Supplementary Material for:

Influence of water molecular bridges on sequestration of phenol in soil organic matter of sapric histosol

Pavel Ondruch^A, Jiri Kucerik^B, Daniel Tunega^{C,E}, Nadeesha J. Silva^D, Adelia J. A. Aquino^{C,D,E}, Gabriele E. Schaumann^{A,*}

^AUniversity of Koblenz-Landau, iES Landau, Institute for Environmental Sciences, Workgroup of Environmental and Soil Chemistry, Fortstr. 7, 76829 Landau, Germany.

^BPresent address: Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, Brno 612 00, Czech Republic.

^CUniversity of Natural Resources and Live sciences, Institute of Soil Research, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria.

^DTexas Tech University, Department of Chemistry and Biochemistry, Lubbock, Texas 79409-1061, United States.

^ESchool of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072 P.R. China

*Corresponding author. Email: schaumann@uni-landau.de

Figures:	Page
Figure S1	S2
Figure S2	S5
Tables:	
Table S1	S3
Table S2	S4
Table S3	$\mathbf{S6}$

Figure S1. Development of water content in vacuumed and aged samples.

Sample	Conte	A FAST	Corr. R ²	Chisquare	y o	SE_y ₀	A 1	SE_A ₁	<i>t</i> ₁	SE_t1	A2	SE_A ₂	t ₂	SE_t ₂	Integral
	days		V ²	V ²	v	v	v	v	days	days	v	v	days	days	Vh
	0	0.70	0.9988	2.1E-07	-0.085	2.1E-06	0.120	1.6E-04	0.909	0.001	0.052	4.9E-05	5.623	0.004	0.40
	5	0.75	0.9995	1.7E-07	-0.085	3.0E-06	0.118	4.0E-05	1.713	0.001	0.038	5.6E-05	7.747	0.008	0.50
Vac	10	0.75	0.9891	3.7E-06	-0.015	2.9E-05	0.142	3.0E-04	1.212	0.004	0.048	1.6E-04	7.447	0.031	0.53
1	16	0.73	0.9999	2.8E-08	-0.085	8.2E-07	0.134	3.4E-05	1.739	0.001	0.050	4.5E-05	5.295	0.002	0.50
_	22	0.70	0.9985	5.0E-07	-0.009	4.1E-06	0.117	7.6E-05	1.640	0.002	0.051	9.6E-05	6.560	0.008	0.52
	29	0.68	0.9994	2.0E-07	-0.010	2.7E-06	0.106	5.2E-05	1.770	0.002	0.051	6.9E-05	6.631	0.006	0.52
	0	0.75	0.9999	3.2E-08	-0.009	7.9E-07	0.140	2.5E-05	1.395	0.001	0.047	3.4E-05	4.942	0.002	0.43
Vac -	6	0.78	0.9981	9.2E-07	-0.010	6.9E-06	0.142	1.5E-04	2.191	0.003	0.039	1.9E-04	7.302	0.022	0.60
	10	0.71	0.9999	3.2E-08	-0.008	1.4E-06	0.099	1.5E-05	1.792	0.001	0.041	1.7E-05	8.320	0.003	0.52
2	16	0.73	0.9999	3.0E-08	-0.008	1.4E-06	0.094	1.5E-05	1.731	0.001	0.035	1.5E-05	8.669	0.003	0.46
	22	0.75	0.9997	2.9E-08	-0.007	1.0E-06	0.075	1.9E-05	1.445	0.001	0.025	1.6E-05	6.948	0.004	0.28
	0	0.78	0.9997	3.2E-08	-0.008	1.0E-06	0.099	2.6E-05	1.248	0.000	0.027	1.4E-05	6.752	0.003	0.31
	7	0.68	0.9998	3.7E-08	-0.007	1.2E-06	0.089	1.8E-05	1.608	0.001	0.042	2.0E-05	7.355	0.003	0.45
Vac	10	0.71	0.9998	2.8E-08	-0.008	1.1E-06	0.084	1.6E-05	1.628	0.001	0.035	1.7E-05	7.417	0.003	0.40
3	16	0.73	0.9992	1.4E-07	-0.006	2.8E-06	0.084	3.4E-05	1.694	0.001	0.031	3.6E-05	8.157	0.008	0.40
	*22	0.64	0.9961	8.4E-07	0.008	8.4E-03	0.124	4.8E-03	2.100	0.203	0.070	3.4E-02	8.011	3.260	0.82
	29	0.80	0.9997	1.9E-07	-0.010	1.3E-05	0.151	8.1E-05	2.231	0.002	0.038	9.4E-05	10.683	0.028	0.73
	0	0.79	0.9992	2.4E-07	-0.085	4.3E-06	0.140	5.7E-05	1.423	0.001	0.037	2.8E-05	9.475	0.008	0.54
Pre-	10	0.58	0.9996	2.2E-07	-0.014	3.5E-06	0.101	2.1E-04	1.871	0.003	0.075	2.5E-04	4.739	0.007	0.54
aged	16	0.68	0.9998	7.2E-08	-0.009	1.7E-06	0.112	6.4E-05	2.186	0.001	0.053	7.7E-05	6.316	0.005	0.58
1	22	0.78	0.9999	2.4E-08	-0.009	9.5E-07	0.155	1.7E-05	1.735	0.000	0.045	2.2E-05	6.743	0.002	0.57
	29	0.75	0.9970	1.2E-06	-0.009	7.5E-06	0.132	1.3E-04	1.917	0.003	0.044	1.6E-04	7.250	0.018	0.57
	0	0.77	0.9985	5.1E-07	-0.010	7.1E-06	0.131	1.0E-04	2.472	0.003	0.040	1.3E-04	8.770	0.020	0.67
Pre-	4	0.77	0.9998	7.6E-08	-0.009	2.0E-06	0.157	3.2E-05	1.540	0.001	0.046	4.1E-05	6.167	0.004	0.52
aged	10	0.67	0.9998	7.0E-08	-0.008	1.7E-06	0.105	2.6E-05	1.659	0.001	0.053	3.0E-05	7.210	0.003	0.55
2	16	0.86	0.9998	7.0E-08	-0.009	2.9E-06	0.162	2.9E-05	2.030	0.001	0.027	3.5E-05	8.835	0.010	0.57
	23	0.73	0.9998	3.3E-08	-0.008	1.4E-06	0.080	1.6E-05	1.687	0.001	0.029	1.5E-05	8.574	0.004	0.38

Table S1. Fitting parameters obtained from desorption kinetics of phenol from vacuumed and pre-aged samples.¹

^{*} The fitting function for Vac_3 at 22 days did not converge. Here a two-step fitting procedure was chosen: (1) Determination of t_1 from the first 6 hours of desorption using a monoexponential decay function, and then fitting the curve in the range 10-40 hours to the biexponential decay function using fixed A_1 and t_1 .

Sample	Contact time	Т*	Т*	Т*	Т*	Т*	T* _{AV}	SD
	days	°C	°C	°C	°C	°C	°C	°C
	0	38.3	39.8	38.3	37.9	38.4	38.5	0.7
	5	41.2	40.5	41.4	41.8	41.6	41.3	0.5
Vac	10	40.5	40.7	40.5	41.8	41.3	40.9	0.6
1	16	43.6	41.6	41.3			42.2	1.3
	22	41.4	42.5	41.9	42.1	41.8	41.9	0.4
	29	41.3	42.4	41.4	42.0	42.3	41.9	0.5
	0	39.6	39.9	40.0	40.8	40.3	40.1	0.5
Vac	6	39.7	40.3	40.0	41.2	41.1	40.5	0.7
vac	10	41.8	40.9	41.1	41.2	42.4	41.5	0.6
2	16	41.9	42.0	41.2	42.2	41.6	41.8	0.4
	22	41.2	41.2	41.2	43.8	42.4	42.0	1.1
	0	38.4	39.4	39.8			39.2	0.7
	7	38.9	40.8	39.7			39.8	0.9
Vac	10	40.0	39.9	40.4			40.1	0.3
3	16	41.4	40.9	40.3			40.9	0.5
	22	41.0	39.9	41.7	42.3		41.2	1.1
	29							
	0	43.8	43.4	45.4	44.1	36.7	42.7	3.4
re-	10	42.0	42.4	39.9	43.4	42.4	42.0	1.3
aged	16	42.4	43.6	46.3	42.9	42.1	43.4	1.7
1	22	42.2	41.6	44.1	44.3		43.0	1.4
	29	42.4	42.1	42.7	43.3	43.4	42.8	0.6
	0	42.0	44.0	43.2	42.1		42.8	1.0
Pre-	4	40.6		40.3	44.4	41.9	41.8	1.9
aged	10	43.5	42.2	43.4	41.6	42.0	42.5	0.8
2	16	42.2	41.7	44.3		44.2	43.1	1.3
	23	41.9	41.2	39.9	43.9	42.8	41.9	1.5

Table S2. Transition temperatures (T*) obtained from DSC measurements of vacuumed and pre-aged samples.

Figure S2. COSMO optimized geometries of phenol-WaMB-SOM with different mutual position of phenol molecules with respect to the WaMB chain (models 1-4 from left to right) in polar environment (methanol). Atom color scheme: C – brown, O – red, and H – white.

Table S3. Fitting parameters obtained from relation between t1 resp t2 and T* for vacuumed and pre-aged samples. The error given for the slope correspond to the standard error of the slope obtained by linear regression. The parameters highlighted in green suggest some relation between the time constant and T*. Criteria were: p < 0.05 respective: "standard error of slope is smaller than slope"

	slope /h °C ⁻¹	Prob.>F	Pearson R	Corr. R2
t_1_vac	0.16 ± 0.07	0.0311	0.5394	0.2403
t_2_vac	0.26 ± 0.26	0.3419	0.2543	-0.0021
t_1_pre -aged	0.30 ± 0.18	0.1310	0.5112	0.1690
t _{2_} pre-aged	0.65 ± 0.94	0.5075	0.2382	-0.0612
t_1_all	0.16 ± 0.04	0.0015	0.5913	0.3226
t2_all	0.25 ± 0.20	0.2105	0.2540	0.0255