | |-------------|--------------------------------------|----------|---------|--| | renous | NP | CP | SP | | | Baseline | 22 | 34 | 42 | | | short-term | 36 (+14) | 64 (+30) | 51 (+9) | | | medium-term | 44 (+8) | 69 (+5) | 57 (+6) | | | long-term | 47 (+3) | 73 (+4) | 48 (-9) | |